TMA325 Introduction to Engineering Mathematics, 2001
STUDIO 1. THE TANK REACTOR: MASS BALANCE.

1. LINEAR DIFFERENTIAL EQUATIONS OF FIRST ORDER

Recall that % exp(t) = exp(t) and exp(0) = 1. This means that the exponential function
u(t) = exp(t) satisfies the initial-value problem

(1) u'(t) =u(t), t>0; u(0)=1.
Let a and ug be real numbers and consider the initial-value problem
(2) u'(t) = au(t), t >0; u(0) = uo.

The solution is u(t) = ug exp(at). Check this!

Exercise 1. Solve (2) with Matlab. Write the following function file funk1.m, which defines the
right-hand side of the differential equation.
function y=funkl(t,u)
global a
y=a*u;
Then write the following script file data.m, which gives default values to the variables that are
used.
global a
a=1; T=1; ul0=1;
Finally write the following script file solvel.m, which solves (2) and plots the solution.
[t,ul=o0de45(’funkl’, [0 T], u0);
plot(t,u);
Note how the value of a enters into the function via the command global a which is written both
in the function file funkl.m and in the main program data.m. Start the computation by typing
the following on the Matlab command line:
>> data
>> solvel
>> a=-1
>> T=2
>> solvel
Compute and observe the solutions for various values of a, positive, negative, and zero. If you
type >> hold on then Matlab will plot several curves in the same figure.

Now let b be another real number and consider the initial-value problem
(3) u'(t) =au(t) +b, t >0; u(0)=ug.

Remember that the solution is given by u(t) = up(t) + up(t), where up(t) = Aexp(at) is a
solution of the homogeneous equation u' — au = 0 and up(t) = B is a particular solution of the
inhomogeneous equation v’ — au = b.

Homework 1. Determine the constants A and B and show that the solution is
b
(4) u(t) = ug exp(at) + a(exp(at) —1) (ifa#0).

What is the solution when @ = 0?7 For which values of a does the solution approach an equilibrium
u(t) = 4 as t = co? Determine .
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Exercise 2. Solve (3) with Matlab. Define b in the file data.m and change the global command
to global a b in both places. Observe what the solutions look like for a positive, negative, and
zero. For which values of a does the solution approach an equilibrium u(t) — @ as t — oo?

Now we consider the situation when a = a(t), b = b(t) are not constant:
(5) u'(t) = a(t)u(t) +b(t), t >0; u(0) =ug.
We use the method of integrating factor. Write the equation as «' — a(t)u = b(t) and multiply it
by the integrating factor e~ (), where A(t) = f(f a(s) ds, so that A'(t) = a(t) and A(0)=0. We
get
4
dt
We integrate from 0 to T

(e 4Ou(t)) = A0 (1) — alt)e 4 Du(t) = e=AO(z).

T

[e_A(t)u(t)]

0

T
= / e~ AOp(t) dt
0

and hence
=AMy (T) — =A0)y(0) = /0 " A0y ar.
Using A(0) = 0, u(0) = uo, multiplying by eA("), and replacing t by s, T by t, we finally get
(6) u(t) = uoe® + /Ot eA=A)p(s) ds, where A(t) = /Ot a(s) ds.
Exercise 3. Solve (5) with Matlab. Use, for example, a = +1, b(t) = 1 + 0.1sin(7¢).

Homework 2. Use constant functions a(t) = a, b(t) = b in (6) and compute the integrals to
obtain (4).

2. THE TANK REACTOR

In a sequence of studio sessions we will study the ideal mixed tank reactor, see Figure 1. The
goal is to design the reactor so that it will operate in a stable way at (c; —c¢)/cy = 0.5 (“50 %
omsattningsgrad”).
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FIGURE 1. The tank reactor.
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We will use the following data:

V =12m® volume of the tank

cp =4.19 kJ/(kg K) heat capacity of the fluid

p = 1000 kg/m® density of the fluid

Gref = 3.0-107% m3/s reference flux

c; = 5 kmol/m® concentration at inflow of the interesting substance
Ty =70°C temperature at inflow

0H = —83.7kJ/mol heat of reaction

Ar =1.0m? area of the cooler

k= 0.58 kJ/(m? s K) heat transfer coefficient of the cooler
We introduce the following variables:

¢ [mol/m®] concentration in the reactor of the interesting substance

T [X] temperature in the reactor

g [m®/s] flux through the reactor
Tk,Tky [K] temperatures in the cooler and at the cooler inflow

gk [m®/s] flux through the cooler
Vk [m®] volume of the cooler

The reaction is exothermal and of first order with rate of reaction k¢ [mol/(m3s)]. The rate
coefficient depends on the temperature according to the Arrhenius law:

(7) k = koexp(—E/(RT)) [s7']

where R [8.31 J/(mol K)I is the gas constant, E [J/mol] is the activation energy and ko [s~!]
is the rate constant of the reaction. The following rates have been measured:

T [K] 343 353 363 373 383 393 403

k[s11(28-10°5[56-107°]11.2-107°[224-107°|44.8-10"° | 89.6-1075 | 179.2-10~°

(Based on “Kemisk reaktionsteknik. Ovningsuppgifter”, Kemisk reaktionsteknik, CTH 1993,
uppgift 7.1.)

2.1. Mass balance. When we build a mathematical model for the tank reactor it is important
not to consider all aspects at once. We therefore begin by making a big simplification: we assume
that the rate coefficient k is constant, for example, ¥ =?? corresponding to T' =77 (choose a value
from the table). Recall that k depends strongly on 7', see (7), so this is not very realistic, but it
will be a good starting point for our investigation.
The mass balance equation is
dc
VE =g(cy —c) —ckV. [mol/s]
This equation says that the rate of change of the total amount of the interesting substance is
equal to the influx minus the outflux minus the reaction rate. In order to make the equation
dimensionless we divide by grercy [mol/s]. We get

® R N (RS
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We introduce 7 = V/grer [s] (“uppehéllstid”) and the dimensionless variables
s =t/7 (dimensionless time),
X = c¢/cy (dimensionless concentration),
U = q/¢rer (dimensionless flux).

Then, by the chain rule,

dX _dXdt _ dX _ Vi(i)
ds _ dt ds | dt  gerdt\cs)’

and (8) becomes

dX
—=U(1-X)-X
I U( ) kT,
that is,
X
(9) Cfi—(()‘z—(lm'%—U)X%—U; X(0) = Xo.

Note that this is of the form (5) with a = — (k7 +U) and b ="U.

Exercise 4. Change your Matlab programs from part 1 so that they solve (9). Let first U be
equal to a constant value U. Does the solution X (s) approach an equilibrium X as s — oo? Hint:
Begin the file data.m by

global ktau Ubar
V=1.2; qref=3.0e-4;
k=77 ;
tau=V/qref; ktau=kx*tau;
Ubar=1; % equilibrium value of U
Change also the function file funk1.m to a file tank.m beginning with
function y=tank(s,X)
global ktau Ubar
U=Ubar;
Exercise 5. Recall that we want the reactor to operate at (c; — c)/c; = 0.5, ie., at X = 0.5.
Determine U so that this is achieved. Hint: the equation for X, U is obtained by setting 4% =0
in (9), i-e.,
(10) —(kT+ U)X +U =0.
Find a formula for U in terms of k7 and X. Explain what happens in the extreme cases X = 0,

X = 1. Insert the command Xbar=.5; in the file data.m and the formula for Ubar in the file
solvel.m.

Exercise 6. We now investigate if the operating point X = 0.5 is stable with respect to changes
of the initial value Xy. Set U = U and solve (9) with Matlab with several initial values Xg. Is it
stable?

Exercise 7. We next investigate if the operating point X = 0.5 is stable with respect to changes of
the flux U. Set X¢ = X = 0.5 and solve (9) with Matlab with, for example, U(s) = U +0.1sin(7s).
Is it stable?

Exercise 8. Finally, compute the required flux ¢ (in dimensional units [m®/s]).

Next week we will include the temperature dependence in k and we will see that the operating
point X = 0.5 is not always stable then.



