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Assignment

1. Existence. Prove Theorem 1. That is, show that there is a unique strong solution
on the interval [0, T ].

Hint: note that equation (2) is a fixed point equation X = G(X) and show that the
operator

G(Y )(t) = X0 +
∫ t

0
µ(Y (s), s) ds+

∫ t

0
σ(Y (s), s) dB(s),

is a contraction on the Banach space

W[0,τ ] =
{
Y ∈ C([0, τ ], L2(Ω)) : Y is adapted to the filtration generated by B

}
with norm

‖Y ‖W[0,τ ]
= max

0≤t≤τ
‖Y (t)‖L2 = max

0≤t≤τ

√
E
(
|Y (t)|2

)
provided that τ is small enough. Hence, we obtain a solution on a (short) interval [0, τ ].
Repeat and obtain solutions on [τ, 2τ ], [2τ, 3τ ], and so on until we cover the whole interval
[0, T ].

2. Matlab computations. Read Higham and do (at least) the programs bpath1.m,
bpath2.m, bpath3.m, stint.m, em.m, emstrong.m.

3. Black-Scholes process.

dX(t) = rX(t) dt+ σX(t) dB(t)

X(0) = X0

with constants r > 0, σ > 0. (a) Show that the unique strong solution is given by the
formula

X(t) = X0 exp((r − 1
2σ

2)t+ σB(t))

(b) Write a Matlab program and solve the equation by the Euler method. Plot several
sample paths and compare with the solution formula. Examine strong convergence. (This
is emstrong.m.)
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4. Ornstein-Uhlenbeck process. The Langevin equation is

dX(t) = −αX(t) dt+ σ dB(t)

X(0) = X0

with constants α > 0, σ > 0. (a) Show that the unique strong solution is given by the
formula

X(t) = e−αtX0 + σ

∫ t

0
e−α(t−s) dB(s)

(b) Write a Matlab program and solve the equation by the Euler method. Plot several
sample paths and compare with the solution formula. Examine strong convergence.
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