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1.1. Notation. Define a mesh in the interval I = (0, 1):

(1.1)
0 = x0 < x1 < · · · < xj−1 < xj < · · · < xn = 1,

hj = xj − xj−1, Ij = (xj−1, xj), j = 1, . . . , n.

We define the piecewise constant mesh size function h̄ by

(1.2) h̄(x) = hj , x ∈ Ij ,

and a piecewise linear mesh size function h with node values

(1.3) h(xj) = hj + hj+1, j = 0, . . . , n, with h0 = h1, hn+1 = hn.

It follows that

(1.4) h(x) ≥ hj = h̄(x), x ∈ Ij .

It will be important to know that h is not much larger than the true mesh size h̄. Then we must
put some restriction on the variation of the mesh. We define the mesh ratios

(1.5) rj =
hj+1

hj
, j = 1, . . . , n− 1.

We assume that there is γ ≥ 1 such that

(1.6) rj ∈ [γ−1, γ], j = 1, . . . , n− 1.

Of course, this is trivially true for a single mesh, but it is important to understand that we assume
that this holds for all meshes in the mesh family that we consider. This could be a finite family
of a single mesh or a few meshes, but usually an infinite family of successively refined meshes
with hmax → 0. We may also think of γ as a parameter which gives a quantitative measure of
the quality of the mesh family (for a finite or an infinite mesh family). This is a rather weak
restriction. It allows for example a geometrically graded mesh family: hj+1 = γhj = · · · = γjh0,
where h0 → 0, so that hmax = hn = γn−1h0 → 0. If γ = 1, then the family is uniform, i.e.,
hj = hmax and h = 2h̄.

In general we have

h(x) = (hj + hj+1)φj−1(x) + (hj−1 + hj)φj(x)

= (hj + hj+1)
x− xj−1

hj
+ (hj−1 + hj)

xj − x
hj

= hj

(
(1 + rj)

x− xj−1
hj

+ (r−1j−1 + 1)
xj − x
hj

)
, x ∈ Ij ,

(1.7)

and it follows that

(1.8) h̄(x) ≤ h(x) ≤ (1 + a)h̄(x).

Similarly

(1.9) h′(x) = rj − r−1j−1, x ∈ Ij ,

so that

(1.10) ‖h′‖L∞ ≤ a− a−1 → 0 as a→ 1+.
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1.2. An interpolation error estimate. Let

S = {v ∈ C([0, 1]) : v|Ij ∈ Π1, v(0) = v(1) = 0}

and the interpolator IS : C([0, 1])→ S with

vI(x) = (ISv)(x) =

n−1∑
j=1

v(xj)φj(x).

We introduce the L2-norm and the piecewise L2-norm:

(1.11)

‖v‖ = ‖v‖L2(I) =
(∫ 1

0

v2 dx
)1/2

,

‖v‖PW =
( n∑

j=1

‖v‖2L2(Ij)

)1/2
.

We recall the local interpolation error estimate, see the proof of (0.4.5) in Brenner-Scott, for
v ∈ H2 with v(0) = v(1) = 0,

(1.12) ‖(v − vI)′‖2L2(Ij)
≤ 1

2h
2
j‖v′′‖2L2(Ij)

.

Toghether with (1.4) this immediately implies the following two estimates in global weighted norms

‖(v − vI)′‖ ≤ 1√
2
‖hv′′‖PW,(1.13)

‖h−1(v − vI)′‖ ≤ 1√
2
‖v′′‖PW.(1.14)

Of course these hold equally well with h replaced by h̄.

1.3. Energy norm error estimate. Consider the BVP:

−(au′)′ = f in I; u(0) = u(1) = 0.

Let V = H1
0 = H1

0 (I). The weak formulation is

(1.15) u ∈ V ; (au′, v′) = (f, v) ∀v ∈ V,

and the FEM

(1.16) uS ∈ S; (u′S , v
′) = (f, v) ∀v ∈ S.

Then, since S ⊂ V , we have the Galerkin orthogonality

(1.17) (a(uS − u)′, v′) = 0 ∀v ∈ S.

and, by (1.13),

(1.18) ‖
√
a(uS − u)′‖ = inf

v∈S
‖
√
a(v − u)′‖ ≤ ‖a‖1/2L∞

‖(uI − u)′‖ ≤ 1√
2
‖a‖1/2L∞

‖hu′′‖,

if f ∈ L2 so that u′′ ∈ L2. Since
√
a0‖(uS − u)′‖ ≤ ‖

√
a(uS − u)′‖, we conclude

‖(uS − u)′‖ ≤ C‖hu′′‖ = C
( n∑

j=1

h2j‖u′′‖2L2(Ij)

)1/2
(1.19)

≤ Chmax‖u′′‖,(1.20)

with C = (‖a‖L∞/(2a0))1/2. This also holds with h replaced by h̄. Note that the weighted
expression on the right of (1.19) contains more information than (1.20). We want to prove a
similar weighted error estimate for the L2-norm of the error.
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1.4. L2-norm errror estimate. We argue by duality. Let e = uS − u. We use the dual problem

(1.21) w ∈ V ; (av′, w′) = (v, e) ∀v ∈ V.

Then, by taking v = e and using (1.17), (1.14) and ‖w′′‖ ≤ C‖e‖,

‖e‖2 = (ae′, w′) = (e′, w′ − w′I) ≤ ‖
√
ahe′‖ ‖

√
ah−1(w − wI)′‖

≤ C‖he′‖ ‖h−1(w − wI)′‖ ≤ C‖he′‖ 1√
2
‖w′′‖ ≤ C‖he′‖‖e‖.

(1.22)

Hence

(1.23) ‖e‖ ≤ 1√
2
‖he′‖.

If this calculation is done with h replaced by h̄ then with (1.20) we obtain the standard (non-
weighted) estimate

(1.24) ‖uS − u‖ ≤ Ch2max‖u′′‖.

Note: no restriction on the mesh so far.
We shall prove that, for any ε > 0 there is γ ≥ 1 such that

(1.25) ‖he′‖ ≤ C‖h2u′′‖ + ε‖e‖,

that is, for ‖h′‖L∞ is sufficiently small (see (1.10)), With (1.23) this leads to the weighted estimate

(1.26) ‖uS − u‖ ≤ C‖h2u′′‖.

In view of (1.8) this also holds with h replaced by h̄ (but with a larger constant C).
To prove (1.25) we first note that

(1.27) ‖he′‖2 ≤ C(ahe′, he′) = C(ae′, h2e′) = (ae′, (h2e)′)− (2ahh′e′, e).

Note: h ∈ H1 but h̄ 6∈ H1, so we cannot use h̄ here. Recalling (1.10), that is,

(1.28) ‖h′‖L∞ ≤M := γ − γ−1,

we get for the last term

(1.29) |(2ahh′e′, e)| ≤ CM‖he′‖ ‖e‖.

For the first term on the right side of (1.27) we get with v = h2e, by (1.17), (1.14),

(ae′, (h2e)′) = (ae′, v′) = (ae′, v′ − v′I) ≤ C‖he′‖‖h−1(v − vI)′‖
≤ C‖he′‖ 1√

2
‖v′′‖PW = C‖he′‖‖(h2e)′′‖PW.

(1.30)

On Ij we have

(1.31) (h2e)′′ = h2e′′ + 4hh′e′ + (2(h′)2 + 2hh′′)e = h2u′′ + 4hh′e′ + 2(h′)2e,

because e′′ = u′′S − u′′ = −u′′ and h′′ = 0. Hence

(1.32) ‖(h2e)′′‖PW ≤ ‖h2u′′‖ + 4M‖he′‖ + 2M2‖e‖.

Inserting this and (1.29) into (1.27) and dividing by ‖he′‖ we get

(1.33) ‖he′‖ ≤ 1√
2
‖h2u′′‖ + 4√

2
M‖he′‖ + 2( 1√

2
M2 +M)‖e‖,

which implies (1.25) if M is sufficiently small.
We now have

‖(uS − u)′‖ ≤ C‖hu′′‖ ≤ Chmax‖u′′‖ for any γ ≥ 1,(1.34)

‖uS − u‖ ≤ C‖h2u′′‖ ≤ Ch2max‖u′′‖ if γ is close to 1.(1.35)
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1.5. Remark. From the Poincaré inequality

‖v‖ ≤ C‖v′‖, v ∈ H1
0(1.36)

and (1.34) there follows the L2-norm estimate

‖uS − u‖ ≤ C‖(uS − u)′‖ ≤ C‖hu′′‖ ≤ Chmax‖u′′‖ for any γ ≥ 1.(1.37)

Why is this not sufficient? This is because the rate of convergence is not the optimal one for the
L2-norm of the error. If u has two derivatives then we expect that the error in uS is O(h2max) and
that the error in u′S is O(hmax) as hmax → 0. /stig
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