\relax \@writefile{toc}{\contentsline {section}{\tocsection {}{1}{The exponential function}}{1}} \newlabel{lectB22.sec1}{{1}{1}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{1.1}{The construction}}{1}} \newlabel{lectB22.1}{{1}{1}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{}{Step 1. Algorithm. }}{1}} \newlabel{lectB22.3}{{2}{1}} \newlabel{lectB22.4}{{3}{1}} \newlabel{lectB22.5}{{4}{1}} \newlabel{lectB22.6}{{5}{2}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{}{Step 2. Cauchy sequence. }}{2}} \newlabel{lectB22.5b}{{6}{2}} \newlabel{lectB22.7}{{7}{2}} \newlabel{lectB22.5c}{{8}{2}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{}{Step 3. The limit solves the equation. }}{2}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{}{Step 4. Uniqueness. }}{3}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{1.2}{Domain of definition}}{3}} \newlabel{lectB22.8b}{{9}{3}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{1.3}{Derivative and initial value}}{3}} \newlabel{lectB22.8}{{10}{3}} \newlabel{lectB22.9}{{11}{3}} \newlabel{lectB22.10}{{12}{3}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{1.4}{Positivity}}{3}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{1.5}{Monotonicity}}{3}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{1.6}{Inverse function}}{4}} \newlabel{lectB22.11}{{13}{4}} \newlabel{lectB22.12}{{14}{4}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{1.7}{Product of exponentials}}{4}} \newlabel{lectB22.13}{{15}{4}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{1.8}{Asymptotic behavior}}{4}} \newlabel{lectB22.14}{{16}{4}} \newlabel{lectB22.15}{{17}{4}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{1.9}{Range}}{4}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{1.10}{Graph}}{4}} \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces The graph $y=\qopname \relax o{exp}(x)$ together with the tangent $y=x+1$. }}{5}} \newlabel{fig:lectB21.1}{{1}{5}} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces The graph $y=\qopname \relax o{exp}(x)$. Note how fast it grows. }}{5}} \newlabel{fig:lectB21.2}{{2}{5}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{1.11}{The number $\text {{\rm e}}$}}{5}} \newlabel{lectB22.15b}{{18}{5}} \newlabel{lectB22.16}{{19}{6}} \newlabel{lectB22.17}{{20}{6}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{1.12}{Exponential function with base $a$}}{6}} \newlabel{lectB22.18}{{21}{6}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{1.13}{Logarithm with base $a$}}{7}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{1.14}{Solving differential equations with $\qopname \relax o{exp}$}}{7}} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces The graph $y=u_0\qopname \relax o{exp}(cx)$ for $u_0=1$, $c>0$, $c=0$, and $c<0$. }}{8}} \newlabel{fig:lectB21.3}{{3}{8}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{1.15}{Reaction kinetics}}{8}} \newlabel{tocindent-1}{0pt} \newlabel{tocindent0}{14.69437pt} \newlabel{tocindent1}{17.77782pt} \newlabel{tocindent2}{35.1387pt} \newlabel{tocindent3}{0pt}