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ESTIMATION OF LINEAR FUNCTIONALS ON SOBOLEV SPACES
WITH APPLICATION TO FOURIER TRANSFORMS AND SPLINE
INTERPOLATION*

J. H. BRAMBLEY} anDp S. R. HILBERT}

1. Introduction. In this paper some general theorems on estimation for classes
of linear functionals on Sobolev spaces are given. These are applied to the study of
convergence properties of discrete Fourier transforms in N-dimensional Euclidean
space, EN. In addition, a class of spline functions on uniform meshes in EV is
considered.

Specifically, in § 2, definitions and notation are introduced.

Section 3 is devoted to the estimation of bounded linear functionals on Sobolev
spaces. The particular functionals of interest are those which annihilate poly-
nomials of a certain degree (or less). Such functionals are of central importance
in the study of errors in approximation and interpolation of functions. Our
estimates can often be used to replace standard Taylor series approaches to the
estimation of local errors such as in the comparison of difference quotients with
derivatives (in E¥) or the estimation of the remainder term in the Taylor series
itself. In addition, our results can frequently serve as a substitute for estimates based
on an ad hoc use of Peano kernel theorems (c.f. Sard [5, p. 25]). In such estimates,
the particular form of the kernel must be utilized whereas for our theorems only
properties which are easily verified are required. For example, the use of kernel
theorems by Birkhoff, Schultz and Varga [1] in the study of errors in Hermite
interpolation could now be avoided by applying our theorems. This would seem
to be of particular importance in more than one dimension where the kernel
representations are a bit cumbersome.

Section 4 is devoted to the study of the behavior of the difference between the
discrete and continuous Fourier transforms in EN as the mesh size tends to zero.
Our approximation theorems are applied to obtain these estimates via certain
lemmas which are also employed in § 5.

The last section deals with a class of spline interpolants of order k on Sobolev
spaces. We investigate the error in interpolation by such splines as the mesh size
tends to zero. We also obtain a connection between the discrete Fourier transform
and the N-dimensional analogue of the so-called cardinal series. It is shown finally
that this series is obtained as a limiting case of splines of order k as k — co. In
this connection, Schoenberg [6] has considered this problem in one dimension
but for a somewhat more general class of functions and for splines of even order
(piecewise polynomials of odd degree). We also want to mention the interesting
paper of Golomb [3] in which he uses Fourier methods to study periodic splines
on uniform meshes in one dimension.
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2. Notation and preliminaries. Let R with boundary 0R be a bounded domain
in Euclidean N-space, EN. Let p be the diameter of R. We shall assume that R
satisfies a strong cone property; that is, there exists a finite open covering {O;},
i=1,---,n, of 0R and corresponding cones {C;} with vertices at the origin such
that x + C; is contained in R for any xe R N 0;.

We shall consider complex-valued functions defined on R. As usual we denote
by L,(R) the completion of the space of complex-valued functions defined on R
such that

1 1/p
(? Llf(x)l”dx) = 1k

is finite. We shall need the following seminorms:

2.1) [ulpse.r = IIZ [ D%ull ,r
al =k

and

22) lul g = Y |D*ulg,
la| =k

where |ulg = sup,.g [u(x)].
In (2.1), (2.2) and the sequel, o is a multi-index;

N ay a
o= "(ty, +,oy) and o = Z o, D*= _5_ _0_ N‘
i=1 aX1 axN
Now for 1 < p < co and m a nonnegative integer let H(R) be the set of all
functions in L, with distributional (weak) derivatives of order jfor0 < j < min L,,.
In this paper we take the norm on H7(R) to be

(23) lullpme = 3 PPul} sk
k=0

It is trivial that this is equivalent to the usual norm for H}(R).

We shall also consider the space of functions which have continuous deriva-
tives of order up to and including m in R; this space will be denoted by C™(R). For
the purposes of this paper we take the norm on C"(R) to be:

(24) [lmr = Y, PMulsr-
k=0

Again, the usual norm on C"(R) is equivalent to (2.4).

We shall denote by P, the set of polynomials of degree less than or equal to k,
restricted to R.

Let h be a (small) positive parameter and define the set of mesh points Ej as
E) = {x|x = (nh, - -+, nyh), n; an integer,j = 1, ---, N}.

Throughout this paper we shall use C to denote a generic constant not neces-
sarily the same in any two places.

We shall also use Sobolev norms on EM. As usual these are given by

1/p
|l fig = ¥ < |1Dull5, where | Dul], = f |D“u(x)|"dx) and we denote by
= EN
1/2

/
lul o the Ly-norm, |jul, = (I lu(x))? dx) . By |lull,, we shall mean the Sobolev
EN
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norm of ue HP(EY). The notation |u|,, will be used to denote the seminorm
i D%l

3. Estimation of linear functionals. Consider B a Banach space with norm
|l - |5 and let B, be a closed linear subspace of B. We define Q to be the quotient
or factor space of B with respect to B,, denoted by B/B,. The elements of Q are
equivalence classes [u], where [u] is the class containing u. The equivalence relation
is given by ~ where for u, ve B, u ~ v if and only if u — v € B;. The usual norm
on Q is given by |[[u]llp = inf,e, lvp. It is easy to show that |[u]f,
= inf,.p, [lu + v|z. Under the assumptions we have made for B and By, it is well
known that Q is a Banach space with norm | - |o.

Now consider the (closed) finite-dimensional subspace of H%R) given by
P._,. Therefore p(x)e P,_, if and only if p(x) = Zmé -1 @,x" for x € R, where
the a, are complex numbers and y is a multi-index.

THEOREM 1. Let Q = HYR)/P,_ . Then |ul, , x is a norm on Q equivalent to
[[u]llg. Further, there exists C independent of p and u such that for any ue H';,(R)

(3.1 Pk|”lk,p,R < ||[“]“Q = Cpklulk,p,R'

Proof. We shall make use of two lemmas which can be found in Morrey
[4, p. 85].
LEMMA 1. For any u € H%(R) there is a unique polynomial p of degree less than

or equal to k — 1 (or 0) such thatf D*u + p) = 0 for all o with0 < |of £ k — 1.
R

LeEMMA 2. Let R satisfy a strong cone condition. Then (since R is contained in a
sphere of radius p) ul; , x < Cp* July ,r for 0 < j < k — 1 for all ue H4R) such
that the average over R of each D*u is 0 for 0 < |o| < k — 1, where C is a constant
independent of p and u.

Note. Morrey assumes that his domain is strongly Lipschitz, but the proof is
exactly the same if the domain satisfies a strong cone condition.

We shall now prove the right-hand inequality in Theorem 1. By Lemma 1 we

can choose pe P,_, such that f DY(u + p) = 0 for |y| £ k — 1. Hence using
R

Lemma 2 it follows that [lu + pli .z < CpMu + Plipr = CoMuli p.r. However,
since p € P,_; we have that ||[u]llo < u + Pl ,,r- Hence [|[u]lo = Cp"lulk,p,R for
ue HYR).

The other inequality is easily seen from the observation that p*lu + Pli,p.r
= pYul, , r for any pe P,_, from which we immediately obtain

Pulepr = inf fu + plpr = [[¥lg-
pePr-y

We shall now use this theorem to obtain error estimates for linear functionals.
The main result of this section is the following theorem.

THEOREM 2. Let F be a linear functional on H(R) which satisfies

@) |Fw) £ Cllully,p,g for all uer,(R) with C independent of p and u and

(ii)) F(p) =0 forallpeP,_,.
Then |F(u)] < C,p"uly p.x for any u € H(R) with C independent of p and u.
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Proof. Since F is linear and satisfies condition (ii),

(3.2) |[F(u)| = |F(u + p)| forallpeP,_,.
By condition (i) and (3.2) we have

(3.3) F@) = Cllu + plipz-
Taking the infimum over P, _, in (3.3) we have

(3.4) [F)| = Cll[ulllo-

The result now follows from Theorem 1.

THEOREM 3. Let F be a linear functional satisfying

(i) |F)| < Cllull; g for all ue C/(R), where C is independent of p and u and

(i) F(p) =0 forallpe P,_,.
Then |F(u)| < Clp"lulk,,,,R for p > N/(k — j), where C, does not depend on p or u.

Proof. Since R satisfies a strong cone condition it follows easily from Sobolev’s
lemma (c.f. [4, p. 78]) that |lu;r < Cllulls,,r With C independent of p and u
provided p > N/(k — j). Clearly F satisfies the hypotheses of Theorem 2.

For the final result of this section we define the usual Lipschitz spaces. Let s
be any positive real number with s = S + ¢, 0 < ¢ £ 1, S a nonnegative integer.
We denote by C(R) those elements of C*(R) such that

ID*u(x) — D*u(y)|

cyaR lal=s Ix =y
is bounded.
THEOREM 4. Let ue C5(R) and let F be a linear functional on C°(R) which
satisfies

(i) |F) < Clulo.g for all ue C°(R) with C independent of p and u and
(ii) F(@) =0 for allqe P, _;.
Then
s |D*u(x) — Du(y)l
|[F) < C,p° sup

< , 0<s<k,
X,y€R |4 =5 [x — yl

where C, does not depend on p or u.
Proof. Since R is bounded, |ul, , r < |ul; g for all p = 1. Hence it follows
directly from Theorem 3 that

(3.5) |F(u) £ CpMul, for any ue C*R)

with C independent of p and u. Interpolating between the spaces C°(R) and C¥R)
we obtain, for s < k,

s D*u(x) — D*u(y)|
(3.6) F) = Co(lulo + sup ) 22 = Duly
x,YeR |o|=§ |x — yl

s

where C is independent of p and u (c.f. [2] Bramble, Hubbard, Thomée, Lemma 4.1
and 4.2).

Now F(u) = F(u + q) for any g € Pg since S < k — 1. Choosing g, € Pg such
that D*u + g4)(x) = 0 for some x, e R and all |a| < S, we may easily obtain

D*u(x) — D*u(y)|
lu + golo,r = C sup Z (D v

x.yeR || 25 |x — y°

>
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where C is independent of p and u. Hence

D — D*
IF@) = 1F+ o) < Cp{ sup 3 127400 = D)

x,YeR |o| =5 lx — yI”

where C is independent of p and u.

4. Discrete and continuous Fourier transforms. In this section we shall use the
results of the last section to compare the continuous and discrete Fourier trans-
forms.

Let % be the space of complex-valued infinitely differentiable rapidly decreas-
ing functions on E¥. We remark that CQ(R) ¢ & for any domain R < EV. Now
for any function fin & we define the Fourier transform of f which will be denoted

by fas f(¢) = f f(x)e™ 5% dx, where <& x) = YN &x;. The Fourier trans-
EN

form is defined for a function in L,(E¥) or L,(EM) by using the density of . in
L,(EN) or L,(EM). It is well known that the Fourier transform is a one-to-one map
of L,(EV) onto L,(EY) and that the Parseval-Plancheral formulas | f],

= Q2n) | f|, and f fx)gk)dx = 2m)~N f f(x)&(x)dx hold for any
EN EN 3
g, fe L,(EY). We define an inverse Fourier transform denoted by f as

flx) = (271)‘”J f(©)e= dé. For any function in &, we know that D/“f(\é)
EN

= (i&*f (€) for any multi-index «, so we can express | f | asf (1 + &M F )2 aé.
EN

Finally if f€ L,(E") and ge L,(E") then (f* g)(x) = LN S = y)g(y) dy € Lo(EY)

and [* g(¢) = 7(9)-2(&) in Ly(EY).

We can define a discrete Fourier transform for any function which has
bounded support and is defined on all the mesh points EY by i(0)
= WV}, gy t(x)e” "%, We remark that  is a periodic function of period 27/h.
We shall later show that we can define ii for any ue H for m > N/2.

Let y, be the characteristic function of the cube S, where S, = {{|& € EV,
|| S m/hforj=1,---, N}.

Our main aim in this section is to study y,i — 4, as h — 0. We shall first
prove the following lemma.

LEMMA 3. Let ue CJ(EN). Then there exists a constant C independent of h
and u such that for m > N/2,

4.1) 100i®)” — ull; < Ch™lul,,

for any integer j with 0 < j £ m.

Remark. Our main theorem in this section is the same as this lemma but with
u e H%. However, we shall use this lemma to define i for ue HY.

In order to prove Lemma 3 we shall prove two other lemmas which will
also be needed in § 5. We need to introduce first some notation.

Let I,(y) for any y € E}/ be the cube given by I,(y) = {x|xe EY, y; — h/2 < x;
<yj+ W2 for j=1,---, N}. Define an extension operator by P,u(x) = u(y)
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for x e I,(y). Let

1/hN  for x € I,(0),
Y(x) =
0 forx¢I,0)
and
1/h  for —h/2 < x; £ h/2,
Vi) = { 0  otherwise

so that Y(x) = [T, ¥; (x)and §(&) = [Ty, (sin Eh/D/Eh/2).

It is easy to see that for any u such that # exists,

42) Pu(d) = Y(&)i(e).

For fixed x € E¥ we define a linear functional on Cg by

F(x;u) = (™ * Pu)(x) — ()™ * u)(x)

=1 T = aute) - [ g — e
zeEN EVN

where y® = * ... %y, k times.

We have the following lemma.

LEMMA 4. There exist constants C, C; and K independent of x, h and u such
that

|F(xs )] = Clutl ) S Crlltllm, 2, 150000

form > N/2.

Proof. Choose K such that I,(0) = supp ™. Then the first inequality is
obvious and the second an immediate application of Sobolev’s lemma.

The next lemma is more difficult to prove.

LEmMMA 5. For any polynomial pe P,,_,

Fu(x,p)=0

Proof. Let J be any set of mesh points which are translates of E}, ie.,
J = {x|x + a =y, where ye E} for fixed ae E¥}. Now define F,, ;(x;u) for u

continuous by AV Jtﬁ"”)(x — 2)u(z) —J- Y™ (x — z)u(z) dz and we shall prove
ZEe EN

the following proposition which contains our lemma.

PROPOSITION. For any J and any x € EN, F,, ,(x,p) = 0 for all pe P, _,

We prove this by induction. It is easy to see that the result is true for m = 1
and 2 and if m is an integer greater than two, then /™ belongs to C™~ % in E™.
Now assume the lemma is true for m; we want to show that F, ., ;(x, p) = 0 for
all peP, and any J or x. Consider 0/0x(F, ,, j(x,p)) for j=1,---, N. (For
m = 3 we know that F, ,, ; is at least a continuously differentiable function of x.)
Now

0

a0 = 2 [ i = o)y, [T )

ool P

J
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We define 0;f(x) = [f(xy, -+, X; + W2, X400, -+, xn) — f(Xg, -+, x; — h/2,
Xj+1, -+, Xy))/n and easily obtain

0
a—me+1,J(x’p) =h" Z 1_[ '/’Y”H)(xl - J’z)aj‘ﬁ;m)(xj - J’j)PU’)

Jj yvelJ l#j

- l_[ Y D(x, — yl)ajl//;"n)(xj = yp(y) dy.
EN1#j
Now defining a new set of mesh points J = {z|z, = y,,| # j, z; = y; — h/2, ye J}
we have

0
Ferg5p) = WYY T O = 2)u(x; = 1)0p(e)
J

zeJ l#j

— | TTvi P — 200 ™(x; — z))0;p(2) dz

EN %]

= [(51 1—[ l//l)*Fm,f( ) ajp)] (X),
1#j

where J; is the one-dimensional Dirac measure with respect to x;. However,

this is zero since J;p is in P,,_, if p is in P,,. Since 0/(0x)F,,+, 4(x, p) = O for any

x,JandpeP,andj=1,---, N, then F, ,, ;(x,p) = C, where C does not depend

on x. Hence

C=h"Y y"*x — y)p(y) — LN Y D(x — y)p(y) dy.

yeJ

Using the fact that F, ., ; annihilates polynomials in P, _; we can replace p(y)
by p(y — x), and noting that y/™*1) is even, by a change of variable we obtain

4.3) C= 1Y ¥ x4 Yplx + ) — f WO 0t di
EN

yeJ

Averaging both sides of (4.3) over I,(0) we find that

1
Cm i [Ty e+ pydx = [ g pe de
I,(0) EN

yelJ

=Y | v Opx) dx — f Y D(p(x) dx = 0.
EN

veJ v In(y)

This proves the proposition.
We can now complete the proof of Lemma 3. Consider j = 0. Now by
Parseval’s identity ||(y,il)” — ulo = 2n) V2| y.d — 4, and

it — alg = L i — a* d¢ + J] la(&)|* dé.

&jl>mih

The second integral is easily estimated since for & ¢ S, there is a constant C,, such
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that C,,h*™|&|>™ = 1 for all ¢ ¢ S,. Hence

f 2 dE < C,ph2m f A de
&> n/h

&5l > n/h
< Cuh®"uly.
Now consider the first integral. Since Y(¢) = ?’=1 (sin &;h/2)/(E jh12), there

are positive constants C, and C, independent of h such that 0 < C; < ¥(¢) = C,
for any ¢ € S,,. Thus in S, #(&) = ¥~ YE)Pu(f). We have

4.4)

R N . N
@ —afde= | 1 Bu - aPde = | @ VB — ymaP dg
Sn Sh Sh

- NN
e A O G R
Sh

e
< ClY" = YPu = y™alg,

and so, by Parseval’s formula we obtain

0 — a? d€ < Clly™ =1 % P — ¢ * |3
Sn

“4.5)
Clearly by Lemma 4 we can extend F,(x;u) to H%(Ig,(x)) by continuity.
Now by Lemmas 4 and 5, F,, satisfies the hypotheses of Theorem 2 with R = I, (x).
Hence |F,(x; u)] £ Ch™|uly, 2 1,.,(%), where C is independent of x, h and u. Explicitly
|F(x;u)? £ Chz'"(l /meas I,(x) Y |D*u(z))? dz|.

Ign(x) laj=m

Let
1/meas I, (0) if y e I,(0),
Ouly) = .
0 if y ¢ I1,(0)
1/2

so that ]lFm(~;u)||0§Chm(f ((pm*zla‘zmlD“ulz)(x)dx . However, since
EN

¢.(x)dx = 1, by interchanging the integration in the convolution with the
EN
integration with respect to x we have

(4.6) 1Ea( - Wllo = Ch™ul,,.

Thus (4.4) and (4.6) prove Lemma 3 for j = 0. Now, for 0 < j < m, following
the same steps as before we are easily led to

106 — ull; < CUE(-, wl; + B lul,,).
The estimate for the first term on the right is obtained by applying Theorem 2 to
the functional G,, ,(x;u) = h*\D*F,,(x;u) for each a with |/ < j, which clearly

satisfies the hypotheses. The proof is completed as before. Thus we have proved
Lemma 3.
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We now wish to extend the definition of the discrete Fourier transform to any
function in H} where m > N/2. Define [, as the set of all square summable func-
tions defined on E}, with norm | @||?, = h¥ era,ly |@(x)|2. It is easy to see that for
any function ¢ € C3 we have

1
4.7 hy x)? = —f 2de.
@) T 100 = (g | 100 de

For any u e HY there exists a sequence {¢;} € C§’ such that ¢; - u in HY.
Now since

0= o de = [ 10— o= 0+ dde+ | 10,- 0P,
Sh Sh EN

using Lemma 1 and the fact that {¢;} is a Cauchy sequence in H%, we have {¢;}
is a Cauchy sequence in L,(S,). We define i as the limit in L,(S,) of ¢; and extend
it periodically to all of EV. It is easy to see that i is independent of the choice of the
sequence @; — u in HY, so il is well-defined.

We now have the main result of this section.

THEOREM 5. Let u € H. Then there exists a constant C independent of h and u
such that form > N/2,

100 — ull; < ChH™ul,,

for any integer j withQ < j < m.
Proof. Let {@,} be a sequence such that ¢,e C¥,n = 1,2, ---, and ¢, = uin
2 as n - 0. Now

10ai®)™ — ull; < 100@ — )7l + 1068~ — @all; + 190 — ull;-
By Lemma 3 and the definition of y, and | - |; it follows that

106" — ull; < Ch @ — @)lo + CH"l); + llo, — ull;.

By letting n — oo the theorem follows.

We shall also give a version of the Poisson summation formula relating the
discrete and continuous Fourier transforms. This will be needed in the next
section.

THEOREM 6. Let ue€ H% with m > N/2; then

#E) = ) ¢+ 2np/h) ae.
BeEY
We shall not give a proof of this formula here since it is essentially a well-
known result.
Finally we wish to remark that a proof of Theorem 5 can be based on Theorem
6, but since Lemmas 4 and 5 are required in the next section it seemed preferable
to present a self-contained proof based on these lemmas.

5. Splines in E”. In this section we shall apply the results of § 3 and § 4 to
certain types of splines. If v is defined on EJ, then a function of the form
KN ZyeEﬁ, Y®(x — y)(y) is called a spline of order k. It is easy to see that regarded
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as a function of x, a spline of order k has continuous partial derivatives of order
k — 2 and is a piecewise polynomial of degree k — 1. Now let u be defined on E}.
Then we call Si(x;u) a spline interpolant of order k for u, provided S,(x;u)
=Y ey W ®(x — y)(y) and Sy(x; u) = u(x) for all x € E}. We remark that the
functions y®(x — z), h = 1, N = 1, are all the so-called B-splines of Schoenberg
(6].

We have the following existence and uniqueness theorem.

THEOREM 7. Let uel,. Then there exists a unique vel, such that S,(x,u)
=hy vy W ®(x — y)(y) is a spline interpolant of order k for u, k = 1,2, -+ .

Proof. In order to prove this theorem we need the following lemma whose
proof will be deferred.

LEMMA 6. For each k = 1,2, - - - there exists a constant C, such that

J®E) = C, >0  forall & eEN.
Let L be an operator defined on [, by

(Lv)(x) = h¥ 3 O — yp(y),  xeEj.

yeEN

For any ¢ el, let {¢,} be a sequence such that ¢, € [, has bounded support for
eachnand ¢, — @ asn — oo in l,. Now clearly Lo, = f//-m@”, and by the Parseval
identity (4.7) and Lemma 6 it follows that

1 — 1 —_
Lo,lf, = 55 | ILol*do = ®12|@,)? do
” ? I 1 (27Z)N s, ?, (2TC)N s Il// |(P
C2
2 il el

The operator L:l, — [, is obviously continuous. Hence we obtain
-1

C
loll,, < erwub

for all p € l,. Denote by R(L) the range of L, regarded as a subspace of /,.
Define a functional F on the range of L by F(L¢) = (u, ¢) for all pel,.
Now |F(Lo) < lloll,llul,, < ClILel,llul,, and hence F is well-defined and
bounded on R(L). By the Hahn-Banach theorem there is an extension F of F to
all of I,. Now by the Riesz-Fréchet theorem, there exists a unique v € [, such that

F(w) = (v, w) for all w €l,. Thus we have, for all p€l,,

(v, Lg) = F(Lg) = F(Lg) = (u, ¢).
Clearly L is symmetric so that
(Lv, ) = (u, @) forallpel,,

which proves the theorem.
Proof of Lemma 6. It is sufficient to prove the result in one dimension since
Y®(E) = ’}’z W¥(E). Now by the Poisson summation formula W(C ;)
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=32 l//(k’(é + 2nl/h) a.e. Hence, we have

(sm (Eh/2 + nl))

ZACE Eh2 + 7l

l=—o00
_ [sin &;h/2\F i ® 1 k
“( Eh2 ) + (ein A2 ,gl{(_l)lk[(éjh/z n ln)

Now since l//"‘) has period 2n/h and is even, we have for any positive integer
k, l// Y )= [(smfh/Z)/(f,h/Z)]" ae. for 0 < ¢; < n/h and therefore we have
yS )(é ) = (cos &) ace. for 0 < &; < m/h, when &, = tan &y, 0 < & < m/2. Then
by the continuity, the periodicity and the evenness of y/* we obtain

Yy(E) = ﬁ (cos &) = (cos &)Y > 0 for all &€ EV.
ji=1

We shall define S,(x;u), k = 1,2, -- -, for ue HS with m > N/2. By Sobolev’s
lemma for any u € HY there exists u, € HY such that u — u; = 0 a.e. and u, € C°.
Again by Sobolev’s lemma, the restriction of u, to E} belongs to I,. Hence Sy(x; u,)
exists and is unique. We define S,(x; u) to be equal to S,(x; u;). We remark that it
follows from the definition of i that @i = d, .

We shall now obtain a representation for S;(x;u) in terms of u.

THEOREM 8. Let ue€ H% with m > N/2. Then

N —
(5.1) Six;u) = (WO

Proof. From the definition of S(x; u) for ue H and Theorem 7 there exists
vel, such that
Sixsu) = hY Y Yy Bx — yy).
yeEYN
Hence
5=
and

—_—

i=1d, =8, =y¥p.
By Lemma 6 it follows that
S =V
Taking the inverse transform we obtain (5.1). Using this representation we obtain
the following error estimate.
THEOREM 9. Let ue HY%, k > N/2. Then there exists a constant C independent

of h and u such that
ISe — ull; < CH lul,, 0=Zj<k.

Proof. Now

I1Se —ul2 < C| (1 + 1028, — al> do.
EN
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. P
Since we can express S, — fi as
N N

@O GPa — 50 + @) P - §P

we have by Lemma 6

N~ 1/2
(5-2) ISk — ull; = Cil[HFk(' Wl + U (1 + 1071 ® — y©Pa) dG) ]
EN

However, we have

W00) ~ TN = 11 T e <0 = [ ymenix ax
EN

xeEN
= |F(0,e <) < CHY6)' forany0 <1[<k,

by Theorem 4. Take | = k — j. Then it is clear that the second term on the right
of (5.2) is bounded by Ch*~J||u| . We have already seen in the proof of Theorem 5
that |F(-,uw|; CH*™J|u||,. Thus the proof is complete.

Now in § 4, we showed that [|(y,#)" — ul; = Ch™ J||u|,,. We shall now show
that we can regard (y,#)” as a limiting case of S(x; u). Consider (y,#)” for uin Cg ;
then

Y ux)e 0% ges,,
xeE}

0 for |0 > m/h.

Hence

(at)7(&) = f Zu(x)e i€x,0) ,i€0,8> 1

@y’
(5.3) _ Youx)| €<% do
' @Y,

EEN Sh

_ sin (&; — x)m/h
’erEN”“H( & = x;m/h )

Note that (y,#)" is just the N-dimensional cardinal series of Whittaker [7]. We shall
denote (x,%)” by S, (x;u).

The behavior of S, as k — oo is studied in the following theorem.

THEOREM 10. Let ue H% with m > N/2. Then S, converges uniformly to S,
on EV.

Proof. By Theorem 8 we have

[ R O RV R
Siox; W) — S,o(x3u) = (ﬂ) f (7,3 - xh) qex9 do,
and hence

N AN~
s = S.ocion = ()| [ % — tiaao
Sh

; f e d@].
105> n/h
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By an application of the monotone convergence theorem and the Poisson sum-
mation formula we can write the first integral as
AN
¥ Y0 + 2np/h)
B#0 VS, w(k)e
Using the periodicity of ii and i/ and regarding the integral over |0 | > m/h as the

sum of the integrals over S, + 2fn/hfor all B # 0, after making a change of variable
for each B, we can express the second integral as

Y0 + 2p/h)
S ———m——— |7#(0)| dO.

|(0)| dO.

p+0
. T~ W . . . .
Now since Y = Yy in §,, and since |sin (x + 7)| = Ism x|, we obtain

k

|71(0)| dO.

ISux3 ) = Suoes ] = G5 )Nﬂg;o Swﬂl 0,,+2 =5,

Using the Cauchy-Schwarz inequality we have

9 h 2k 1/2
ﬂ 0h+2n/3, ‘w) '

By an elementary estimate it follows easily that there is a constant C independent

of k such that
p;o( s;.;l—_ll 0h + 2753;

Thus we have |S;(x;u) — S (x;u) £ C2k — 1)"N2 where C is independent of y;
by letting k — oo the theorem follows.

2
Sex;u) — S(x;u)l £ —Fllilo,s, (
ISk(x s u) (x; u) (2n)NII lo,s ﬂ;o s

2k 1/2
da) < CQk — 1)M2,
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