STUDIO 3. THE TANK REACTOR: ARRHENIUS' LAW.

1. The method of least squares

Consider the linear system of equations

$$Ax = b,$$

where $A \in \mathbf{R}^{m \times n}$, $x \in \mathbf{R}^n$, $b \in \mathbf{R}^m$. If m > n (more equations than unknowns), then the system is "overdetermined" and such a system has no solution in general. Geometrically, the reason for this is that (in general) the vector b lies outside the range ("värderummet") of A,

$$R(A) = \{ y \in \mathbf{R}^m : y = Ax \text{ for some } x \in \mathbf{R}^n \}.$$

Since the dimension of R(A) is $\leq n$ and m > n, we realize that the space R(A) does not "fill out" the whole space \mathbf{R}^m . Therefore it is likely that a given vector $b \in \mathbf{R}^m$ will lie outside R(A), see Figure 1, and then Ax cannot be equal to b and (1) has no solution.

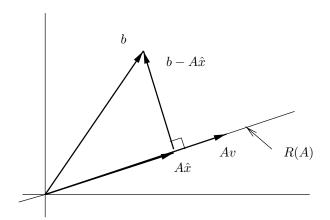


Figure 1. Orthogonal projection onto the range of A.

In this situation we seek an approximate solution which makes the residual

$$b - Ax$$

as small as possible. More precisely, we seek a vector $\hat{x} \in \mathbf{R}^n$, which minimizes the square of the norm (length) of the residual:

(2)
$$f(\hat{x}) = \min f(x), \quad f(x) = ||b - Ax||^2.$$

Recall the scalar product $\langle x,y\rangle=y^tx$ and the norm $\|x\|=\sqrt{\langle x,x\rangle}=\sqrt{x^tx}$ of column vectors. We know that there is a unique vector $\hat{y}=A\hat{x}\in R(A)$ such that the distance $\|b-Ax\|$ is minimal, i.e., $\|b-A\hat{x}\|\leq \|b-Ax\|$ for all x. The vector $\hat{y}=A\hat{x}$ is the *orthogonal projection* of b onto R(A), see Figure 1. It is characterized by the condition that $b-\hat{y}=b-A\hat{x}$ is orthogonal to all vectors $Av\in R(A)$. This means that

$$0 = \langle b - A\hat{x}, Av \rangle = (Av)^{t}(b - A\hat{x}) = v^{t}A^{t}(b - A\hat{x}) = v^{t}(A^{t}b - A^{t}A\hat{x}).$$

Since this holds for all $v \in \mathbf{R}^n$, we may take $v = A^t b - A^t A \hat{x}$ to get

$$A^t A \hat{x} - A^t b = 0.$$

Date: March 28, 2001, Niklas Ericsson, Stig Larsson, Mathematics, Chalmers University of Technology.

Thus, we can compute \hat{x} by solving the linear system

$$A^t A x = A^t b.$$

Note that the coefficient matrix A^tA is $n \times n$ and symmetric. The system (4) has at least one solution (namely \hat{x}).

In order to see that the minimization problem (2) is equivalent to solving the linear system (4), we write $x = \hat{x} + v$, $v = x - \hat{x}$, and compute

$$f(x) = f(\hat{x} + v) = \|(b - A\hat{x}) - Av\|^{2} = \langle (b - A\hat{x}) - Av, (b - A\hat{x}) - Av \rangle$$

$$= \langle b - A\hat{x}, b - A\hat{x} \rangle - 2\langle b - A\hat{x}, Av \rangle + \langle Av, Av \rangle$$

$$= \|b - A\hat{x}\|^{2} + 2(Av)^{t}(A\hat{x} - b) + \|Av\|^{2}$$

$$= f(\hat{x}) + 2v^{t}A^{t}(A\hat{x} - b) + \|Av\|^{2}$$

$$= f(\hat{x}) + 2v^{t}(A^{t}A\hat{x} - A^{t}b) + \|Av\|^{2}.$$

Taking (3) into account we get

$$f(x) = f(\hat{x}) + ||Av||^2 \ge f(\hat{x}).$$

This shows that x minimizes f(x), if and only if ||Av|| = 0, in which case $Ax = A\hat{x} + Av = A\hat{x}$ and $A^tAx = A^tA\hat{x} = A^tb$. Therefore, x minimizes f(x) if and only if x is a solution of (4).

We can also interpret this in terms of the general minimization problem. Recall Taylor's formula:

(6)
$$f(x) = f(\hat{x} + v) = f(\hat{x}) + v^t f'(\hat{x}) + \frac{1}{2} v^t f''(\hat{x}) v + R(x).$$

Noting that $||Av||^2 = \langle Av, Av \rangle = (Av)^t (Av) = v^t (A^t A)v$, we re-write (5) as

(7)
$$f(x) = f(\hat{x} + v) = f(\hat{x}) + 2v^t (A^t A \hat{x} - A^t b) + v^t (A^t A)v.$$

Comparing (6) with (7), we identify the Jacobi matrix (gradient vector) $f'(\hat{x}) = 2(A^tA\hat{x} - A^tb)$, the Hesse matrix $f''(\hat{x}) = 2A^tA$, and the remainder R(x) = 0. Recall that stationary points are given by the system of equations $f'(x) = 2(A^tAx - A^tb) = 0$, which is the same as (4). Note also that the Hesse matrix is constant (with respect to x) and positive semidefinite: $v^tf''(x)v = 2v^t(A^tA)v = 2\|Av\|^2 \ge 0$.

Exercise 1. Suppose that the variables y and x are related by y = kx + m. In order to determine the coefficients k and m we make measurements of y and x:

x	5	6	7	8	9	10
\overline{y}	19.5888	23.4043	25.5754	29.1231	31.9575	35.8116

This leads to an overdetermined system of the form

$$kx_1 + m = y_1$$

$$\vdots$$

$$kx_6 + m = y_6$$

or, in matrix form Av = y,

$$\begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_6 & 1 \end{bmatrix} \begin{bmatrix} k \\ m \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_6 \end{bmatrix}.$$

Solve this system by the least squares method in Matlab. Hint: set up the column vectors x, y and the matrix A=[x ones(size(x))], then form the matrices $B=A^**A$ and $g=A^**y$. Solve the system Bv=g by the command $v=B\setminus g$.

Plot the data points (x_i, y_i) and the fitted function y = kx + m in the same figure. The following commands are useful: plot(x,y,'or'), fplot('ykxm',[x(1) x(6)]). Here ykxm.m is a function file that implements the function y = kx + m. Don't forget to declare global k m both inside the function file and in the main program.

Actually, Matlab's backslash command $v=A\setminus y$ automatically uses the least squares method when the system Av=y is overdetermined. Try this also!

2. The tank reactor

The rate coefficient depends on the temperature according to the Arrhenius law:

(8)
$$k = k_0 \exp(-E/(RT)) \quad [s^{-1}]$$

where R [8.31 J/(mol K)] is the gas constant, E [J/mol] is the activation energy and k_0 [s⁻¹] is the rate constant of the reaction. The following rates have been measured:

T [K]	343	353	363	373	383	393	403
k [s ⁻¹]	$2.8 \cdot 10^{-5}$	$5.6 \cdot 10^{-5}$	$11.2 \cdot 10^{-5}$	$22.4 \cdot 10^{-5}$	$44.8 \cdot 10^{-5}$	$89.6 \cdot 10^{-5}$	$179.2 \cdot 10^{-5}$

The task is now to determine the coefficients k_0 and E by fitting the rate law (8) to these data. Last week we wrote (8) in dimensionless form

(9)
$$k\tau = \delta e^{\gamma(1-1/X)}$$
, where $\gamma = \frac{E}{RT_f}$, $\delta = k_0 \tau e^{-\gamma}$, $X = \frac{T}{T_f}$, $\tau = \frac{V}{q_{\text{ref}}}$.

Introducing new variables $r = k\tau$ and $\xi = 1 - 1/X$ we get

$$(10) r = \delta e^{\gamma \xi}.$$

The task is now to fit this function to the given data points (ξ_i, r_i) .

Exercise 2. (Linear least squares method.) Form the logarithm of (10) so that you get a linear relation of the form y = kx + m, namely,

(11)
$$\log(r) = \gamma \xi + \log(\delta).$$

(Note that the natural logarithm is denoted $\log(x)$ in English and in Matlab, but $\ln(x)$ in Swedish.) Solve for γ and δ by using the least squares method as in Exercise 1. Begin by forming column vectors \mathbf{X} , \mathbf{r} , \mathbf{x} i and so on. Plot the data points (X_i, r_i) and the fitted function $r = \delta e^{\gamma(1-1/X)}$ in the same figure. Finally, determine k_0 and E.

Homework 1. (A nonlinear least squares method.) Alternatively, we can form the residual $r - \delta e^{\gamma \xi}$ from the nonlinear relation (10) and minimize the square of its norm

(12)
$$g(\delta, \gamma) = \sum_{i} \left(r_i - \delta e^{\gamma \xi_i} \right)^2.$$

Write a Matlab function that implements this function and use Matlab's program fminsearch to minimize it. Why does this method give a slightly different result? Hint: the Matlab function norm may be useful for computing the right side of (12).

Exercise 3. Insert the new values for δ and γ in your Matlab programs from Studio 2. Repeat all the computations. Let U_1 and U_2 be equal to constant values \bar{U}_1 and \bar{U}_2 . Does the solution $X(s) = \begin{bmatrix} X_1(s) \\ X_2(s) \end{bmatrix}$ approach an equilibrium $\bar{X} = \begin{bmatrix} \bar{X}_1 \\ \bar{X}_2 \end{bmatrix}$ as $s \to \infty$? In fact, you should be able to find

two equilibrium points by choosing different initial values
$$X_0$$
, say, $X_0 = \begin{bmatrix} 0.5\\1 \end{bmatrix}$ and $X_0 = \begin{bmatrix} 0.5\\1.1 \end{bmatrix}$.

Next week we will look for an equilibrium at $\bar{X}_1 = 0.5$ and analyze the stability of this desired operating point.