
TMA325 Introduction to Engineering Mathematics, 2001

STUDIO 2. THE TANK REACTOR: HEAT BALANCE.

1. Systems of differential equations

Recall that d
dt cos(t) = − sin(t), d

dt sin(t) = cos(t), cos(0) = 1, and sin(0) = 0. This means that
the trigonometric functions u1(t) = cos(t) and u2(t) = sin(t) satisfy the initial-value problem

u′
1(t) = −u2(t), t > 0,

u′
2(t) = u1(t), t > 0,(1)

u1(0) = 1, u2(0) = 0.

This is a system of (linear) differential equations of first order.
Exercise 1. Solve (1) with Matlab. Hint: Write the following function file trig.m, which defines
the right-hand side of the system of differential equations.
function y=trig(t,u)
y = zeros(2,1); % trig(t,u) must return a column vector
y(1) = -u(2);
y(2) = u(1);

Then write the following script file trigdata.m, which gives default values to the variables that
are used.
T = 2*pi;
u0 = [1; 0];

Finally write the following script file solve2.m, which solves (1) and plots the solution.
[t,u] = ode45(’trig’, [0 T], u0);
subplot(2,1,1) % breaks the figure into a 2-by-1 matrix;

% selects top half
plot(t, u(:,1)); % plots first component of u versus t
hold on
plot(t, u(:,2), ’--’); % dashed line
hold off
title(’Solid: u_1 Dashed: u_2’), xlabel(’t’)
subplot(2,1,2) % selects bottom half
plot(u(:,1), u(:,2)) % plots second versus first component of u
title(’Phase portrait’), xlabel(’u_1’), ylabel(’u_2’)

Start the computation by typing the following on the Matlab command line:
>> trigdata
>> solve2
>> T=pi
>> solve2

Compute and observe the solutions for various values of T . Consider in particular the phase plot
of u2 versus u1, where t can be viewed as a parameter along the curve. What point on the curve
corresponds to t = 0? t = π

2 ? t = 2π?

The hyperbolic functions, defined by cosh(t) = exp(t)+exp(−t)
2 and sinh(t) = exp(t)−exp(−t)

2 , have
the properties d

dt cosh(t) = sinh(t), d
dt sinh(t) = cosh(t), cosh(0) = 1, and sinh(0) = 0.

Homework 1. Verify these properties.
Exercise 2. Set u1(t) = cosh(t) and u2(t) = sinh(t). Derive an initial-value problem for u1(t)
and u2(t) similar to (1). Compute the hyperbolic functions by solving this problem with Matlab.
Hint: You need only slightly modify the trigonometric case above.
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2. The tank reactor

Last week we considered the simplified case where we assumed that the rate coefficient k is
constant, i.e., we neglected the temperature dependence of the reaction rate. Today we will
include this dependence (the Arrhenius law) to improve our mathematical model of the tank
reactor. Therefore, we need to consider also the temperature, T , in the reactor, and start by
deriving an equation for it by considering heat balance in the tank reactor. In doing so we will
need to know the temperature, TK , in the cooler tank. Here we will once again make a simplifying
assumption, namely, that TK is constant. Physically, this can be expected to be the case when
the cooler tank is large compared to the reactor tank.

2.1. Heat balance. The heat balance equation is

ρcpV
dT

dt
= ρcpq(Tf − T ) + (−δH)V ck0 exp(−E/(RT )) − κAK(T − TK). [J/s](2)

Recall that ρ and cp are the density and the heat capacity of the fluid in the reactor, respectively.
Since V is the volume of the tank reactor, the left-hand side expresses the rate of change of the
internal energy of the fluid in the reactor. Three different mechanisms contribute to this:

• The first term on the right-hand side expresses the net rate of change of the energy due
to the temperature difference, Tf − T , between the inflow and the outflow (q is the flux
through the tank).

• The second term on the right-hand side expresses the increase rate of the energy due to
heat released in the (exothermal) reaction. Recall that δH is the heat of reaction, c is
the concentration in the reactor of the reacting substance, and k = k0 exp(−E/(RT ))
is the rate coefficient of the reaction. Note: since the reaction rate, ck, depends both
on the concentration and on the temperature, there is a (non-linear) coupling between
the equation for the concentration, that we studied last week, and the equation for the
temperature.

• The third term on the right-hand side expresses the decrease rate of the energy due to heat
transferred from the reactor to the cooler. This rate is proportional to the temperature
difference, T −TK , between the reactor and the cooler. Recall that κ and AK are the heat
transfer coefficient and the area of the cooler, respectively.

Note that (2) is a non-linear differential equation for the temperature, T , in the tank reactor. In
order to make the equation dimensionless we divide by ρcpqrefTf [J/s]. We get

V

qref

d

dt

( T

Tf

)
=

q

qref

(
1 − T

Tf

)
+

(−δH)cf

ρcpTf

c

cf

V

qref
k0 exp

(
− E

RTf

Tf

T

)
− κAK

ρcpqref

( T

Tf
− TK

Tf

)
.(3)

Recall that last week we introduced the dimensionless time s = t/τ , where τ = V/qref [s]. We
now also introduce

X1 = c/cf (dimensionless concentration),

X2 = T/Tf (dimensionless reactor temperature),

U1 = q/qref (dimensionless flux),

U2 = TK/Tf (dimensionless cooler temperature).

Note that X1 is the quantity last week referred to as X , and U1 is the quantity last week referred
to as U . To express the left-hand side in (3) in the non-dimensional variables we note that, by the
chain rule,

dX2

ds
=

dX2

dt

dt

ds
= τ

dX2

dt
=

V

qref

d

dt

( T

Tf

)
.(4)

We also express the terms on the right-hand side in (3) in the non-dimensional variables:
• The first term on the right-hand side simply becomes

U1(1 − X2).(5)
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• For the second term on the right-hand side we introduce the three dimensionless numbers

α =
(−δH)cf

ρcpTf
, γ =

E

RTf
, δ = k0τ exp(−γ),

where γ is referred to as the Arrhenius number. This term then becomes

αX1τk0 exp
(
− γ

X2

)
= αX1k0τ exp(−γ) exp(γ− γ

X2
) = αX1f(X2),(6)

where

f(X2) = δ exp(γ− γ

X2
).

Note that we have re-written the Arrhenius law as kτ = f(X2) = δ exp(γ− γ
X2

). The
dimensionless numbers γ and δ can be thought of as non-dimensional counterparts to the
activation energy E and the rate constant k0. Next week we will estimate γ and δ by
fitting the function kτ = δ exp(γ− γ

X2
) to measured reaction rates, but as for today you

may use the values γ = 30 and δ = 0.1. The dimensionless number α, on the other hand,
can be directly computed from known data.

• Introducing the dimensionless number

β =
κAK

ρcpqref

the third term on the right-hand side becomes

−β(X2 − U2).(7)

From (4)–(7), (3) becomes
dX2

ds
= U1(1 − X2) + αX1f(X2) − β(X2 − U2),(8)

and replacing X by X1, U by U1, and kτ by f(X2), in the equation for the concentration that we
derived last week, we arrive at the system of differential equations,

dX1

ds
= U1(1 − X1) − X1f(X2), s > 0,

dX2

ds
= U1(1 − X2) + αX1f(X2) − β(X2 − U2), s > 0,(9)

X1(0) = X1,0, X2(0) = X2,0.

Exercise 3. Extend your Matlab programs from last week so that they solve (9). Let first U1

and U2 be equal to constant values Ū1 and Ū2. Does the solution X(s) =
[
X1(s)
X2(s)

]
approach an

equilibrium X̄ =
[
X̄1

X̄2

]
as s → ∞? In fact, you should be able to find two equilibrium points by

choosing different initial values X0, say, X0 =
[
0.5
1

]
and X0 =

[
0.5
1.1

]
.

Hint: The file data.m could for example look like
global alpha beta gamma delta Ubar
dH = -83.7e3; % heat of reaction
cf = 5e3; % concentration at inflow
% here you initiate the other variables needed to compute alpha
alpha = -dH*cf/(rho*cp*Tf);
% here you initiate the variables needed to compute beta
% you must choose a value for AK, for instance AK = 1
beta = ...; % insert the expression for beta
gamma = 30;
delta = 0.1;
Ubar = [1; 0.97];
S = 10; % final time
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X0 = [0.5; 1]; % initial value

Change the function file tank.m to a file tank2.m beginning with
function y=tank2(s,X)
global alpha beta gamma delta Ubar
U(1) = Ubar(1);
U(2) = Ubar(2);
y = zeros(2,1);
y(1) = U(1)*(1-X(1)) - ... ; % complete the expression for dX1/ds
y(2) = ... ; % insert the expression for dX2/ds

(If you want, you can write a separate function file f.m that implements the “Arrhenius function”
f(X2) = δ exp(γ− γ

X2
). Then you can call f from tank2. Just don’t forget to declare the variables

gamma and delta as global inside f.)
You should finally be able to use the file solve2.m from Exercise 1 with obvious modifications.
In a later exercise we will look for an equilibrium at X̄1 = 0.5 and analyze the stability of this

desired operating point.
Finally we give a some reasons for writing the mathematical model in dimensionless form:

• the dimensionless equations (9) contain fewer constants and variables than the original
equations and they are therefore more convenient to work with;

• it gives a possibility of scaling the variables so that they are not very big or very small;
• it is useful for scaling an apparatus from laboratory size to factory size; this should be

done so that the dimensionless constants are the same.


