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ESTIMATION OF LINEAR FUNCTIONALS ON SOBOLEV SPACES
WITH APPLICATION TO FOURIER TRANSFORMS AND SPLINE

INTERPOLATION*

J. H. BRAMBLE’ AND S. R. HILBERT:I:

1. Introduction. In this paper some general theorems on estimation for classes
of linear functionals on Sobolev spaces are given. These are applied to the study of
convergence properties of discrete Fourier transforms in N-dimensional Euclidean
space, EN. In addition, a class of spline functions on uniform meshes in EN is
considered.

Specifically, in 2, definitions and notation are introduced.
Section 3 is devoted to the estimation ofbounded linear functionals on Sobolev

spaces. The particular functionals of interest are those which annihilate poly-
nomials of a certain degree (or less). Such functionals are of central importance
in the study of errors in approximation and interpolation of functions. Our
estimates can often be used to replace standard Taylor series approaches to the
estimation of local errors such as in the comparison of difference quotients with
derivatives (in EN) or the estimation of the remainder term in the Taylor series
itself. In addition, our results can frequently serve as a substitute for estimates based
on an ad hoc use of Peano kernel theorems (c.f. Sard [5, p. 25]). In such estimates,
the particular form of the kernel must be utilized whereas for our theorems only
properties which are easily verified are required. For example, the use of kernel
theorems by Birkhoff, Schultz and Varga [1] in the study of errors in Hermite
interpolation could now be avoided by applying our theorems. This would seem
to be of particular importance in more than one dimension where the kernel
representations are a bit cumbersome.

Section 4 is devoted to the study of the behavior of the difference between the
discrete and continuous Fourier transforms in E as the mesh size tends to zero.
Our approximation theorems are applied to obtain these estimates via certain
lemmas which are also employed in 5.

The last section deals with a class of spline interpolants of order k on Sobolev
spaces. We investigate the error in interpolation by such splines as the mesh size
tends to zero. We also obtain a connection between the discrete Fourier transform
and the N-dimensional analogue of the.so-called cardinal series. It is shown finally
that this series is obtained as a limiting case of splines of order k as k . In
this connection, Schoenberg [6] has considered this problem in one dimension
but for a somewhat more general class of functions and for splines of even order
(piecewise polynomials of odd degree). We also want to mention the interesting
paper of Golomb [3] in which he uses Fourier methods to study periodic splines
on uniform meshes in one dimension.
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ESTIMATION OF LINEAR FUNCTIONALS 13

2. Notation and preliminaries. Let R with boundary cR be a bounded domain
in Euclidean N-space, EN. Let p be the diameter of R. We shall assume that R
satisfies a strong cone property; that is, there exists a finite open covering

1,-.., n, of cR and corresponding cones {Ci} with vertices at the origin such
that x + Ci is contained in R for any x R f) Oi.

We shall consider complex-valued functions defined on R. As usual we denote
by Lp(R) the completion of the space of complex-valued functions defined on R
such that

1
If(x)l p dx Ilfllp,R

is finite. We shall need the following seminorms

(2.1) lul,,= IOull,

where lul SUpxR lu(x)l.
In (2.1), (2.2) and the sequel, is a multi-index;

-- ((1,’’’, aN) and
i=1

Now for 1 p < m and m a nonnegative integer let H(R) be the set of all
functions in Lp with distributional (weak) derivatives of orderj for 0 j m in Lp.
In this paper we take the norm on H(R) to be

(2.3) {lu[l,m,R kPlul,,.
k=0

It is trivial that this is equivalent to the usual norm for H(R).
We shall also consider the space of functions which have continuous deriva-

tives of order up to and including m in R; this space will be denoted by Cm(R). For
the purposes of this paper we take the norm on Cm(R) to be"

(2.4) Ilull,
k=0

Again, the usual norm on C=(R) is equivalent to (2.4).
We shall denote by P the set of polynomials of degree less than or equal to k,

restricted to R.
Let h be a (small) positive parameter and define the set of mesh points E as

E {xlx (n h, nNh), na an integer, j 1,..., N}.
Throughout this paper we shall use C to denote a generic constant not neces-

sarily the same in any two places.
We shall also use Sobolev norms on EN. As usual these are given by

Ilull. < IIDulI, where IDullp [Du(x)[p dx and we denote by=m
N

lullo the L-norm, l[ullo lu(x)l e dx By llu we shall mean the Sobolev
N
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norm of uH’(EN). The notation lUlm will be used to denote the seminorm

3. Estimation of linear functionals. Consider B a Banach space with norm

I1" IIn and let B1 be a closed linear subspace of B. We define Q to be the quotient
or factor space of B with respect to B1, denoted by B/B1. The elements of Q are
equivalence classes [u], where [u] is the class containing u. The equivalence relation
is given by where for u, v B, u v if and only if u v B1. The usual norm
on Q is given by [[[u]lle infwt,l livlln. It is easy to show that

infvnl Ilu / vl . Under the assumptions we have made for B and B1, it is well
known that Q is a Banach space with norm [1" I1.

Now consider the (closed) finite-dimensional subspace of Hkp(R) given by
Pk-1. Therefore p(x)e Pk-1 if and only if p(x) ll<_k_ ayx for x R, where
the a are complex numbers and 7 is a multi-index.

THEOREM 1. Let Q Hkp(R)/Pk 1. Then lUlk,p,R is a norm on Q equivalent to

II[u] Q. Further, there exists C independent of p and u such that for any u Hkp(R)

(3.1) pklulk,p,g <-_ IIEu]llo _-< cklulk,,R"

Proof We shall make use of two lemmas which can be found in Morrey
[4, p. 85].

LNA 1. For any u e Hkp(R) there is a unique polynomial p of degree less than

or equal to k 1 (or 0) such that _t-,, D(u + p) 0 for all with 0 <= I1 <= k

LEPta 2. Let R satisfy a strong cone condition. Then (since R is contained in a
sphere of radius p) lul,p, <- Cp-lul,, for 0 <_ j <_ k 1 for all u e Hkp(R) such
that the average over R of each Du is 0 for 0 <_ I1 _-< k 1, where C is a constant
independent of p and u.

Note. Morrey assumes that his domain is strongly Lipschitz, but the proof is
exactly the same if the domain satisfies a strong cone condition.

We shall now prove the right-hand inequality in Theorem 1. By Lemma 1 we

can choose e Pk-1 such that _t D(u + ) 0 for 171 <- k- 1. Hence using

Lemma 2 it follows that Ilu / llk,,R <= cpk[ bl + [k,p,R cpklbllk,p,R However,
since i0ePk_l we have that Uu]llo <-_ u + k,p,R. Hence [u] e =< CpkIuIk,p,R for
u . Hk(R).

The other inequality is easily seen from the observation that pklu + Plk,p,R
pklUlk,p,R for any p Pk-1 from which we immediately obtain

pklUlk,p,R <= inf u .qt_ p k,p,R--lieu] Q,
pePk-

We shall now use this theorem to obtain error estimates for linear functionals.
The main result of this section is the following theorem.

THEOREM 2. Let F be a linear functional on H(R) which satisfies
(i) IF(u)l-< CllulI,,,R for all u s Hkp(R) with C independent of p and u and

(ii) F(p) 0 for all p Pk- 1.

Then IF(u)l =< CaPIUlk,p,R for any u Hkp(R) with C1 independent ofp and u.



ESTIMATION OF LINEAR FUNCTIONALS 115

Proof. Since F is linear and satisfies condition (ii),

(3.2) IF(u)[ ]F(u + P)I for all p Pk- .
By condition (i) and (3.2) we have

(3.3) IF(u)l Cllu -t- Pll,p,.

Taking the infimum over Pk- in (3.3) we have

(3.4) IF(u)l

The result now follows from Theorem 1.
THEOREM 3. Let F be a linear functional satisfying
(i) IF(u)l -<_ CllulIj,R for all u CJ(R), where C is independent of p and u and

(fi) F(p) 0 for all p Pk- 1.

Then IF(u)l _-< c xpkIulk,p,R for p N/(k- j), where C1 does not depend on p or u.

Proof. Since R satisfies a strong cone condition it follows easily from Sobolev’s
lemma (c.f. [4, p. 78]) that IlulIj,R =< Cllullk,p,g with C independent of p and u
provided p > N/(k- j). Clearly F satisfies the hypotheses of Theorem 2.

For the final result of this section we define the usual Lipschitz spaces. Let s
be any positive real number with s S + a, 0 < a _<_ 1, S a nonnegative integer.
We denote by CS(R) those elements of CS(R) such that

sup
IDu(x)- Du(Y)[

x,yR la]=S IX y]
is bounded.

THEOREM 4. Let u C(R) and let F be a linear functional on C(R) which

satisfies
(i) IF(u)l _-< Clulo,R for all u C(R) with C independent of p and u and

(ii) F(q) 0 for all q Pk-1.
Then

IF(u)l < Cap sup
IO=u(x)- Ou(Y)l

, I1= Ix
0 <= s < k,

where C1 does not depend on p or u.

Proof. Since R is bounded, lUlk,p,R lUlk,R for all p 1. Hence it follows
directly from Theorem 3 that

(3.5) IF(u)l cpklulk for any u e Ck(R)
with C independent of p and u. Interpolating between the spaces C(R) and Ck(R)
we obtain, for s < k,

(3.6) IF(u)[ < Cp(lUlo / sup
’Du(x)- D’u(Y)[)x,yR Il S ]x yl

where C is independent of p and u (c.f. [2] Bramble, Hubbard, Thom6e, Lemma 4.1
and 4.2).

Now F(u) F(u + q) for any q Ps since S __< k 1. Choosing qo Ps such
that D(u + qo)(Xo) 0 for some Xo R and all 11 =< S, we may easily obtain

lu / q olo,R < C sup
IDu(x)- D=u(Y)I

x,yR II--S ]X yl
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where C is independent of p and u. Hence

IF(u)l IF(u + qo)l < CP sup
IDu(x) Du(Y)]

x,yeR ]]=S X Y]

where C is independent of p and u.

4. Discrete and continuous Fourier transforms. In this section we shall use the
results of the last section to compare the continuous and discrete Fourier trans-
forms.

Let 5 be the space of complex-valued infinitely differentiable rapidly decreas-
ing functions on EN. We remark that C(R) c for any domain R c EN. Now
for any function f in 5 we define the Fourier transform off which will be denoted

by f as f() f f(x)e -i<’x) dx, where (, x) =1 ix. The Fourier trans-

form is defined for a function in L2(E) or LI(E) by using the density of 5 in
L2(E) or L(EN). It is well known that the Fourier transform is a one-to-one map
of L2(E) onto Lz(Ev) and that the Parseval-Plancheral formulas [If]lo

=(-)-"/lflo and f f(x)g(x)dx--(2.)-svf S(x),(*)d* hold for any
N *]EN

g, f6L2(En). We define an inverse Fourier transform denoted by f as

f(x) (2n)-ufe, f()ei<’’> d. For any function in , we know that

(i)f() for any multi-index , so we can express ]If k as [ (1 + ]]2)k]f()]2 d.

Finally iff L2(E) and g La(E) then (f* g)(x) f(x y)g(y) dy L2(E)

and f * g() f(). p,()in L2(En).
We can define a discrete Fourier transform for any function which has

bounded support and is defined on all the mesh points Ev by g(0)
hn u(x)e -g<x’>. We remark that is a periodic function of period 2n/h.

We shall later show that we can define fi for any u H’ for m > N/2.
Let Zh be the characteristic function of the cube Sh where Sh {1 En,

[j] =< n/h forj 1,..., N}.
Our main aim in this section is to study ghg- fi, as h 0. We shall first

prove the following lemma.
LEMMA 3. Let u C(EN). Then there exists a constant C independent of h

and u such that for m > N/2,

(4.1) I(z.a) u <= Ch"-Jlul
for any integer j with 0 <_ j <= m.

Remark. Our main theorem in this section is the same as this lemma but with
u H’. However, we shall use this lemma to define fi for u H’.

In order to prove Lemma 3 we shall prove two other lemmas which will
also be needed in 5. We need to introduce first some notation.

Let Ih(y) for any y Ev be the cube given by Ih(Y) {XlX E, yj h/2 < xj
< yj + h/2 for j 1,..., N}. Define an extension operator by PhU(X)= u(y)
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for x e Ih(y). Let

and

1/hN for x e Ih(O),
O(x)

0 for x 6 Ih(O)

1/h for-hi2 < xj <= hi2,
Oj(xj)

0 otherwise

so that O(x) I-Ij__ (xa)and ({) [-[j= (sin {jh/2)/({jh/2).
It is easy to see that for any u such that exists,

(4.2) Phu() ()().
For fixed x Eu we define a linear functional on C by

Fm(X U (0(m-l)* ehU (X) (0(m) * U)(X)

h O(x z)u(z)- O(x- z)u(z)z,
zE JE

where ) if, k times.
We have the following lemma.
LEMMA 4. There exist constants C, C aM K independent of x, h and u such

that
IFm(x; u)l Clul.) Cll Ullm,2,hx)

for m > N/2.
Proof. Choose K such that IKh(O supp o(m). Then the first inequality is

obvious and the second an immediate application of Sobolev’s lemma.
The next lemma is more difficult to prove.
LMM 5. For any polynomial p Pro-,

Fro(x, p) O.

Proof. Let J be any set of mesh points which are translates of E, i.e.,
J {x]x + a y, where yE for fixed a EU}. Now define Fm.j(x; u) for u

continuous by hUsm)(x- Z)U(Z)--[ O)(X Z)U(Z) dz and we shall prove
N

the following proposition which contains our lemma.
PROPOSiTiON. For any J and any x E, Fm,a(x, p)= 0 for all p P_
We prove this by induction. It is easy to see that the result is true for m 1

and 2 and if m is an integer greater than two, then ) belongs to C in E.
Now assume the lemma is true for m; we want to show that F+ ,s(X, p) 0 for
all pP and any J or x. Consider O/Oxj(Fm+a,s(x,p)) for j 1,..., N. (For
m 3 we know that F+ a,s is at least a continuously differentiable function of x.)
Now

xO+)(x) O(xj y)0})(yj)dyj H O}+ 1)(x/)
lj

h O x+ x- O} +(xl).
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We define cjf(x) [f(xx, xj + h/2, xj+ l, xc) f(xl, xj h/2,
xj+ 1, "’", xc)]/n and easily obtain

cx--F,,, + 1,j(x, p)= hN I-I /I’’+ 1)(x Yl)jo}m)(xj- Y)P(Y)
yeJ :/:

Now defining a new set of mesh points j {zlz y, j, z y h/2, y e J}
we have

Ox--Fm + 1,s(x, P)= hN Z I-I Olm+ 1)(xt zt)O)m)(xj yj)jp(z)
zY lj

fE lj Om+ l,(Xl Zl)Om)(xJ- Zj)jp(z)dz

where 6 is the one-dimensional Dirac measure with respect to x. However,
this is zero since p is in Pro- if p is in P. Since /(x)Fm+ ,j(x, p) 0 for any
x, J and p e P and j 1, ..., N, then F+ .j(x, p) C, where C does not depend
on x. Hence

C h2v O(’’ + 1)(x y)p(y) | 0tm+ 1)(x y)p(y) dy.
yeJ dEN

Using the fact that Fro+ 1.s annihilates polynomials in Pro-1 we can replace p(y)
by p(y x), and noting that tm+ 1)is even, by a change of variable we obtain

(4.3) C h Z Om+ 1)(X + y)p(x + y) O(m+ l)(t)p(t)dt.
yeJ dEN

Averaging both sides of (4.3) over lh(O) we find that

C -1 fi(o) (hUrJ /(m+ 1)(X
__

y)p(x + y))dx- f, 0(m+ 1)(x)p(x)dx

fl o(m + )(x)p(x) dx fg o(m + )(x)p(x) dx O"
YJ h(Y) n

This proves the proposition.
We can now complete the proof of Lemma 3. Consider j 0. Now by

Parseval’s identity II()h) UI[o (2n)-u/211)h fillo, and

.il>lh
la()l: a.

The second integral is easily estimated since for S there is a constant Cm such
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that Cmh2m]]2m 1 for all Sh. Hence

I/()l 2 d -<- Cmh2mf 112’nl()l 2 d
(4.4)

-.< CmhZmlulem.
Now consider the first integral. Since ()= (sin h/2)/(h2), there

are positive constants C and C independent of h such that 0 < C N () N C
for any e Sh. Thus in Sh, () -()Phu(. We have

fs

and so, by Parseval’s formula we obtain

fs lO Ol2 d C 10(-1) * Pnu O() * u g
(4.5) c Fro(’, u) .

Clearly by Lemma 4 we can extend F,,(x; u) to H"(IKh(X)) by continuity.
Now by Lemmas 4 and 5, Fm satisfies the hypotheses ofTheorem 2 with R
Hence ]F,,,(x; u)] =< Ch"]ulm,2,x,,,(x), where C is independent of x, h and u. Explicitly

iFm(x;u,l:<-Ch2m(1/measI:h(x,f lDu(z,ldz).
1/meas Igh(O if y e IKh(O),

(’Ore(Y)
0 if y IKh(O

Let

1/2

so that IIf(" u)llo _-< Ch" (q9 * Zll=m ID’ul2)(x) dx However, since
N

e
q)m(x)dx 1, by interchanging the integration in the convolution with the

integration with respect to x we have

(4.6) FA., u) o <- Chmlulm
Thus (4.4) and (4.6) prove Lemma 3 for j 0. Now, for 0 < j =< m, following

the same steps as before we are easily led to

II(z,7) ullj - C( IF(., u)ll + hm-JlUlm).
The estimate for the first term on the right is obtained by applying Theorem 2 to
the functional Gm,o(x u)--hllD’Fm(x; u) for each e with I1 =< J, which clearly
satisfies the hypotheses. The proof is completed as before. Thus we have proved
Lemma 3.
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We now wish to extend the definition of the discrete Fourier transform to any
function in H’ where m > N/2. Define 12 as the set of all square summable func-
tions defined on E’, with norm IIqll= h xIo(x)l =, It is easy to see that for
any function q9 C we have

(4.7) hN Io(x)l 2

(2z)N Iq()l 2 d.
xeE

For any u H’ there exists a sequence {qj} C such that qj u in HT.
Now since

N

using Lemma 1 and the fact that {qg} is a Cauchy sequence in H, we have
is a Cauchy sequence in LE(Sh). We define ff as the limit in L2(Sh) of 0j and extend
it periodically to all of Es. It is easy to see that fi is independent of the choice of the
sequence qg u in H’, so t is well-defined.

We now have the main result of this section.
THEOREM 5. Let u H. Then there exists a constant C independent of h and u

such that for m > N/2,

II(Zh) ullj <= Chm-JlUlm
for any integer j with 0 <= j <= m.

Proof Let { p,} be a sequence such that qg, C, n 1, 2, -.-, and q, - u in
H’ as n --, . Now

By Lemma 3 and the definition of Zh and I1" IIj it follows that

II(Zh/) U Ij _--< Ch-J Zh(ffl n)llo / Chm-Jlq,lj 4- qg, u j.

By letting n the theorem follows.
We shall also give a version of the Poisson summation formula relating the

discrete and continuous Fourier transforms. This will be needed in the next
section.

THEOREM 6. Let u H7 with m > N/2 then

ft() a( + 2rcfl/h) a.e.

We shall not give a proof of this formula here since it is essentially a well-
known result.

Finally we wish to remark that a proof ofTheorem 5 can be based on Theorem
6, but since Lemmas 4 and 5 are required in the next section it seemed preferable
to present a self-contained proof based on these lemmas.

5. Splines in E. In this section we shall apply the results of 3 and 4 to
certain types of splines. If v is defined on E, then a function of the form
hnye d/tk)(x y)v(y) is called a spline of order k. It is easy to see that regarded
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as a function of x, a spline of order k has continuous partial derivatives of order
k 2 and is a piecewise polynomial of degree k 1. Now let u be defined on E.
Then we call Sk(X U) a spline interpolant of order k for u, provided Sk(X; U)

hN yv,; qtk)(x y)v(y) and Sk(X;U) u(x) for all x E’. We remark that the
functions ’tk)(x Z), h 1, N 1, are all the so-called B-splines of Schoenberg
6].

We have the following existence and uniqueness theorem.
THEOREM 7. Let u 12. Then there exists a unique v 12 such that Sk(X, U)

hNr /tk)(x y)v(y) is a spline interpolant of order k for u, k 1, 2,....
Proof In order to prove this theorem we need the following lemma whose

proof will be deferred.
LEMMA 6. For each k 1, 2, there exists a constant Ck such that

() >__ C > 0 for all E.
Let L be an operator defined on 12 by

(Lv)(x) h /tk)(x y)v(y), X e E.
yeE

For any q 12 let {%} be a sequence such that q, e 12 has bounded support for
each n and q, ---, q as n oo in 12. Now clearly -’, otk),, and by the Parseval
identity (4.7) and Lemma 6 it follows that

Lq,ll22
(2n)

[Lq,l 2 dO
(2n)

IC)12l.l 2 dO

c

The operator L’12 12 is obviously continuous. Hence we obtain

IIoIl/ <
C;X

(2n)_/2 IILell

for all 12 Denote by R(L) the range of L, regarded as a subspace of l.
Define a functional F on the range of L by F(L)= (u, ) for all 12.

Now IF(L)I IIlllzllUllz CIILIllzIUII and hence F is well-defined and
bounded on R(L). By the Hahn-Banach theorem there is an extension F of F to
all of l:. Now by the Riesz-Fr6chet theorem, there exists a unique v 12 such that
F(w) (v, w) for all w 12. Thus we have, for all 12,

(v, Lq)= F(Lq)= F(Lq)= (u, q).

Clearly L is symmetric so that

(Lv, q) (u, q) for all tp 12
which proves the theorem.

Proof of Lemma 6. It is sufficient to prove the result in one dimension since
tk)()= [Ij, }k)(j). NOW by the Poisson summation formula )(j)
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=-’( + 2tl/h)a.e. Hence, we have

l:-oo jh/2 +

h/2 + (sin h/2) (_ 1)
1

+

Now since 0} has period 2/h and is even, we have for any positive integer
() [(sin h/2)/(h/2)] a.e. for 0 N N /h and therefore we have

0} () (cos o) a.e. for 0 N N /h, when = tan o, 0 < o < /2. Then
by the continuity, the periodicity and the evenness of 0 we obtain

0(() (cos o) (cos o) > 0 for all e E.
We shall define S(x; u), k 1, 2, ..., for u e H with m > N/2. By Sobolev’s

lemma for any u e H there exists u e H such that u u 0 a.e. and u e C.
Again by Sobolev’s lemma, the restriction ofu to E belongs to l. Hence S(x; u)
exists and is unique. We define S(x; u) to be equal to S(x;u). We remark that it
follows from the definition of that .

We shall now obtain a representation for S(x;u) in terms of u.
TNo 8. Let u e H with m > N/2. Then

(5. s(x u
Proo From the definition of S(x;u) for u eH and Theorem 7 there exists

v e l such that

S(x u) h O((x y)v(y).
yeE

Hence

and

By Lemma 6 it follows that

Sk

Taking the inverse transform we obtain (5.1). Using this representation we obtain
the following error estimate.
ToR 9. Let u H, k > N/2. Then there exists a constant C independent

of h and u such that

S ull
Proof. Now

Is-
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Since we can express Sk as

we have by Lemma 6

(5.2) II& ull =< C/- IIf(’, u)ll / (1 / 1012)10t- 0t12ll 2 dO
N

However, we have

Iq{k)(0) q?(0)l -IhN o{k)(x)e -i<x’> otk(x)e-i<x’>
xeENh

IFk(0, e-<">)l --< C#IOI for any 0 N N k,

by Theorem 4. Take k -j. Then it is clear that the second term on the right
of (5.2) is bounded by Chk-llu k. We have already seen in the proof of Theorem 5
that IlFk(" ,u)llj Chk-Jllullk. Thus the proof is complete.

Now in 4, we showed that II(h) ullj Chm-Jllullm. We shall now show
that we can regard (gh) as a limiting case of Sk(X; u). Consider (Zha) for u in C
then

h u(x)e-i <’>, O e Sh,

xeE
Zh

0 for 10 > /h.

Hence

(Xhff)v({) (2.rc)N
, u(x)e- i<x,o> ei<O,> dO

h fs(5.3)
(2)u

u(x) ei<’-> dO
xeE

s sin ( x)n/hZ u( )U
= ( xj)/h

Note that (Zfi) is just the N-dimensional cardinal series ofWhittaker [7]. We shall
denote (Z) by S(x; u).

The behavior of S as k is studied in the following theorem.
TnEORE 10. Let u H7 with m > N/2. Then S converges unormly to S

on Eu.
Proof. By Theorem 8 we have

&(x u) S(x u) z. ae’<’> dO,

and hence

I&(x; u) Soo(x; u)l I,{)/0{) 11 lal dO

Oil /h
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By an application of the monotone convergence theorem and the Poisson sum-
mation formula we can write the first integral as

fs +
ao )0 la(0)l dO.

Using the periodicity of t and and regarding the integral over 101 > z/h as the
sum ofthe integrals over Sh + 2n/h for all 0, after making a change ofvariable
for each , we can express the second integral as

,o O I(O)l dO.

Now since 0 in Sh, and since sin (x + ) sin x, we obtain

Using the Cauchy-Schwarz inequality we have

IS(x; u) S(x; u)l (2) IIllo,s
o = Ojh + 2nj

dO

By an elementary estimate it follows easily that there is a constant C independent
of k such that

, o = Oh + 2fl
dO C(2k 1)-/2.

Thus we have IS(x;u) S(x;u)l C(2k 1) -u/2, where C is independent of Z;
by letting k m the theorem follows.
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