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ABSTRACT: We prove the main conjecture of the paper “On the expected value of the minimum
assignment” by Marshall W. Buck, Clara S. Chan, and David P. Robbins [Random Structures Algo-
rithms 21 (2002), 33–58]. This is an exact formula for the expected value of a certain type of random
assignment problem. It generalizes the formula 1 + 1/4 + · · · + 1/n2 for the n by n exp(1) random
assignment problem. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 26, 237–251, 2005

1. INTRODUCTION

This work is motivated by a conjecture made by Marshall W. Buck, Clara S. Chan, and
David P. Robbins [4]. This conjecture in turn is a generalization of a conjecture made in
1998 by the physicist Giorgio Parisi [16]. Consider an n by n matrix of independent exp(1)
random variables. Parisi conjectured that the expected value of the minimum sum of n
matrix entries, of which no two belong to the same row or column, is given by the formula

1 + 1

4
+ 1

9
+ · · · + 1

n2
. (1)

At the time, the main open question was the value of the limit of the expected minimum
sum as n tends to infinity. Upper and lower bounds had been established in [17,3,15,7–9].
A nonrigorous argument due to Marc Mézard and Parisi [13] showed that the limit ought
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to be ζ(2) = π 2/6. David Aldous [1] had proved, using an infinite model, that the limit
exists. Aldous would later confirm the ζ(2) limit conjecture of Mézard and Parisi [2]. See
also [6] for further background.

The striking conjecture of Parisi [obviously consistent with the conjectured ζ(2)-limit]
paved the way for an entirely new approach. It seemed likely that (1) would yield to an
inductive argument, and that therefore the ζ(2)-limit could be established by exact analysis
of the “finite n” case. The Parisi formula was almost immediately generalized by Don
Coppersmith and Gregory Sorkin [5] to

∑
i,j≥0

i+j<k

1

(m − i)(n − j)
(2)

for the minimum sum of k entries, no two in the same row or column, in an m by n matrix.
It is not hard to verify that (2) specializes to (1) when k = m = n.

The Coppersmith-Sorkin conjecture was then generalized in two different directions by
Buck, Chan, and Robbins [4] and by Svante Linusson and the author [10]. Meanwhile, the
ζ(2) limit was established by Aldous. In 2003, the Parisi and Coppersmith-Sorkin formulas
were proved simultaneously and independently by Linusson and the author [11] and by
Chandra Nair, Balaji Prabhakar, and Mayank Sharma [14].

In this paper we show that by combining the methods and ideas of [11] and [4], we can
prove a simultaneous generalization of the Buck-Chan-Robbins conjecture and the main
theorem of [11]. At the same time, this provides a considerable simplification of the proof
of (1) and (2).

2. THE BUCK-CHAN-ROBBINS FORMULA

Let X be an m by n matrix of nonnegative real numbers. The rows and columns of the
matrix will be indexed by weighted sets R and C respectively. We may take R = {1, . . . , m}
and C = {1, . . . , n}. The sets R and C are endowed with weight functions ‖·‖R and ‖·‖C

respectively, that associate a positive weight to each element of the set. A k-assignment is
a set µ ⊆ R × C of k matrix positions, or sites, of which no two belong to the same row or
column. An assignment will also be called an independent set. The cost of µ is the sum

costX(µ) =
∑

(i,j)∈µ

X(i, j)

of the matrix entries in µ. We let mink(X) denote the minimum cost of all k-assignments
in X, and we say that µ is a minimum k-assignment if costX(µ) = mink(X).

In [4], the Parisi and Coppersmith-Sorkin conjectures are generalized to a certain type
of matrix with entries which are exponential random variables, but not necessarily with
parameter 1. We say that a random variable x is exponential of rate a if Pr(x > t) = e−at

for every t ≥ 0. In this case we write x ∼ exp(a). Buck, Chan, and Robbins considered the
following type of matrix: For every (i, j) ∈ R × C, X(i, j) is exp(‖i‖R ‖j‖C)-distributed, and
independent of all other matrix entries. To state the formula, we use the notation

‖α‖R =
∑
i∈α

‖i‖R
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and

‖α‖R =
∑
i∈R
i/∈α

‖i‖R,

for the weight of a set of rows and its complement, respectively. We use similar nota-
tion for sets of columns. Where no confusion can arise, we will drop the subscripts R
and C.

The formula conjectured by Buck, Chan, and Robbins in [4] is given in two different
versions, a “combinatorial” formula, involving a binomial coefficient, and an equivalent
“probabilistic” version of the formula. The situation is similar in the paper [10], whose main
conjecture was proved in [11]. In this paper we work in the probabilistic setting, which
seems to be the natural one. We remark, however, that both in [10] and [4], the discovery
of the probabilistic formulas were made through formal manipulation of the combinatorial
formulas. Therefore, the latter have played an important role in obtaining the results of this
paper.

Theorem 2.1 (The Buck-Chan-Robbins conjecture, combinatorial version). Let X be a
matrix as described above. Then

E[mink(X)] =
∑
α⊆R
β⊆C

(
m + n − 1 − |α| − |β|

k − 1 − |α| − |β|
)

(−1)k−1−|α|−|β|

‖α‖ ∥∥β
∥∥ . (3)

Notice that in order for the binomial coefficient to be nonzero, we must have |α|+|β| < k,
which resembles the condition i + j < k in the Coppersmith-Sorkin formula (2). It is still
not entirely obvious that (3) specializes to the Coppersmith-Sorkin formula when the row
and column weights are set to 1. However, in [4], the formula (3) is shown to be equivalent
to a formula given by an urn model.

3. THE BUCK-CHAN-ROBBINS URN MODEL

The following urn model is described in [4]: An urn contains a set of balls, each with a
given positive weight. Balls are drawn one at a time without replacement, and each time
the probability of drawing a particular ball is proportional to its weight. This simple model
has perhaps been studied before, but the connection to random assignment problems is due
to Buck, Chan, and Robbins.

To each weighted set we can associate such an urn process. In our applications, we
consider the urn processes on the sets R and C of row and column indices. We consider a
continuous time version of this process. Each ball i remains in the urn for an amount of
time which is exp(‖i‖)-distributed, after which it pops out of the urn. The times at which
the balls leave the urn are all independent.

The urn process can be thought of as a continuous time random walk on the power set
of the set of balls. If α is a set of balls, we denote by Pr(α) the probability that this random
walk reaches α, in other words the probability that every ball in α is drawn before every
ball not in α.
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Example 3.1. If there are three balls labeled 1, 2, 3, then

Pr(∅) = Pr({1, 2, 3}) = 1,

Pr({1}) = ‖1‖
‖{1, 2, 3}‖

and

Pr({1, 2}) = ‖1‖ · ‖2‖
‖{1, 2, 3}‖ · ‖{2, 3}‖ + ‖1‖ · ‖2‖

‖{1, 2, 3}‖ · ‖{1, 3}‖ ,

since the set {1, 2} can be obtained either by first drawing 1 and then 2, or the other way
around.

The following formula is stated in [4] and shown to be equivalent to (3):

Theorem 3.2 (The Buck-Chan-Robbins conjecture, probabilistic version).

E[mink(X)] =
∑
α⊆R
β⊆C

|α|+|β|<k

PrR(α)PrC(β)

‖α‖ ∥∥β
∥∥ . (4)

Notice that the Coppersmith-Sorkin formula (2) follows immediately from (4). If we set
the row and column weights to 1, we can group together the terms for which |α| = i and
|β| = j. The denominators are all (m − i)(n − j), and the probabilities in the numerators
sum to 1.

Example 3.3. Let X be a 2 × 2 matrix, and let the row and column weights be ‖i‖R = ai,
and ‖j‖C = bj. If k = 2, then according to (4),

E[min2(X)] = 1

(a1 + a2)(b1 + b2)
+ a1

a1 + a2
· 1

a2(b1 + b2)
+ a2

a1 + a2
· 1

a1(b1 + b2)

+ b1

b1 + b2
· 1

(a1 + a2)b2
+ b2

b1 + b2
· 1

(a1 + a2)b1
.

By partial fraction decomposition, this expression simplifies to

E[min2(X)] = −3

(a1 + a2)(b1 + b2)
+ 1

a2(b1 + b2)
+ 1

a1(b1 + b2)

+ 1

b2(a1 + a2)
+ 1

b1(a1 + a2)
, (5)

in accordance with (3). If we set the weights equal to 1, (5) evaluates to 5/4 = 1 + 1/4, as
predicted by (1).
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4. MAIN THEOREM

The main theorem of [11] is a formula for the expected value of the minimum k-assignment
in a matrix where a specified set of entries are set to zero, and the remaining entries are
independent exp(1)-variables. In this article we prove a formula for the common general-
ization of the matrices considered in [4] and in [11]. We say that X is a standard matrix if
the entries in a certain set of sites are zero, and the remaining entries are independent and
distributed according to the row- and column-weights, that is, X(i, j) ∼ exp(‖i‖ ‖j‖). This
is an obvious generalization of the concept of standard matrix in [11].

Let Z ⊆ R × C be a set of sites. A line is a row or a column. Let λ be a set of lines. We
say that λ is a cover of Z if every site in Z lies on a line that belongs to λ. By a cover of the
matrix X we mean a cover of the set of zeros of X. By a (k − 1)-cover we mean a cover
consisting of k − 1 lines. Finally, a partial (k − 1)-cover is a subset of a (k − 1)-cover.

Let Ik(X) be the set of partial (k − 1)-covers of the zeros of X. Our main theorem states
that

E[mink(X)] =
∑
α⊆R
β⊆C

α∪β∈Ik (X)

Pr(α)Pr(β)

‖α‖ ∥∥β
∥∥ . (6)

If X has no zeros, Ik(X) consists of all sets of at most k − 1 lines. Hence (4) follows
from (6).

5. MATRIX REDUCTION

Polynomial time algorithms for computing mink(X) for a deterministic matrix X are well
known. We do not focus on issues of computational efficiency, but we outline an algorithm
whose special features will be of importance.

Let Z ⊆ R×C be a set of sites. We say that a cover of Z is optimal if it has the minimum
number of lines among all covers of Z . The rank of a set of sites is the size of the largest
independent subset. The following is a famous theorem due to D. König and E. Egerváry
(see for instance [12]).

Theorem 5.1 (König-Egerváry theorem). The number of lines in an optimal cover of Z
is equal to rank(Z).

The following was Lemma 2.5 of [11].

Lemma 5.2. Let X be a nonnegative m by n matrix, and let λ be an optimal cover of X.
Suppose that there is no zero cost (k + 1)-assignment in X. Then every line in λ intersects
every minimum k-assignment in X.

The following matrix operation is fundamental for the algorithm. We refer to it as matrix
reduction. Let X be a nonnegative m by n matrix, and let λ = α ∪ β be an optimal cover of
X, where α is the set of rows and β is the set of columns in λ. The reduction X ′ of X by λ is
obtained from X as follows: Let t be the minimum matrix entry of X which is not covered
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by λ. If the site (i, j) is not covered by λ, we let X ′(i, j) = X(i, j) − t. In particular, this
means that X ′ will have a zero which is not covered by λ. If the site (i, j) is doubly covered
by λ, that is, i ∈ α and j ∈ β, then we let X ′(i, j) = X(i, j) + t. Finally if (i, j) is covered by
exactly one line in λ, we let X ′(i, j) = X(i, j). Notice that the entries of X ′ are nonnegative.

Lemma 5.3. Let X be a nonnegative matrix, and suppose that there is no zero cost
(k +1)-assignment in X. Let X ′ be the reduction of X by an optimal cover λ. A k-assignment
which is minimal in X is also minimal in X ′.

Proof. Let t be the minimum of the entries in X that are not covered by λ. For s < t,
let Xs be the matrix obtained from X by subtracting s from the noncovered entries and
adding s to the doubly covered entries. Since Xs has precisely the same zeros as X , λ is
an optimal cover of Xs. By Lemma 5.2, every minimum k-assignment in Xs intersects
every line of λ. By continuity, it follows that there is a minimum k-assignment in X ′ that
intersects every line in λ. All k-assignments that intersect every line of λ are affected in
the same way by the reduction from X to X ′, namely if µ is such a k-assignment, then
costX ′(µ) = costX(µ) − (k − |λ|)t (as in Theorem 2.7 of [11]). Hence if µ is a minimum
k-assignment in X , then µ is minimal also in X ′.

The following lemma is well-known. Again we refer to [12].

Lemma 5.4. There is an optimal cover of Z containing every row that belongs to some
optimal cover of Z, and similarly there is an optimal cover that contains every column that
belongs to some optimal cover.

These covers are called the row-maximal and the column-maximal optimal covers,
respectively.

The proof of Theorem 6.3 is based on induction over matrix reduction. Therefore we
need the following lemma:

Lemma 5.5. Let X = X0 be a nonnegative m by n matrix, and let k ≤ min(m, n). For
i ≥ 0, let Xi+1 be the reduction of Xi by the column-maximal optimal cover of Xi, and let Zi

be the set of zeros of Xi. Then rank(Zi+1) ≥ rank(Zi), and if equality holds, then the number
of rows in the column-maximal optimal cover of Zi+1 is greater than the number of rows in
the column-maximal optimal cover of Zi. In particular, X(k+1

2 ) has a zero cost k-assignment.

Proof. Let λi be the column-maximal optimal cover of Zi. By the König-Egerváry theorem,
Zi has an independent subset µi containing exactly one site in each line of λi. Hence µi

contains no site which is doubly covered by λi. It follows that rank(Zi+1) ≥ rank(Zi).
Suppose that rank(Zi+1) = rank(Zi). Notice that λi is the column-maximal optimal cover of
the subset Zi ∩ Zi+1 of Zi consisting of the zeros of Xi, which are not doubly covered by λi.
Since λi+1 is also a cover of Zi ∩ Zi+1, every row in λi belongs to λi+1. Since Xi+1 has a zero
which is not covered by λi, there has to be a row in λi+1 which is not in λi.

Hence in each step of the reduction process, either the rank of the set of zeros increases,
or the number of rows in the column-maximal optimal cover increases. Therefore, when
the matrix has a zero cost (k − 1)-assignment, it takes at most k more reductions until it has
a zero cost k-assignment. The statement follows.
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A feature of matrix reduction that has been exploited in several papers [5,10,3] is that it
keeps track of the cost of the minimum k-assignment. If t is as above and X reduces to X ′,
then mink(X) = (k − |λ|) · t + mink(X ′). Therefore, we can compute mink(X) recursively
by iterating the reduction and keeping track of the values of t as well as the sizes of the
optimal covers that are used. As long as the matrix entries are independent exponential
variables, it is easy to compute the expected value of the minimum t, even for general m
and n. However, since the doubly covered entries will eventually consist of sums of several
dependent random variables, it is difficult to reach any conclusions valid for general k
through this approach.

One of the insights that led to the proof of the Parisi formula in [11] was the fact that
information about the probability that a certain matrix element belongs to a minimum
assignment will give information about the expected minimum cost (Lemma 7.1 below).
However, a problem with the reduction algorithm is that, in general, it loses track of the
location of the minimum assignment.

Example 5.6. Here k = 2, and after the final step, the matrix contains two zero-cost
2-assignments, of which only one was minimal in the original matrix. Hence the converse
of Lemma 5.3 is not true.

(
1 2 3
3 4 3

)
∅−→

(
0 1 2
2 3 2

)
{column1}−→

(
0 0 1
2 2 1

)
{row1}−→

(
0 0 1
1 1 0

)

The approach taken in this paper builds on an observation that has so far been overlooked,
even in [11], namely that if the column-maximal optimal cover is used consistently, the
matrix reduction algorithm keeps track of the set of rows that participate in the minimum
k-assignment. Before we prove this, we cite a lemma from [4]. Although these authors
make no claims of originality, we have not been able to trace it to any other source.

Lemma 5.7 (Nesting Lemma). Let X be a real m by n matrix, and let k1 ≤ k2 ≤ min(m, n)

be positive integers. If µ is an optimal k1-assignment in X, then there is an optimal k2-
assignment µ′ in X such that every line that intersects µ also intersects µ′. Moreover, if ν

is an optimal k2-assignment, then there is an optimal k1-assignment ν ′ such that every line
that intersects ν ′ intersects ν.

We can now prove a partial converse of Lemma 5.3.

Lemma 5.8. Let X be a nonnegative m by n matrix. Let λ be the column-maximal optimal
cover of the zeros of X. Let k ≤ min(m, n), and suppose that X has no zero cost k-assignment.
Let X ′ be the reduction of X by λ. For every i, if there is a minimum k-assignment in X ′ that
intersects row i, then there is a minimum k-assignment in X that intersects row i.

Proof. By Lemma 5.5, the reduction process can be continued until there is a zero cost
k-assignment. If at this point a row intersects a minimum (that is, zero cost) k-assignment,
then the row must obviously contain a zero. Conversely, since a zero is a minimum
1-assignment, it follows from the Nesting Lemma that a row that contains a zero will
intersect some minimum k-assignment. Hence to prove the lemma, it is sufficient to prove
that whenever a new zero occurs in the reduction, the row containing this zero intersects
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some minimum k-assignment in the original matrix. Let l be the number of lines in λ. By
the König-Egerváry theorem, l < k. By the Nesting Lemma, it suffices to prove that a
row that contains a new zero of X ′ intersects a minimum (l + 1)-assignment int X. If the
new zero occurs in a row that belongs to some optimal cover of the zeros of X, then this
is obvious, since that row must contain a zero of X. If the new zero occurs in a row that
does not belong to any optuimal cover of the zeros of X , then since λ is column-maximal,
it occurs in a position (i, j) which is not covered by any optimal cover of the zeros of X. By
the König-Egerváry theorem, there is an (l +1)-assignment of cost X(i, j) in X . Since every
(l + 1)-assignment must contain an entry which is not covered by λ, and X(i, j) is minimal
among these, it follows that (i, j) belongs to a minimum l + 1 assignment in X .

6. A FORMULA FOR THE PARTICIPATION PROBABILITY OF A ROW

In this section we establish a connection between the random assignment problem and
the urn model by deriving a formula for the probability that a certain row intersects a
minimum k-assignment. The special case of standard matrices without zeros was proved
in [4]. Another special case, that of row- and column-weights equal to 1 (rate 1 exponential
variables) was proved in [11] by a different method. A striking feature of this formula is
that it is independent of the number of columns in the matrix, and of their weights.

Suppose that X is a matrix where some entries are zero, and the remaining entries are
(possibly random) positive real numbers. We let R(X) be the set of rows in the row-maximal
optimal cover of the zeros of X . Recall that Ik(X) is the set of partial (k − 1)-covers of X.
The following result was used in [11] although its proof is hidden in the analysis of case 1
in the proof of Theorem 4.1.

Lemma 6.1. Suppose that α ⊆ R and α ∈ Ik(X). Then α ∪ R(X) ∈ Ik(X).

Proof. It suffices to show that if a row i ∈ α is deleted from the matrix, the rows in R(X)

belong to the row-maximal optimal cover of the remaining zeros. If the deletion of row i
does not decrease the rank of the set of zeros, this is obvious. If on the other hand the
deletion of row i decreases the rank of the set of zeros, then i ∈ R(X), and the deletion
of this row from the row-maximal optimal cover obviously gives an optimal cover of the
remaining zeros.

Corollary 6.2. Let X be a matrix as above, and let Z be the set of zeros of X. Let (i, j) be
a site such that the set Z ′ = Z ∪ {(i, j)} has greater rank than Z. Let X ′ be a matrix whose
set of zeros is Z ′. Then if α is a set of rows, α ∈ Ik(X ′) iff α ∪ {i} ∈ Ik(X).

Proof. Since i ∈ R(X ′), this follows from Lemma 6.1.

Theorem 6.3. Let |R| = m and |C| = n. Let Z ⊆ R × C, and let R be the set of rows in
the row-maximal optimal cover of Z. Let X be a random R × C-matrix with the following
properties: Z is the set of zeros of X. The remaining entries in the rows in R have arbitrary
distribution on the nonnegative real numbers, allowing dependencies. For every i ∈ R\R
and j ∈ C, if (i, j) /∈ Z, X(i, j) is exp(‖i‖ ‖j‖)-distributed, and independent of all other
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matrix entries. Let k ≤ min(m, n). Suppose that row i0 has no zeros. Then the probability
that row i0 participates in a minimum k-assignment is

‖i0‖
∑
α⊆R

α∈Ik (X)
i0 /∈α

Pr(α)

‖α‖ . (7)

In our applications of this theorem, we are always dealing with standard matrices. How-
ever, to make the inductive proof go through, we must allow for arbitrary nonnegative values
of the nonzero entries in the rows in R. We first make a comment on how to interpret (7).

If A is a family of subsets of R, we let TR(A) denote the expected amount of time that the
urn process spends in A, that is, the expected amount of time for which the set of elements
that have been drawn in the urn process is a set that belongs to A. If R ∈ A, then TR(A) is
infinite. Otherwise it is given by the following formula.

Lemma 6.4.

TR(A) =
∑
α∈A

Pr(α)

‖α‖ .

Proof. If the urn process on R reaches the set α, then the expected amount of time until
another element is drawn from the urn is 1/‖α‖. Hence the expected amount of time that
the urn process spends in α is Pr(α)/‖α‖. The formula follows by summing these times
over all α ∈ A.

It follows that ∑
α⊆R

α∈Ik (X)
i0 /∈α

Pr(α)

‖α‖ = TR({α ∈ Ik(X) : i0 /∈ α}),

in other words, the second factor of (7) is the expected amount of time it takes until either
i0 is drawn, or the urn process reaches a set which is not in Ik(X).

At the same time, there is another natural interpretation of (7). If α ⊆ R and i0 /∈ α, then

Pr(α) · ‖i0‖
‖α‖

is the probability that the urn process reaches α, and that the next element to be drawn is
i0. Since for different sets α, these events are mutually exclusive, (7) is the probability that
i0 belongs to the first set in the urn process which is not in Ik(X).

Proof of Theorem 6.3. The proof is by induction over matrix reduction, according to
Lemma 5.5. The base of this induction is the case that X has a zero cost k-assignment.
In this case, the probability that row i0 participates in a minimum k-assignment is zero. So
is (7), since Ik(X) is empty. For the induction step, suppose that the statement holds for
all matrices with a larger set of independent zeros, or equally many independent zeros and
more rows in the column-maximal optimal cover.

Let X ′ be the reduction of X by the column-maximal optimal cover. Let Z ′ be the set of
zeros of X ′, and let R′ = R(X ′). We consider two cases, and we show that if we condition on
being in one of these two cases, the right-hand side of (7) gives the participation probability
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in each case. By Lemma 5.8, we do not have to distinguish between the probability that
row i0 intersects a minimum k-assignment in X and X ′ respectively.

1. All new zeros are in rows that belong to R. In this case we have rank(Z ′) = rank(Z),
and consequently R′ = R. It follows from Lemma 6.1 that a set of rows belongs to
Ik(X ′) if and only if it belongs to Ik(X). If we condition on Z ′, then X ′ satisfies the
criteria of the theorem. Hence by induction, the probability that row i0 participates in
a minimum k-assignment in X ′, or equivalently in X, is given by (7).

2. There is a new zero X ′(i, j) such that i /∈ R. Since X(i, j) has continuous distribution
and is independent of all other matrix entries, we may assume that X ′(i, j) is the only
new zero in X ′. Since the site (i, j) is not covered by any optimal cover of Z , we have
rank(Z ′) = 1 + rank(Z). Hence R′ ⊇ R ∪ {i}.

If i = i0, then every minimum k-assignment in X ′ must intersect row i0. Suppose, on the
other hand, that i 
= i0. If we condition on Z ′, then X ′ satisfies the criteria of the theorem.
Hence, by induction, the probability that i0 participates in a minimum k-assignment in X ′

is equal to

‖i0‖
∑
α⊆R

α∈Ik (X ′)
i0 /∈α

Pr(α)

‖α‖ .

By Corollary 6.2, α ∈ Ik(X ′) if and only if α ∪ {i} ∈ Ik(X). Therefore, if we condition on
being in case 2, the participation probability of row i0 is

‖i0‖ ·




1∥∥R∥∥ +
∑
i/∈R
i 
=i0

‖i‖∥∥R∥∥
∑
α⊆R

α∪{i}∈Ik (X)
i0 /∈α

Pr(α)

‖α‖


 . (8)

We have to show that the second factor is equal to TR({α ∈ Ik(X) : i0 /∈ α}). The sum

∑
α⊆R

α∪{i}∈Ik (X)
i0 /∈α

Pr(α)

‖α‖ (9)

is the expected amount of time that the urn process spends in sets α such that α∪{i} ∈ Ik(X)

and i0 /∈ α. Since this is independent of the time at which i is drawn, (9) is the expected
amount of time that the urn process spends in {α ∈ Ik(X) : i0 /∈ α}, given that the element i
is drawn at time zero. By Lemma 6.1, this amount of time is also independent of the times at
which the elements in R are drawn. Therefore, (9) is equal to the expected amount of time
that the urn process remains in {α ∈ Ik(X) : i0 /∈ α} after the element i has been drawn, if
we condition on i being the first element in R to be drawn.

We can now interpret the second factor of (8). The term 1/
∥∥R∥∥ is the expected amount of

time until the first element of R is drawn. The probability that this element is i is ‖i‖/∥∥R∥∥,
and therefore the second factor of (8) is equal to the expected amount of time that the urn
process spends in {α ∈ Ik(X) : i0 /∈ α}.
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7. A FORMULA FOR E[mink (X )]

In this section we prove the formula (6) for the expected cost of the minimum k-assignment.
We first cite a lemma that appeared in [10]. The case a = 1 is Theorem 2.2 of [11]. This
lemma is the reason why we are interested in the probabilities of certain matrix entries
occurring in a minimum assignment.

Lemma 7.1 ([10]). Let X be a random matrix where a particular entry X(i, j) ∼ exp(a)

is independent of the other matrix entries. Let X ′ be as X except that X ′(i, j) = 0. Then the
probability that (i, j) belongs to a minimum k-assignment in X is

a · (E[mink(X)] − E[mink(X
′)]).

Proof. We condition on all entries in X except X(i, j). Let Xt be the deterministic matrix
obtained by also conditioning on X(i, j) = t. Let f (t) = mink(Xt). Then either f is constant,
or f increases linearly up to a certain point after which it is constant. The key observation is
that f ′(t) = 1 if the site (i, j) belongs to a minimum k-assignment in Xt , and f ′(t) = 0 oth-
erwise (disregarding the possibility that t is equal to the point where f is not differentiable).
Therefore, if t ∼ exp(a), then the probability that (i, j) belongs to a minimum k-assignment
in Xt is equal to E[f ′(t)]. By partial integration,

E[f ′(t)] = a
∫ ∞

0
e−axf ′(x) dx = a

∫ ∞

0
d(e−axf (x)) + a2

∫ ∞

0
e−axf (x) dx

= −af (0) + aE[f (t)] = a · (E[mink(X)] − E[mink(X
′)]). (10)

Let X be a standard matrix with rows and columns indexed by the weighted sets R
and C. We introduce the notation

Fk(X) =
∑
α⊆R
β⊆C

α∪β∈Ik (X)

Pr(α)Pr(β)

‖α‖ ∥∥β
∥∥ .

Then (6) states that
E[mink(X)] = Fk(X). (11)

The proof is inductive, and closely parallels the proof in [11]. We first prove that (11) is
consistent with the row participation formula.

Lemma 7.2. Let X be a standard matrix where row i0 has no zeros. Let Xj be the matrix
obtained from X by setting the entry in position (i0, j) equal to zero. If E[mink(Xj)] = Fk(Xj)

for every j, then E[mink(X)] = Fk(X).

Proof. By Lemma 7.1, the probability that the site (i0, j) belongs to a minimum
k-assignment in X is

‖i0‖ ‖j‖ (E[mink(X)] − E[mink(Xj)]).
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By summing over j ∈ C we obtain the probability that row i0 participates in a minimum
k-assignment. Hence this sum is equal to the formula in Theorem 6.3:

‖i0‖
∑
j∈C

‖j‖ (E[mink(X)] − E[mink(Xj)]) = ‖i0‖
∑
α⊆R

α∈Ik (X)
i0 /∈α

Pr(α)

‖α‖ .

We drop the factors ‖i0‖ and solve for E[mink(X)]:

E[mink(X)] =
∑
j∈C

‖j‖
‖C‖E[mink(Xj)] +

∑
α⊆R

α∈Ik (X)
i0 /∈α

Pr(α)

‖α‖ ‖C‖ . (12)

We replace E[mink(Xj)] by Fk(Xj):

E[mink(X)] =
∑
j∈C

‖j‖
‖C‖

∑
α⊆R
β⊆C

α∪β∈Ik (Xj)

Pr(α)Pr(β)

‖α‖ ∥∥β
∥∥ +

∑
α⊆R

α∈Ik (X)
i0 /∈α

Pr(α)

‖α‖ ‖C‖ .

For α such that i0 ∈ α, the condition α ∪ β ∈ Ik(Xj) is equivalent to α ∪ β ∈ Ik(X).
Hence

E[mink(X)] =
∑
α⊆R
β⊆C
i0∈α

α∪β∈Ik (X)

Pr(α)Pr(β)

‖α‖ ∥∥β
∥∥ +

∑
α⊆R
i0 /∈α

∑
β⊆C

∑
j∈C

α∪β∈Ik (Xj)

‖j‖
‖C‖ · Pr(α)Pr(β)

‖α‖ ∥∥β
∥∥

+
∑
α⊆R

α∈Ik (X)
i0 /∈α

Pr(α)

‖α‖ ‖C‖ . (13)

We focus on the middle term. Since i0 /∈ α and the zero at position (i0, j) in Xj is the
only zero in its row, α ∪β can be extended to a (k − 1)-cover of Xj if and only if this can be
done by covering (i0, j) with a column, that is, if and only if α ∪ β ∪ { j} can be extended
to a (k − 1)-cover of X . Notice that this statement is true whether or not j ∈ β. Therefore,
the middle term can be written

1

‖C‖
∑
α⊆R
i0 /∈α

Pr(α)

‖α‖
∑
β⊆C
j∈C

α∪β∪{j}∈Ik (X)

‖j‖ Pr(β)∥∥β
∥∥ . (14)

In the inner sum, the contribution from those β and j for which j ∈ β is

∑
β⊆C

α∪β∈Ik (X)

‖β‖ Pr(β)∥∥β
∥∥ . (15)
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The contribution from the β and j for which j /∈ β is

∑
β⊆C

∑
j/∈β

α∪β∪{j}∈Ik (X)

‖j‖ Pr(β)∥∥β
∥∥ . (16)

If for every β ′ ⊆ C we group together those terms for which β ∪ {j} = β ′, we see that [for
nonempty β ′ such that α ∪ β ′ ∈ Ik(X)] these terms sum to Pr(β ′), since we are summing
the probabilities of obtaining β ′ in the urn process by first drawing the elements of β and
then drawing j. Hence (16) is equal to

∑
β 
=∅

α∪β∈Ik (X)

Pr(β) =
∑
β 
=∅

α∪β∈Ik (X)

∥∥β
∥∥ Pr(β)∥∥β

∥∥ . (17)

When we add (15) to (17), we get a factor ‖β‖ + ∥∥β
∥∥ = ‖C‖, which cancels the factor

1/‖C‖ in (14). Hence (14) is equal to

∑
α⊆R
i0 /∈α

∑
β⊆C
β 
=∅

α∪β∈Ik (X)

Pr(α)Pr(β)

‖α‖ ∥∥β
∥∥ . (18)

We substitute this into (13), and notice that the third term in (13) corresponds to α and
β such that i0 /∈ α and β = ∅. Hence the right-hand side of (13) equals Fk(X), as was to be
proved.

Secondly, we show that (11) is consistent with removing a column that contains at least
k zeros.

Lemma 7.3. Suppose that E[mink−1(Y)] = Fk−1(Y) for every standard matrix Y. Let X
be a standard matrix that has a column with at least k zeros. Then E[mink(X)] = Fk(X).

Proof. Suppose that X has at least k zeros in column j0. Let X ′ be the m by n − 1 matrix
obtained from X by deleting column j0. Since every (k−1)-assignment in X ′ can be extended
to a k-assignment in X by including a zero in column j0, we have

E[mink(X)] = E[mink−1(X
′)] =

∑
α⊆R

Pr(α)

‖α‖
∑
β⊆C′

α∪β∈Ik−1(X ′)

Pr(β)∥∥β
∥∥ , (19)

where C′ = C\{j0}. The inner sum is equal to TC′({β : α ∪ β ∈ Ik−1(X ′)}). Since there
are k zeros in column j0, every (k − 1)-cover of X must include j0. Therefore, if β ⊆ C′,
then α ∪ β ∈ Ik−1(X ′) if and only if α ∪ β ∈ Ik(X), and this in turn holds if and only if
α ∪ β ∪ {j0} ∈ Ik(X). Hence

TC′({β : α ∪ β ∈ Ik−1(X
′)}) = TC({β : α ∪ β ∈ Ik(X)}).

It follows that (19) equals

∑
α⊆R

Pr(α)

‖α‖
∑
β⊆C

α∪β∈Ik (X)

Pr(β)∥∥β
∥∥ = Fk(X).
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We are now in a position to prove that (11) holds whenever m is sufficiently large
compared to k.

Lemma 7.4. If X is a standard m by n matrix with m > (k−1)2, then E[mink(X)] = Fk(X).

Proof. By Lemmas 7.2 and 7.3, it is sufficient to prove that the statement holds when X has
at least one zero in each row, and no column with k or more zeros. In this case each column
can contain the leftmost zero of at most k −1 rows. Since there are more than (k −1)2 rows,
there must be at least k columns that contain the leftmost zero of some row. This implies
that there is a zero cost k-assignment in X , that is, E[mink(X)] = 0. Consequently, there is
no (k − 1)-cover, that is, Ik(X) = ∅. It follows that Fk(X) = 0.

Finally we prove that (11) holds also for smaller matrices by taking the limit as the
weights of the exceeding rows tend to zero. Remarkably, this argument can be found (in a
slightly different setting) in Theorems 5 and 6 of [4].

Theorem 7.5. If X is a standard matrix, then E[mink(X)] = Fk(X).

Proof. We prove this by downward induction on the number of rows. Suppose that X is a
standard m by n matrix. Let Xε be an augmented matrix of m + 1 rows and n columns, so
that the first m rows equal X , and the new row i0 has no zeros and weight ‖i0‖ = ε. We can
realize this by letting x1, . . . , xn be exp(1) variables, each independent of all the others and
of X, and letting Xε(i0, j) = xj/ε. For every X and x1, . . . , xn, mink(Xε) increases towards
mink(X) as ε → 0. By the principle of monotone convergence, it follows that

E[mink(X)] = lim
ε→0

E[mink(Xε)].

We have to show that F has the same property, that is, that Fk(Xε) converges to Fk(X) as
ε → 0. Let R′ = R ∪ {i0}. Then

Fk(Xε) =
∑
α⊆R′
β⊆C

α∪β∈Ik (Xε )

Prε(α)Pr(β)

‖α‖ε

∥∥β
∥∥ .

The subscripts indicate that Pr(α) and ‖α‖ depend on ε. If α ⊆ R, that is, α does not
contain i0, then α ∪β ∈ Ik(Xε) if and only if α ∪β ∈ Ik(X). As ε → 0, the probability that
i0 is the last row to be drawn in the urn process tends to 1. Therefore, Prε(α) converges to
PrR(α) and ‖α‖ε converges to ‖α‖R. Hence, in the limit ε → 0, the contribution from the
terms for which i0 /∈ α is Fk(X). If, on the other hand, i0 ∈ α, then Prε(α) → 0 as ε → 0.
Hence all the remaining terms tend to zero. This completes the proof.

ACKNOWLEDGMENT

The author has had many interesting discussions with Svante Linusson. Svante Janson very
carefully read and commented a draft of the paper.



A PROOF OF A CONJECTURE OF BUCK, CHAN, AND ROBBINS 251

References

[1] D. Aldous, Asymptotics in the random assignment problem, Probab. Theory Relat. Fields, 93
(1992), 507–534.

[2] D. Aldous, The ζ(2) limit in the random assignment problem, Random Structures Algorithms
18(4) (2001), 381–418.

[3] S. E. Alm and G. B. Sorkin, Exact expectations and distributions in the random assignment
problem, Combin Probab Comput 11(3) (2002), 217–248.

[4] M. W. Buck, C. S. Chan, and D. P. Robbins, On the expected value of the minimum assignment,
Random Structures Algorithms 21(1) (2002), 33–58.

[5] D. Coppersmith and G. B. Sorkin, Constructive Bounds and Exact Expectations For the Random
Assignment Problem, Random Structures Algorithms 15 (1999), 133–144.

[6] D. Coppersmith and G. B. Sorkin, On the expected incremental cost of a minimum assignment,
Contemporary mathematics Ed. B. Bollobás, Vol. 10 of Bolyai Society Mathematical Studies.
Springer, Berlin, 2002, pp. 277–288.

[7] M. X. Goemans and M. S. Kodialam, A lower bound on the expected cost of an optimal
assignment, Math Oper Res 18 (1993), 267–274.

[8] R. M. Karp, An upper bound on the expected cost of an optimal assignment, Discrete Algo-
rithms and Complexity: Proc Japan-U.S. Joint Sem, Academic Press, New York, 1987,
pp. 1–4.

[9] A. Lazarus, Certain expected values in the random assignment problem, Oper Res Lett 14
(1993), 207–214.

[10] S. Linusson and J. Wästlund, A generalization of the random assignment problem, arXiv:math.
CO/0006146.

[11] S. Linusson and J. Wästlund, A proof of Parisi’s conjecture on the random assignment problem,
Probab Theory Related Fields 128 (2004), 419–440.

[12] L. Lovász and M. D. Plummer, Matching theory, North-Holland, Amsterdam, 1986.

[13] M. Mézard and G. Parisi, Replicas and optimization, J Phys Lett 46 (1985), 771–778.

[14] C. Nair, B. Prabhakar, and M. Sharma, Proofs of the Parisi and Coppersmith-Sorkin conjectures
for the finite random assignment problem, Proc. IEEE FOCS, 2003, 168–178.

[15] B. Olin, Asymptotic properties of the random assignment problem, Ph.D. thesis, Kungl
Tekniska Högskolan, Stockholm, Sweden, 1992.

[16] G. Parisi, A conjecture on random bipartite matching, arXiv:cond-mat/9801176, 1998.

[17] D. W. Walkup, On the expected value of a random assignment problem, SIAM J Comput 8
(1979), 440–442.


