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∗Mathematical Sciences at Chalmers and Göteborg University, torbjorn.lundh@chalmers.se

Copyright c©2006 The Berkeley Electronic Press. All rights reserved.



Which Ball is the Roundest? - A Suggested
Tournament Stability Index∗

Torbjörn Lundh

Abstract

All sports have components of randomness that cause the “best” individual or team not to win
every game. According to many spectators this uncertainty is part of the charm when following a
competition or a match. Have different sports more or less of this unpredictability? We suggest
here a general measure, a tournament stability index, together with its associated p-value which
we denote the ”coin-tossing-index.” These indexes are aimed to quantify the randomness factor
for different tournaments, and different sports. As an illustration we exemplify and discuss these
measures for basketball, squash, and soccer. Some additional results will also be given on a few
tournaments in ice-hockey, and handball. Furthermore, we discuss a couple of combinatorial
optimization questions that turned up on the way.
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1 Introduction
We have probably all heard sport commentators saying something like: “The
ball is round and can go either way” or “That’s the way the ball bounces.”

How to quantify this unpredictability? The underlying idea we use is very
simple: How often will a “better” team lose against a “weaker” opponent in a
tournament?

Suppose that there is a ranking list1 ρ of a group of n teams or individuals
that play a tournament. Let a and b be two teams (or individuals) that play
each other in game i in the tournament. Assume that a is ranked higher than
b, i.e. ρ(a) < ρ(b). We put a value, vi, on this game i according to the following
scheme:

vi =

⎧⎨⎩
1 if a wins

−1 if b wins
0 if there is a draw.

(1)

This evaluation is used in the so called Just Win Baby, “JWB”, ranking system;
see [26] for example.

We get the tournament index if we sum up all matches according to the
scheme (1) above and divide the total by the number of matches played.
That is, if a total of N decided2 matches in the tournament are played, the
tournament index, T , is defined as

T (ρ) =

∑k
i=1 vi

N
. (2)

We have immediately that −1 ≤ T (ρ) ≤ 1 and that T (ρ) is close to 1
if the ranking ρ is “correct” and there is not much randomness in the game.
On the other hand, if there is much randomness, T (ρ) will be close to zero.
Furthermore, if T (ρ) is close to −1, then n − ρ + 1 would be a good ranking,
where n is the number of teams or players.

1.1 Related studies

A high degree of uncertainty regarding the outcome of a game is highly desir-
able to the owners of a league due to the economics of professional sports. This

1I.e. ρ is a bijection from the set of n teams to {1,2,. . . ,n}.
2That is, the draws are not counted. In Sections 3.3 and 3.4 we illustrates how counting,

or not counting, the draws effects the indexes.
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quality was denoted the league standing effect by Neale in [15], and usually
quantified using a measure called competitive balance, see for example [18] and
[10]. We recall the definition and comment on the relations to our suggested
index T in Section 2.9 below.

The question if the winner of the English Premier League is really the best
team, is addressed in [28, Chapter 7], where among other things, a simulated
random final league table is presented. We study other simulated Premier
League tournaments in Section 3.3.

Paired comparison has long been a popular method for example in psy-
chological studies, see for example [8]. An individual is given two options and
have to choose one. For example, the test-person gets two glasses of wine and
have to pick the tastiest of the two. Then this is repeated for all possible
paired combinations among the wines to be ranked. Hence the method of
paired comparison is closely related to sport tournaments’ outcomes; see for
example [6] and [1]. Of special interest to us is Kendall’s u defined in [11], and
Slater’s i defined in [24]. These measures is recalled, discussed and compared
to our index in sections 2.10 and 2.2.

After the first version (i.e. [13]) of this paper was submitted, a similar index
as T was presented in [3] using an impressively large number of games of soccer,
football, baseball, ice-hockey, and basketball; where the index was chosen as
the frequency of “upsets”, i.e. when a team defeats a higher ranked team, and
where the ranking was picked as the current standing in the league, and thus
updated after every game. Note that in the early stages of a tournament,
the current standing might not so well reflect the real strengths of the teams.
On the other hand, if the initial standing, ρ, obtained after the first round
of games, was preserved throughout the whole series, then the upset index is
1−T (ρ)

2
. In that sense, for “stable” tournaments, one could use this relation as

an approximation of the upset index.

2 Suggested Measures of Tournament Stability
The index depends heavily on the ranking we choose, see for example the last
paragraph in Section 3.1. To get around that problem, we use an after–ranking
or quite simply, a result–list. Remember that we are interested in the stability
of an already completed tournament, not to predict any future result, which
is what rankings are usually supposed to do.
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We pick an after–ranking based on the number of games won, and if that
number is equal for two or more teams (or individuals), the internal meetings
will decide which team is ranked higher. If teams have the same number of
internal victories, then those teams will be randomly ranked3. If ρr is this
result ranking, we denote T (ρr) by Tr.

Using this after–ranking, we can expect a high tournament index; we can-
not, however, always expect to get the highest possible index result by using
this result–list ranking. That is, in some cases, there is an optimal ranking ρo

such that To = T (ρo) > Tr. We will come back to this peculiarity in section
2.1 below, but for now, let us concentrate on Tr.

A problem with using the tournament’s result–list as a ranking for studying
the stability of the same tournament is that the index will be biased. For
example, even if all games were decided by coin flipping, we would of course
get a non-negative tournament index.

Suppose n teams meet every other team m times in a tournament, where
all games were settled by coin-tossing. Let Mr(n,m) denote the expected
value of the index Tr of such a random tournament. In Table 2 in Appendix
B, we give approximate values of Mr(n,m) using Monte Carlo simulations.

To make up for the internal bias we introduce by choosing an after–ranking,
we define a normalized result tournament index, T̂r, by a translation and
rescaling of Tr in the following way,

T̂r =
Tr − E(Tr)

1 − E(Tr)
, (3)

where Tr is calculated as in (2) games played and using the result–ranking ρr.
We note that T̂r ≤ 1, and that the expected value of T̂r would be zero, if the
outcome of all games was decided randomly. We can use the index T̂r as a
measure of the stability of a tournament.

2.1 Optimal ranking

We can represent a tournament with a n× n–matrix A with elements aij ≥ 0
denoting the number of victories team i has against team j among the n teams
in the tournament. Since the teams do not meet themselves, the diagonal will

3Note that many different rankings has been developed in order to take into consideration
more involved structures, or incomplete tournaments etc, e.g. [6], [26], and [17].
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be zero. Let us view the ranking ρ as a permutation of (1, 2, 3, . . . , n). Then
we have that

T (ρ) =
1

N

n∑
i=1

n∑
j=1

sgn
(
ρ(j) − ρ(i)

)
aij, (4)

where N =
∑

i

∑
j aij, i.e. the total number of decided games, and sgn(·) is

the sign function. Then an optimal ranking is a ranking ρo that gives the
largest index, i.e.

To = max
ρ

T (ρ) = T (ρo). (5)

We call the To the optimal tournament index. Note that even though the
optimal ranking might not be unique, To is unique.

2.2 Slater’s i

If all possible combinations, in a paired comparison sequence, are tested once,
one would have a tournament like matrix, with only ones and zeroes; see
[24]. The so called nearest adjoining order will be the ranking which gives
the fewest number of inconsistencies in the matrix. This smallest number of
inconsistencies is called Slater’s i. Where inconsistence means an instance
where test-person breaks the order by his choice. This ranking, which might
not be unique, will also be an optimal ranking for T and we get the following
relation between Slater’s i and To.

To = 1 − 2i

N
,

where N is the total number of games in the tournament. For example in
the round-robin case where each of the n team meets each other m times and
there are no draws, N = (n−1)nm

2
.

We now give two examples where the usual result list, i.e. a team with
more victories will be ranked higher than one with fewer wins, does not give
the highest index. That is, examples where To > Tr.
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2.3 Example 1 — three teams meeting each other three
times.

Suppose such a tournament gives the following result matrix:

A =

⎛⎝ 0 1 3
2 0 1
0 2 0

⎞⎠ .

The usual result list, or after–ranking, will be (1, 2, 3). Using this ranking we
get an index Tr = 1

9
. But if we instead pick the ranking (2, 1, 3) we get To = 1

3
.

We see that we can increase the index by switching places of teams that have
almost the same number of total victories. The reason in this case is that
team 2 has two wins and one losses against team 1.

In the following example, we limit ourselves to tournaments with just one
match per pair. We then have to increase the number of teams to five in order
to find an example where the result list will not give the optimal ranking.

2.4 Example 2 — five teams meeting each other only
once.

Suppose the tournament matrix will be

A =

⎛⎜⎜⎜⎜⎝
0 1 0 0 1
0 0 1 1 0
1 0 0 0 1
1 0 1 0 1
0 1 0 0 0

⎞⎟⎟⎟⎟⎠
then one, of three possible, result–list rankings will be (4, 1, 2, 3, 5) giving the
index Tr = 2

5
. (The reason why there is more than one possible result is that

team 1, 2, and 3 all have two wins each and one internal win among each
other, i.e. 1 won over 2 which in turn won over 3 who won over 1.) However,
the ranking (4, 3, 1, 5, 2) gives a higher index To = 3

5
. Note that team 5’s only

victory was against team 2.

2.5 How to find the optimal ranking?

Question 1 Is the problem of finding the optimal ranking in (5) NP-complete?
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Due to the similarities to well known NP-complete problems such as the (di-
rected) optimal linear arrangement, c.f. [9, p. 200]; the quadratic assignment
problem, c.f. [22] and [9, p. 218], the author would be very surprised if the
answer to that question would be no, even for the case where the teams just
meet each other once. The discussion in [21] gives more arguments for this
viewpoint. See also other related problems in the three volumes of [23].

2.6 Alway’s algorithm

In [24] on p. 308, an algorithm for searching for an optimal order of tournament-
like matrices with only zeroes and ones is described. This algorithm is effective,
but not perfect as was shown in [20] using a 10 × 10 matrix.

Nevertheless, we have implemented Alway’s algorithm with a slight gener-
alization to tournament matrices including higher numbers than ones in order
to get a first estimate of the optimal index; see Appendix A for a short de-
scription. In Table 3 in Appendix B, we have used this algorithm in a Monte
Carlo simulation using 5000 random matrices to give approximations of the
expectations, MA, and variances of TA for round-robin tournaments. Note
that MA is a lower estimation of Mo. There has been further generalizations
and many algorithm constructions of this problem, see for example [25], [19],
[14], [27], [7], and [12].

Since we normalize our index using the same algorithm for both the tour-
nament matrix itself and to estimate the expected random index, one should
not expect a too big discrepancy between normalized indexes of different rank-
ing systems. As an illustration of this, see for example Table 1 and compare
the different T̂r and T̂A ≈ T̂o values.

2.7 The expected value of the optimal tournament index
To for a random tournament

Intuitively, one might argue that Mo(n,m) will decrease when the number
of matches, m, increases since the difference between the artificial teams will
be leveled out when there are more coin tosses. Similarly, we might expect
Mo(n,m) to decrease when the number of teams, n, increases, since it will be
harder to find a clear ranking when more teams are involved. The result in
Table 3 supports these arguments.
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In the simple case where we just have two teams we can give a closed
expression for the expected random tournament index.

Mo(2,m) =
(m − 1)!

2m

m∑
i=0

|m − 2i|
i!(m − i)!

. (6)

Note here that if the number of matches m is an even number, then Mo(2,m+
1) = Mo(2,m).

This formula (6) was later simplified by Sven-Erick Alm and Allan Gut of
Uppsala University after a seminar there 2003, to the following form.

Mo(2,m) =
1

2m−1
Bin(m − 1,

[m − 1

2

]
), (7)

where [·] stands for the integer part.
Furthermore, we have only two possible outcomes of the optimal index

value for simple round-robin tournaments with three teams and Mo(3, 1) =
13

4
+ 1

3
1
4

= 5
6
, with variance 1

12
. Similarly, for simple round-robin tournaments

with four teams we have, as in the case above, only two possible outcomes for
the index and Mo(4, 1) = 13

8
+ 2

3
5
8

= 19
24

, with variance 5
192

.

Question 2 Is it possible to find closed expression for the expected optimal
tournament index Mo(n,m) for higher combinations of n and m?

For higher number of teams and matches, one will get a distribution index
value which seems to approach a normal distribution with mean and variance
approximated in Table 3.

On the other hand, for small tournaments the distribution can not be
estimated well using a normal distribution. For example in the case above
with four teams and a simple round-robin, there is a high probability, i.e. 3

8
,

to reach a situation with To = 1. Hence a high index does not necessarily
mean a very stable, i.e. non-stochastic, tournament for small tournaments.
However, the coin tossing index, which is described just below, can be used to
overcome such difficulties when comparing tournaments with different schemes
and small sizes.

2.8 The Coin Tossing Index

We might want to use a p-value associated to our suggested index To in order
to get an alternative viewpoint of what a specific index value indicates. We
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might also get a more structure independent measure, where we can better
compare different tournaments which has different size, or constructions. For
example, we might want to compare a season which consists of a sequence
of knock-out cups, with a round-robin tournament with more teams. See for
example Table 1. Such a p-value, which we denote the Coin Tossing Index,
CTI, is the probability that a random tournament of the same size4 and
structure would give an equal or higher optimal tournament index To. With
a random tournament, we mean a tournament where all matches are decided
randomly with equal weight, i.e. using a (well balanced) coin-toss. There is
a drawback with this index for more stable tournaments since the CTI will
then be so small that it is hard to estimate accurately using Monte Carlo
simulations. However, one way to overcome such problems is to use a normal
approximation of the index distribution.

2.9 Comparison with the measure of competitive balance

Let us study a tournament with n teams and let wi be the winning frequency
for team i, i.e. the number of victories divided by the number of games team
i has played. The competitive balance is then measured using

σL =

√∑n
i=1(wi − 1

2
)2

n
.

For more details on this see for example [10].
Both our tournament index and the competitive balance measures show

how well ordered the tournament is, but there is no simple relation between
them as the following four tournament matrices will illustrate. In the following
examples, T stands for both Tr and To.

Let A =

⎛⎜⎜⎜⎜⎝
0 1 1 1 1
0 0 1 1 1
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0

⎞⎟⎟⎟⎟⎠ , B =

⎛⎜⎜⎜⎜⎝
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1
1 0 0 0 0

⎞⎟⎟⎟⎟⎠
then σL(A) ≈ 0.3162 and σL(B) ≈ 0.2236. but T (A) = T (B) = 0.8. This
illustrates the fact that the tournament index is only taken into consideration

4I.e. the same total number of games.
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if a weaker team defeats a stronger team, not punishing the index more if the
weaker team happens to be much weaker. See Section 2.12 below where we
address this question using weights.

On the other hand if we let

C =

⎛⎝ 0 2 0
0 0 2
2 0 0

⎞⎠ , and D =

⎛⎝ 0 1 1
1 0 1
1 1 0

⎞⎠ ,

then σL(C) = σL(D) = 0, but T (C) = 1
3

and T (D) = 0. This example
could be seen as an illustration how the tournament index is more sensitive
to distributional changes, i.e. how complex the tournament matrix gets, in
comparison to the competitive balance.

2.10 Comparison with Kendall’s u function

Given a tournament matrix (aij) obtained by n teams meeting each other m
times and where all games were decided, i.e. no draws. Let Σ be the sum of
agreeing results between pairs of outcomes of games, i.e.

Σ =
n∑

i=1

n∑
j=1

(
aij

2

)
.

Then the Kendall’s u function is defined as

u =
2Σ(
n
2

) − 1,

and is used to measure the amount of agreements in paired comparisons, see
[11].

For 2 × 2-matrices we have a one-to-one correspondence between T (=
Tr = To) and the u functions. Let m ≥ 2 and n = 2, then

u = (1 + c)T 2 − c, where c =
m

2

(
m
2

) .

However, for n ≥ 3, there is no direct correspondence between T and u which
the following example with m = 2 and n = 3 illustrates.
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Let A =

⎛⎝ 0 2 2
0 0 2
0 0 0

⎞⎠ , B =

⎛⎝ 0 1 1
1 0 0
1 2 0

⎞⎠ , and as above C =

⎛⎝ 0 2 0
0 0 2
2 0 0

⎞⎠
then T (A) = 1, u(A) = 1, T (B) = 1

3
, u(B) = −1

3
, but T (C) = 1

3
, and

u(C) = 1.

2.11 Non round-robin tournaments

Let us finally mention one last question in this section. In the squash example
we had a tournament over a year that was essentially composed by a series of
(knockout) cups. This gave the consequence that the best player5 also played
the most games.

In a (pure knockout) cup with four teams the tournament matrix will look
like this

Acup,4 =

⎛⎜⎜⎝
0 1 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ ,

listing the team in order of performance. It is straightforward to generalize
this to any tournament size 2k. In Section 3.2 below, we use 16 teams. In
order to generate the right number of games, Acup,16 is repeatedly added to a
tournament matrix which randomly permutes the order of both the rows and
columns for each cup added until the appropriate number of games is reached.
In the case above with four teams three games will be added for each cup, and
for the squash case below, 15 games are added for each cup of 16 teams.

2.12 A weighted ranking

The scheme (1) we have used so far to evaluate the outcome of a match is blunt
in the sense that it punishes the score with -1 indifferently if for example the
highest ranked team is beaten by the lowest ranked, as if it would have been
beaten by the second highest ranked team.

5Peter Nicol
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A way to get around this feature is to introduce a weighted ranking, x,
in the following way. Let x = (x1, x2, . . . , xn), where all xi ∈ [0, 1]. Our new
evaluation scheme of a given tournament A = {aij}, will be

W(x) =
1

N

n∑
i=1

n∑
j=1

(xi − xj)aij, (8)

where N =
∑n

i=1

∑n
j=1 aij. Compare this formulation with (4) and to Brown’s

set up in [5] where the weight is fixed to be the inverse rank, i.e. the team
ranked as number one, gets weight n.

Now, let
Wo = max

x∈[0,1]n
W(x). (9)

We denote the optimal weighted ranking by xo, i.e. W(xo) = Wo, and where
xo ∈ [0, 1]n.

Question 3 Is the problem to find the optimal weighted ranking in (8) NP-
complete?

We could use Wo as an alternative stability index for tournaments, after
it has been normalized as in (3) to Ŵo.

Our naive strategy first to use Alway’s algorithm to get a ranking. We then
use this rankings and the lemma below to get candidates x with only zeroes
and ones as their components. The ones are naturally set at the highest ranked
positions. All these candidate vectors were then evaluated in Equation (8).

The following immediate result can be a tool in the investigation of Ques-
tion 3 and to compute candidates for optimal weights allocations.

Proposition 4 The optimal weighted ranking is in a (not necessary unique)
corner in the unit hyper-cube, i.e. xo ∈ {0, 1}n.

Proof. The partial derivative with respect to xi of Equation (8) gives us
immediately that the extremal value of W(x) has to be attained when x is in
a corner in the unit hyper-cube.�

We will give an application of this weighted ranking in Section 3.3 below.

3 Applications
Let us now pick a few real world examples as illustrations to the above sug-
gested indexes T̂r, T̂o and CTI.
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3.1 NBA 1995–1996

Let us start with basketball and the NBA season 1995–1996. 29 teams played
82 games each except the play-off teams who played up to 103 games in total
(Seattle Super Sonics).

All teams met each other either two or four times before the play-off. In
total there were 1189 games played. Using this data, we find Tr = 0.41.
In order to compute the normalized index, we need the expected value of an
analogue tournament where all matches were decided randomly. Furthermore,
using Alway’s algorithm we get To ≈ TA = 0.445

This was done by randomly generating tournament matrices where all
games met each other at least twice, and some four times. Doing this 10000
times we get estimates for E(Tr) ≈ 0.094 and E(TA) ≈ 0.19. This gives us
T̂r ≈ 0.34 and T̂o ≈ T̂A ≈ 0.31.

As a comparison, consider a tournament where all 29 teams met exactly
three times each. Such a tournament would give a total of 1218 games which
can be compared with 1189. We can then use Table 2 where Mr(29, 3) ≈ 0.14.
and we can estimate

T̂r ≈
0.41 − 0.14

1 − 0.14
≈ 0.31.

For further comparisons, let us also see what happens if we pick rankings
ahead of the actual season. We look at two such examples. In those cases we
do not normalize. With the ranking ρ based on the previous season, taking into
consideration the actual points difference in each game, we get a tournament
index of T (ρ) = 0.31 which is very close to our T̂r. But if we instead choose a
different ranking method which weights the different games according to the
strength of the opponent (based on past meetings), we get instead T (ρ) =
0.073, see [26] for more details on these and related rankings. Hence we see
that the choice of ranking is essential.

3.2 Squash

Let us now exemplify the tournament index for an individual sport, namely
squash, and more specifically the professional cups which are played around
the world. The professional squash association, PSA, produces rankings of the
players, see [2]. We pick the twenty highest ranked players from the list of 1st
January 2002 and follow their results during the year 2001.
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We record each game whenever two players from the list meet making a
result matrix this way. In total we recorded 153 games this way. Using the
result-ranking (which differs slightly from the PSA January 2002 ranking) we
get T ≈ 0.71. Normalizing this, we find that T̂r ≈ (0.712−0.286)/(1−0.286) ≈
0.60, where we used the normalization factor 0.286 taken from a Monte Carlo
method of accumulated simulated cups of size 16 (= 24 < 20 < 25), repeated
until we got 150 games in total. If we instead use Alway’s algorithm we get
T̂o ≈ T̂A ≈ 0.7255−0.387

1−0.387
≈ 0.55.

Alternatively, we can use Table 2 to see that in a tournament with 20
players where each one meets once, we get a total of 190 games and Mr(20, 1) =
0.34, which gives a normalized index of 0.56 instead. In comparison, we see
that if we use the ranking from January 2001 and follow the 20 highest ranked
players during 2001, we get T = 0.26 (which we do not normalize, since it is
based on past information).

Comparing with the NBA example, where we got T̂o ≈ 0.34, it seems
that the professional top-squash during 2001 was more “stable” than the NBA
season 1995-1996.

3.3 Premier League 2000–2001

Let us now turn to soccer, since we take a look at the English Premier League
results during the season 2000–2001. We collect our data from [4]. Here,
there were 20 teams playing each other 2 times each. That gives us a total
of 380 games. A great part of them, 109, ended with a draw. Using our
result-ranking, we get T = 0.34 and T̂r = 0.12. Recall from (2) that N is the
number of decided games, hence N = 380 − 109. If we instead divide by the
total number of all games played, we would get T ′ = 0.24, and from Table 2
we get Mr(20, 2) = 0.207. Hence

T̂ ′ ≈ 0.24 − 0.207

1 − 0.207
≈ 0.048.

We see there is a significant difference between these different approaches. In
[13, Table 3] we used the practice to divide by the total number of all games,
including the draws.

What does T̂r = 0.12 really mean? How close is this to complete random-
ness? The coin tossing index, CTI = 0.27, gives a complementary view on
this in the following sense. First, make a random tournament similar to the
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Premier League 2000–2001 by letting 20 teams meeting each other twice and
decide the winner by tossing a coin. After that, remove, at random places, 109
of these results, simulating the draws. Then the probability that this resulting
random tournament will have a higher index TA than the index for the real
tournament is about 0.27. So in about one out of four random tournaments
one would get a more structured tournament than this Premier League season.

If we do the same for the NBA and squash examples above we get CTI:s
far less than 0.0001.

This result indicates that professional soccer is much more random than
both basketball and squash. At least for these three tournaments studied.

What about the optimal weighted ranking? We can use Proposition 4 and
propose a candidate for xo with

x = (1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) giving us Wo ≥ 0.2546,

where the order is taken as the result ranking. We can then approximate
Ŵo ≈ 0.22.

3.4 Bundesliga

Let us compare the Premier League result with another European professional
soccer tournament, the German Bundesliga. We pick up the data from [4] and
treat it in a similar way as above. This give us T̂o ≈ 0.044 and T̂r ≈ 0.065. If
we count every game as above we would end up with T ′ = 0.24 and from the
Table 2, we have M(18, 2) = 0.22, which gives us a normalized tournament
index T̂ ′ ≈ 0.027. That is even less than its English version! If we make coin
tossing tournaments of the same size, we will in about a third of the random
trials get a higher index.

4 Discussion – the nature of different sports
Our few tournament results listed in Table 1, might indicate that for example
squash and basketball seem to be more stable sports than soccer, in the sense
that the “better” player or team more often wins, compared to soccer, at least
on a professional level. However, more tournament results need of course to be
studied before one could make a more solid statement on this. As mentioned
in the introduction, there has just recently been a related study carried out on
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Sport Country Season Tournament T̂r T̂A CTI
Soccer England 00/01 Premier L. 0.12 0.050 0.27
Soccer England 02/03 Premier L. 0.21 0.12 0.056
Soccer England 03/04 Premier L. 0.22 0.18 0.003
Soccer Germany 00/01 Bundesliga 0.065 0.044 0.31
Soccer Germany 02/03 Bundesliga 0.041 0.048 0.27
Soccer Germany 03/04 Bundesliga 0.19 0.14 0.022
Soccer Germany 02/03 2 Bundesliga 0.14 0.17 0.015
Soccer Germany 03/04 2 Bundesliga -0.053 -0.12 0.95
Soccer France 03/04 Division 1 0.20 0.13 0.021
Soccer Spain 03/04 Division 1 0.20 0.16 0.006
Soccer Italy 03/04 Seria A 0.36 0.32 < 0.001
Ice-hockey Switzerland 03/04 National L. 0.22 0.20 < 0.001
Ice-hockey Germany 03/04 DEL 0.079 0.022 0.35
Handball Germany 03/04 Bundesliga 0.47 · < 0.0001
Basketball USA 96/97 NBA 0.34 0.31 < 0.0001
Squash Intern. 01 PSA 0.60 0.55 < 0.0001

Table 1: This is a comparison between different tournaments from different
sports, countries, and years. We list approximations of the three suggested
indexes, the normalized touring index with respect to the result list T̂r, the
normalized touring index with respect to the optimal ranking T̂o, and the
Coin Tossing Index, CTI, which is the expected probability for a random
tournament to have a higher T̂o than obtain in the tournament in question.
The estimates are based on Monte-Carlo simulations using 10 000 matrixes.
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a very high number of matches in [3], verifying that soccer is indeed in general
more uncertain than football, baseball, ice-hockey, and basketball.

What could then be the causes? One obvious reason is that in soccer there
usually are not so many chances to score, hence a single fluke play might have
a greater impact to the outcome of the game.

Another reason might be that the level of the top soccer players is ex-
tremely high and even. There are very few natural talents in that sport that
are not taken care of at an early stage. Many children play with a soccer-ball
in some form all over the world, but not that many have ever seen a squash
ball.

By measuring more basketball, squash, soccer, and other tournaments, one
would ask if there might be some universal numbers of the randomness for the
different sports. How do professional series differ from amateur tournaments?
Maybe there is an interval where the tournament index should lie to become
an attractive public sport such as the league standing effect described in [15]?
Maybe this interval differs from person to person? How often do we want
“David to defeat Goliath?” In some sense you can view the rate of randomness
in a tournament as a measure of competitive and exciting the series is, but
that cannot be the whole answer, otherwise coin-tossing would be the most
spectacular sports of all. There are of course other criterions how we can
compare different sports, see for example Chapter 1 in [16].

Finally we would like to mention the outlier in Table 1 where it is indicated
that about 95% of the random tournaments will end up with a higher optimal
index than the second Bundesliga 2003-2004. (Note that both the normalized
indexes where negative for this tournament.) We where quite concerned about
this strange result until we learnt that there were some manipulations of that
tournaments in forms of alleged match-fixing supposedly involving players,
and a referee who was sentenced to jail. This indicates that our indexes might
even be useful for monitoring sound tournaments.
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A Alway’s algorithm
Let us give a brief description of this algorithm. Firstly, order the rows in
the tournament matrix according to the result-ranking. Then examine the
first line from the diagonal element and forward and count the numbers of
wins and losses, i.e. a1,j − aj,1. If at some point, say at column j, the the
accumulated losses are more than the accumulated wins, then transform the
matrix by placing the first row at row j and column 1 to column j. Then start
again from the new first row. This procedure is then repeated for all rows.
When one reach the final row without any changes, one follows an analogous
scheme for the columns, again starting at the diagonal element, but now going
upward along that column. You will eventually get a good candidate for the
optimal ranking. See more details in [24, p. 308].

B Estimates of Mr(n,m) and MA(n,m)

We give here two tables, with Monte Carlo estimates of the expectations Mr

and MA together with their variances, which might be useful if the reader
wants to investigate tournaments of their own.
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m
n 1 2 3 4 5
2 1.000; 0.000 0.501; 0.250 0.498; 0.83 0.372; 0.11 0.377; 0.056
3 0.842; 0.085 0.473; 0.077 0.417; 0.047 0.348; 0.037 0.316; 0.028
4 0.791; 0.026 0.458; 0.036 0.381; 0.021 0.314; 0.018 0.286; 0.014
5 0.713; 0.032 0.409; 0.023 0.343; 0.014 0.283; 0.011 0.259; .0088
6 0.642; 0.024 0.381; 0.016 0.318; .0098 0.262; .0077 0.236; .0062
7 0.596; 0.019 0.352; 0.012 0.294; .0073 0.243; .0060 0.219; .0045
8 0.552; 0.015 0.331; .0090 0.276; .0052 0.225; .0045 0.206; .0036
9 0.521; 0.012 0.310; .0071 0.261; .0043 0.215; .0036 0.193; .0027
10 0.489; .0092 0.295; .0057 0.246; .0035 0.204; .0028 0.183; .0022
11 0.467; .0078 0.281; .0048 0.234; .0029 0.194; .0024 0.175; .0018
12 0.445; .0068 0.270; .0041 0.225; .0025 0.184; .0021 0.169; .0016
13 0.426; .0059 0.259; .0036 0.216; .0021 0.178; .0018 0.161; .0013
14 0.409; .0048 0.250; .0031 0.206; .0019 0.171; .0015 0.156; .0011
15 0.393; .0046 0.240; .0027 0.201; .0017 0.166; .0013 0.149; .0010
16 0.380; .0040 0.233; .0023 0.195; .0014 0.160; .0011 0.145; .0009
17 0.368; .0036 0.224; .0020 0.187; .0012 0.155; .0010 0.141; .0008
18 0.356; .0031 0.218; .0019 0.183; .0011 0.151; .0009 0.137; .0007
19 0.345; .0028 0.211; .0017 0.178; .0010 0.147; .0008 0.133; .0006
20 0.336; .0026 0.207; .0015 0.173; .0009 0.144; .0007 0.130; .0006
21 0.327; .0023 0.201; .0014 0.169; .0008 0.140; .0007 0.127; .0005
22 0.319; .0021 0.198; .0013 0.166; .0008 0.136; .0006 0.123; .0005
23 0.310; .0021 0.193; .0012 0.161; .0007 0.133; .0006 0.121; .0004
24 0.305; .0018 0.187; .0011 0.158; .0007 0.130; .0005 0.118; .0004
25 0.298; .0017 0.185; .0010 0.154; .0006 0.127; .0005 0.116; .0004
26 0.290; .0016 0.180; .0009 0.151; .0006 0.126; .0004 0.113; .0003
27 0.286; .0014 0.176; .0008 0.149; .0005 0.122; .0004 0.111; .0003
28 0.280; .0014 0.173; .0008 0.145; .0005 0.120; .0004 0.109; .0003
29 0.274; .0013 0.169; .0007 0.143; .0005 0.118; .0003 0.107; .0003
30 0.269; .0012 0.167; .0007 0.141; .0004 0.116; .0003 0.106; .0003

Table 2: Approximations of expected tournament indexes for completely
random games, Mr(n,m), together with estimates of their variances,
where the third digits should only be viewed as an indication. To il-
lustrate this, note that Equations (6) or (7) gives the exact values for
the Mr(2,m)–values on the first line which then really should read as
1.000 0.500 0.500 0.375 0.375 0.3125. We have used 5000 random
matrixes in the Monte Carlo simulation for each pair n,m.
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m
n 1 2 3 4 5
2 1.000; 0.000 0.510; 0.250 0.505; 0.085 0.376; 0.110 0.376; 0.060
3 0.828; 0.085 0.474; 0.075 0.445; 0.037 0.354; 0.034 0.342; 0.022
4 0.789; 0.026 0.458; 0.035 0.413; 0.017 0.336; 0.016 0.316; 0.011
5 0.730; 0.024 0.443; 0.020 0.386; 0.011 0.317; .0090 0.297; .0069
6 0.685; 0.016 0.420; 0.013 0.368; .0073 0.304; .0059 0.279; .0047
7 0.648; 0.013 0.401; .0091 0.349; .0053 0.289; .0044 0.268; .0034
8 0.618; 0.010 0.383; .0068 0.334; .0042 0.277; .0034 0.255; .0025
9 0.591; .0081 0.371; .0053 0.320; .0033 0.268; .0026 0.246; .0021
10 0.567; .0067 0.357; .0044 0.310; .0025 0.258; .0021 0.237; .0017
11 0.547; .0055 0.347; .0035 0.299; .0022 0.249; .0017 0.228; .0014
12 0.530; .0048 0.338; .0029 0.289; .0018 0.242; .0014 0.222; .0011
13 0.513; .0043 0.328; .0025 0.281; .0016 0.235; .0012 0.215; .0010
14 0.496; .0038 0.320; .0022 0.274; .0013 0.229; .0010 0.210; .0008
15 0.482; .0032 0.312; .0019 0.266; .0012 0.224; .0009 0.204; .0007
16 0.470; .0029 0.304; .0016 0.260; .0011 0.219; .0008 0.199; .0006
17 0.459; .0025 0.298; .0014 0.253; .0010 0.213; .0007 0.194; .0006
18 0.449; .0023 0.292; .0012 0.248; .0008 0.209; .0006 0.191; .0005
19 0.439; .0020 0.286; .0012 0.243; .0007 0.205; .0006 0.187; .0004
20 0.429; .0019 0.281; .0010 0.238; .0007 0.202; .0005 0.183; .0004
21 0.421; .0017 0.276; .0009 0.234; .0006 0.198; .0005 0.180; .0004
22 0.415; .0015 0.272; .0008 0.229; .0005 0.194; .0004 0.177; .0003
23 0.406; .0014 0.268; .0008 0.226; .0005 0.191; .0004 0.174; .0003
24 0.399; .0013 0.263; .0007 0.222; .0004 0.188; .0003 0.171; .0003
25 0.392; .0012 0.260; .0006 0.218; .0004 0.186; .0003 0.168; .0003
26 0.386; .0011 0.256; .0006 0.215; .0004 0.183; .0003 0.166; .0002
27 0.380; .0011 0.252; .0005 0.212; .0004 0.180; .0003 0.163; .0002
28 0.375; .0010 0.249; .0005 0.209; .0003 0.178; .0003 0.161; .0002
29 0.370; .0009 0.245; .0005 0.206; .0003 0.176; .0002 0.159; .0002
30 0.364; .0008 0.242; .0004 0.203; .0003 0.173; .0002 0.156; .0002

Table 3: Estimations of expected optimized tournament indexes for ran-
dom games, MA(n,m), together with estimates of their variances. Note that
MA(n,m) is a lower estimate of Mo(n,m). We have here used 5000 random
matrixes in the Monte Carlo simulation and Alway’s algorithm, see [24, p.
308] for each pair n,m, where as usual m stands for the number of games each
team play each other team, and n for the number of teams.
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