1. WEIGHTED NORM ERROR ESTIMATES
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1.1. Notation. Define a mesh in the interval I = (0, 1):

OZI()<I1<"'<$j_1<xj<"'<In:1,
(1.1) .
hjzl'j—l'j,h Ij :(xj,hmj), ]:].,...,TL.

We define the piecewise constant mesh size function h by

(1.2) hz)=h;, ze€lj,

and a piecewise linear mesh size function h with node values

(1.3) hz;)=hj+hjy1, 5=0,...,n, with hog = h1, hpt1 = hyp.
It follows that

(1.4) h(z) > h; = h(z), x€I;.

It will be important to know that h is not much larger than the true mesh size h. Then we must
put some restriction on the variation of the mesh. We define the mesh ratios
hjt1

(15) TJZT], j:].,,n—l

We assume that there is v > 1 such that
(1.6) ey, j=1,...,n—1

Of course, this is trivially true for a single mesh, but it is important to understand that we assume
that this holds for all meshes in the mesh family that we consider. This could be a finite family
of a single mesh or a few meshes, but usually an infinite family of successively refined meshes
with hpax — 0. We may also think of v as a parameter which gives a quantitative measure of
the quality of the mesh family (for a finite or an infinite mesh family). This is a rather weak
restriction. It allows for example a geometrically graded mesh family: h;ji 1 = yh; = -+ = 47 ho,
where hg — 0, so that hpax = b, = Y" thg — 0. If v = 1, then the family is uniform, i.e.,
hj = hmax and h = 2h.
In general we have

h(z) = (hj + hjt1)¢j-1(z) + (hj—1 + hj)d;(x)

T —Tj_1 T, —x
= (hs 4+ By ) — 29— hi h) )2l ~
(1.7) ( i+ ]+1) h; +( j—1+ ]) h;
7 .x_xj_l 1 Tj—X .
_hJ<(1+r]) h; +(Tj71+1) I, )7 z € Ij,
and it follows that
(1.8) h(z) < h(z) < (1 + a)h(z).
Similarly
(1.9) W(z)=r;—ril, zel
so that

(1.10) IWlr <a—a ' =0 asa—1T.
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1.2. An interpolation error estimate. Let
S ={veC([0,1]) : v|; € Iy, v(0) = v(1) = 0}

and the interpolator Ig: C([0,1]) — S with

n—1

vi(z) = (Isv)(x) = ) v(z;)d;(x).

j=1

We introduce the Ly-norm and the piecewise La-norm:

1 1/2
ol = ol zacr) = / 2dz)
= ([ )
n 1/2
lelew = (3 l3,0,))
j=1

We recall the local interpolation error estimate, see the proof of (0.4.5) in Brenner-Scott, for
v € H? with v(0) = v(1) = 0,

(1.12) 1w = vr)I7,,) < 30510 0 1,)-

Toghether with (1.4 this immediately implies the following two estimates in global weighted norms

(1.11)

(1.13) (v = vr)'ll < 100" [pw,
(1.14) Ih= (v —vr)'| < 510" [lpw-

Of course these hold equally well with & replaced by h.

1.3. Energy norm error estimate. Consider the BVP:
—(au) = f inlI; u(0) = u(1) = 0.

Let V = H} = H}(I). The weak formulation is

(1.15) weV; (au/,v")=(fv) YveV,
and the FEM
(1.16) us € S;  (ug,v") = (f,v) YveS.

Then, since S C V, we have the Galerkin orthogonality

(1.17) (a(ug —u)',v') =0 YveS.
and, by (1.13),
(L18)  Valus —u) | = inf V(o — ') < Jall Y2 ur — )| < L5 lall¥? 1),

if f € Ly so that u” € Ly. Since (/ao||(us — w)’|| < [[v/a(us — u)’||, we conclude

n 1/2
(119) (s =)'l < Cllawl| = € (S W" 3,1,
j=1
(1.20) < Chax|u”]],

with C' = (||a|1../(2a0))*/2. This also holds with h replaced by h. Note that the weighted
expression on the right of (1.19) contains more information than (1.20). We want to prove a
similar weighted error estimate for the Lo-norm of the error.
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1.4. Lo-norm errror estimate. We argue by duality. Let e = ug —u. We use the dual problem
(1.21) weV; (a,w')=(v,e) YveV.
Then, by taking v = e and using (L.17), and |Jw”|| < Clle]|,

el = (ae’,w) = (¢/,w" — w}) < [[Vahe'|| [Vah™ (w — wr)'|

(1.22) _

< Clhe'|| [|h™H (w — wr)'|| < Cllhe'| 5 llw”|| < Cllhe'||[lel]-
Hence
(1.23) lell < 5 le’]l.

If this calculation is done with h replaced by h then with (T.20)) we obtain the standard (non-
weighted) estimate

(1.24) lus —ull < CR2,

12
axllwl-
Note: no restriction on the mesh so far.

We shall prove that, for any € > 0 there is v > 1 such that

(1.25) Ihe'|| < ClIR*w"|| + ellell,
that is, for ||2/||1__ is sufficiently small (see (1.10]), With this leads to the weighted estimate
(1.26) lus —ul| < Clh*u"|.
In view of is also holds with h replaced by h (but with a larger constant C).
To prove ([1.25)) we first note that
(1.27) |he||*> < C(ahe', he') = C(ae’, h?e') = (ae’, (h%e)') — (2ahh'€ e).
Note: h € H' but h ¢ H', so we cannot use h here. Recalling , that is,
(1.28) W llp < M=y =771,

we get for the last term

(1.29) |(2ahh/€’ e)| < C M| he|| |le]|-

For the first term on the right side of we get with v = h%e, by , ,
(ac', (h2e)') = (ac',0') = (ae',v' — v) < Cllhe'[|h~ (v — o7

(130 < Cllne!l| L5l lpw = Cllhe I 1(R%)"

On I; we have

(1.31) (h%e)” = h%e” + 4hh'e’ + (2(W')? + 2hh" e = h*u” + 4hh'e' + 2(')?e,
because ¢ = v — v’ = —u” and A" = 0. Hence
(1.32) I(h?e)"llew < [Ih*u"[| + 4M [ he|| + 201 |e]|.

Inserting this and (1.29)) into (1.27)) and dividing by ||he’|| we get

(1.33) Ihe’|| < lIR*u"|| + 5 Mllhe'|| +2(J5M* + M)fe],

Vel
vz V2

which implies (1.25) if M is sufficiently small.
We now have

(1.34) I(us — )|l < Cllhu"|| < Chmax|[u”|| for any v > 1,
(1.35) lus — ul| < C||R*u"|| < Ch2,||lu”| if 7 is close to 1.



1.5. Remark. From the Poincaré inequality

(1.36) lo] < CllW'll, v e Hy
and (1.34)) there follows the Lo-norm estimate
(1.37) lus — ull < Cll(us —w)'|| < Cllhu"|| < Chuax|[u”|| for any v > 1.

Why is this not sufficient? This is because the rate of convergence is not the optimal one for the
Lo-norm of the error. If u has two derivatives then we expect that the error in ug is O(h2 ) and
that the error in u is O(Amax) a8 hmax — 0. /stig
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