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Abstract

In the stochastic mean field model of distance, the edges of the
complete graph on n vertices are assigned independent identically dis-
tributed random lengths. We take these lengths from uniform distri-
bution on the interval [0, 1] and let Ln denote the minimum length of a
travelling salesman tour. It has been conjectured since the mid-1980’s
that Ln converges in probability to a certain number, approximately
2.0415. This conjecture has been supported by theoretical but non-
rigorous arguments building on methods of statistical physics, as well
as by extensive numerical simulation.

We prove this conjecture, and identify the limit constant as

1

2

∫ ∞

0
y(x) dx,

where y(x) is the positive solution to the equation

(1 + x/2) · e−x + (1 + y/2) · e−y = 1.

1 Introduction

1.1 The travelling salesman problem

The travelling salesman problem (TSP) is the prime example of an NP-hard
computational problem. A set of n points (cities) is given, and for each of

1



the n(n−1)/2 pairs of points there is a known distance, or cost of going from
one to the other. The task is to minimize the total length or cost of a tour,
that is, a cycle that visits each point once and returns to the starting point.

Although there is no hope of finding a computationally efficient complete
solution, there are good search heuristics, and several natural relaxations can
be solved in polynomial time. In an “ordinary” problem instance, one can
therefore find upper and lower bounds on the length of an optimal tour that
are quite close to each other. The solution of the lagrangian spanning tree
relaxation suggested by M. Held and R. Karp [13] or the 2-factor problem
[12] gives a lower bound on the cost of a tour, and often one can find a tour
(possibly non-optimal) which is only slightly longer [12, 14, 15, 17].

On the other hand, none of these bounds is good in the worst case. To
evaluate this kind of approach, it is better to study random problem in-
stances. A simple way of generating a problem instance is to take n points
randomly in the unit square by choosing their coordinates uniformly in [0, 1]
and then computing a table of the n(n − 1)/2 inter-point distances. On the
other hand, since there is little significance to the geometry in this context,
one can just as well use the random number generator directly to fill in the
entries of the distance table.

Both these approaches have been used for testing various heuristics for the
TSP, and both have subsequently become objects of research in themselves.
The first one is the Euclidean or random point model where the research
goes back to the classic paper [5] of Beardwood, Halton and Hammersley
from 1959. The theoretical properties of this model have been investigated
further in [14, 25, 26, 28].

The second is the so called mean field or random link model, where the
distances are chosen independently, and correlations arising from the geom-
etry (such as the triangle inequality) are eliminated. The distribution of the
distances can be chosen to model point-to-point distances in d-dimensional
space [8, 17, 20, 21, 22], but most progress has been made for uniform [0, 1]
or exponentially distributed distances, which correspond geometrically to the
one-dimensional case. In this paper we study only the d = 1 case. Whether
methods similar to those presented here are applicable for distributions cor-
responding to d > 1 remains an interesting open problem.
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1.2 Optimization problems in the mean field model

In 1979 D. Walkup [31] studied the assignment or bipartite matching problem
in the mean field setting. The edges of the complete graph Kn,n are assigned
independent uniform [0, 1] costs, and we let Cn denote the minimum total
cost of a perfect matching. Walkup showed that

E (Cn) ≤ 3

independently of n. This marks a shift of emphasis: The assignment problem
was already known to be solvable in polynomial time, and Walkup did not
consider the computational aspects of the problem. Instead the focus was on
the random model itself and the connections to the theory of random graphs.

In 1985 Alan Frieze [10] established an exact result for the large n limit
of the minimum spanning tree problem. Let Tn be the cost of the minimum
spanning tree on the complete graph Kn with independent uniform [0, 1] edge
costs. Frieze showed that as n → ∞,

E (Tn) → ζ(3) =
∞

∑

i=1

1

i3
≈ 1.202.

At the same time researchers in statistical physics realized that random
models of optimization problems, in particular minimum matching [20, 22,
23], and the TSP [16, 17, 21, 22, 24, 30] have many features in common with
the statistical mechanics of disordered systems.

1.3 Integral equations for the matching and travelling

salesman problems

In 1985, Marc Mézard and Giorgio Parisi [20, 23] studied the minimum
matching problem in the mean field model. Assuming that n is even, the
task is to find a minimum cost perfect matching, in other words a set of
edges of which each vertex is incident to exactly one. They found that a
certain so called order parameter function G satisfies the integral equation

G(x) =

∫ ∞

−x

e−G(y) dy, (1)

and that the ground state energy, that is, the cost of the minimum matching,
can be calculated as

E0 =
1

2

∫ +∞

−∞

G(x)e−G(x) dx. (2)
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Although their method was not rigorous, equation (1) has the explicit
solution G(x) = log(1 + ex), which gives the ground state energy π2/12.
It is not entirely clear what this means, but a reasonable interpretation is
that Mézard and Parisi conjectured that the cost of the minimum matching
converges in probability to π2/12.

For the TSP, similar results were obtained by W. Krauth and Mézard
[17] (see also [21, 22]). They found that the corresonding integral equation
for the TSP is

G(x) =

∫ ∞

−x

(1 + G(y))e−G(y) dy, (3)

and that in this case, the ground state energy is given by

E0 =
1

2

∫ +∞

−∞

G(x)(1 + G(x))e−G(x) dx. (4)

Although they could not find an explicit solution to (3), they computed an
approximate solution numerically by iteration, and obtained E0 ≈ 2.0415.
This result has been confirmed by extensive numerical simulation, see for
instance [6, 8, 24, 27].

For several problems of this type, it is natural to conjecture that the
limit cost for the complete bipartite graph Kn,n is twice the limit cost for
the complete graph Kn. In [23], a limit cost of π2/6 is conjectured for the
assignment problem studied by Walkup.

The π2/12 and π2/6 limits for the matching and assignment problems
were established rigorously by David Aldous [3, 4]. In [4], he arrived at the
recursive distributional equation

X
d
= min

i
(ξi − Xi), (5)

where ξ1 ≤ ξ2 ≤ . . . are the times of the events in a rate 1 Poisson process
and X1, X2, X3, . . . are independent variables of the same distribution as X.
The limit cost is obtained as

1

2

∫ ∞

0

x · Pr(X1 + X2 > x) dx, (6)

where X1 and X2 are independent variables taken from the distribution given
by (5). It was proved in [4] that the unique solution to (5) is the logistic
distribution. In [4] Aldous conjectured that the limit cost of the random
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TSP can be obtained in the same way. For the TSP, the corresponding
recursive distributional equation is

X
d
= min

i
[2](ξi − Xi), (7)

where min[2] denotes second-smallest. The conjectured limit cost is again
obtained by (6), but this approach has so far not been made rigorous for the
TSP. It is not known whether there is a unique solution to (7) or whether
the solution can be described explicitly.

1.4 Main theorem

We let Ln denote the length of the minimum tour in the mean field uniform
[0, 1] model. By a tour we mean a cycle that passes through each point
exactly once. It is worth pointing out that since the triangle inequality does
not hold in general, the minimum tour is not necessarily the shortest walk
that visits each point and returns to the starting point.

Our main result is that as n tends to infinity, Ln converges in probability
and in expected value to a certain number that we denote by L⋆. This number
is characterized analytically as

L⋆ =
1

2

∫ ∞

0

y(x) dx,

where y(x) is the positive solution to the equation
(

1 +
x

2

)

· e−x +
(

1 +
y

2

)

· e−y = 1,

see Figure 1.
In Maple, the function y(x) can be expressed as

y(x) = −LambertW(−1, (2e−x + xe−x − 2)e−2) − 2.

One can then directly evaluate L⋆ numerically as

L⋆ =
1

2

∫ ∞

0

[

−LambertW(−1, (2e−x + xe−x − 2)e−2) − 2
]

dx

≈ 2.04154818641213241804549016,

in agreement with the value given by Krauth and Mézard [17].
The paper is mainly devoted to the proof of the following theorem:

5



1 2 3 4

1

2

3

4

Figure 1: The curve (1 + x
2
)e−x + (1 + y

2
)e−y = 1.

Theorem 1.1.

E |Ln − L⋆| = O

(

(log log n)1/2

(log n)1/4

)

.

In particular, as n tends to infinity, ELn → L⋆ and Ln
p→ L⋆.

Corresponding results (convergence to 2L⋆ = 4.08 . . . ) have been obtained
by the author for the bipartite 2-factor and travelling salesman problems in
[32, 34].

The bound in Theorem 1.1 is quite weak and we conjecture that a much
sharper bound can be established. The main difficulty is bounding the num-
ber of cycles in the minimum 2-factor, which is used in the “patching” in
Section 8. As is explained in [12], if only one could prove that the number of
cycles in the minimum 2-factor is of order log n, then a much stronger result
can be obtained. We offer the following conjecture:

(Ln − L⋆)
√

n
d→ N(0, σ2),

for some σ2.

2 Adjustment of the problem setting

Part of what makes the problem difficult is that it is hard to make progress
by studying it for small n. If n = 3 there is only one tour. Therefore L3
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is a sum of three independent uniform [0, 1] variables. On the other hand
it seems almost hopeless to compute the distributions of L4 and L5, and it
probably would not give any valuable insights anyway. With that approach,
one becomes overwhelmed by computations before getting any feel for the
problem.

This situation has led several researchers to study the problem directly for
“very large” n. This idea is implicit both in the statistical physics approach
[16, 17, 21, 22, 30] and in the Poisson weighted infinite tree model [1, 2, 4],
see also [24]. The results mentioned in the previous section have been found
in these infinite models, in particular the value of L⋆ to four decimal places
in [17], but although the evidence is convincing, it is often difficult to make
the arguments rigorous.

Here we take the “finite n” approach, but we change the setting in several
ways in order to obtain a tractable model, from which we can finally recover
information about the original problem.

2.1 Simplifications

We simplify the problem in three ways.

• Poisson edge costs. The random graph model we work with is the
following: There are n vertices v1, . . . , vn, and between each pair of
vertices there is a countably infinite set of edges, whose costs are the
times of the events in a rate 1 Poisson process. These processes are
independent. In the travelling salesman problem, only the cheapest
edge between each pair of vertices is relevant (except for n = 2), but
we will study other optimization problems whose feasible solutions may
include multiple edges between the same pair of vertices. We let L̃n

denote the length of the minimum tour in this setting.

• 2-factor problem. Instead of working directly with the TSP, we study
the 2-factor problem, which is a relaxation of the TSP. A 2-factor is a
set of edges of which each vertex is incident to exactly 2. In other
words, it is a union of vertex-disjoint cycles. Since every tour is a 2-
factor, the cost of the 2-factor problem is a lower bound on the cost of
the TSP. We let Z̃n denote the length of the minimum 2-factor (under
Poisson edge costs).
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Another relaxation, the lagrangian 1-tree relaxation introduced by M.
Held and R. Karp [13], was used by Krauth and Mézard in [17]. These
authors believe that the lagrangian 1-tree has the same limit cost as the
TSP, a conjecture which is certainly worthy of further investigation.

• Expected value. Instead of trying to show directly that the distribu-
tion of Z̃n concentrates at the number 2.0415 . . . , we give upper and
lower bounds on EZ̃n. We then establish convergence in probability by
other methods.

The justification for these simplifications are mainly based on the papers
[29] by Michel Talagrand and [12] by Alan Frieze. We return to these issues
in Section 8. Another way of streamlining the problem is to study the mean
field TSP on the bipartite graph. This was done in [32, 34], but unfortunately
it is not easy to make these conclusions valid for the complete graph.

2.2 Generalizations

We generalize the Poisson weighted 2-factor problem to a broader class of
problems, for which we can establish upper and lower bounds on the expected
value by induction.

• Incomplete problems. We study incomplete problems of this type,
where we ask for the minimum cost of a so called k-flow, that is, a set
of k edges for which no vertex has degree more than 2 (by the degree of
a vertex v with respect to a particular set of edges we mean the number
of such edges incident to v).

• Flow problems. We generalize to problems where each vertex vi

has a given capacity ci ∈ N, that is, a specified maximum degree in
the solution. As long as we are only interested in the TSP, we only
need to consider problems where the capacities are 1 or 2, since these
are the only ones that occur as subproblems of the 2-factor problem,
but to begin with, we allow for arbitrary capacities. In this setting,
a flow is a set of edges for which no vertex has degree larger than its
capacity. A k-flow is a flow consisting of k edges, and whenever k is
small enough that there exists a k-flow, we can ask for the distribution
of the random variable Ck which denotes the minimum cost of a k-flow.
Our first objective is to obtain upper and lower bounds on ECk.

8



Remarks: Although the TSP is NP-complete, the flow problem is solvable
in polynomial time [18, 19]. However, we do not need this fact, as our method
is not based on the features of some particular algorithm for solving the
computational problem.

It can be argued that there is no reason that uniform [0, 1] edge costs
should be considered more interesting than exponential or Poisson edge costs.
Similarly, despite the history and vast literature on the TSP, it can be ques-
tioned whether the TSP is intrinsically more interesting than the 2-factor
problem. Indeed, I seem to be arguing that the adjusted problem setting
described above is more natural. We still state our main theorem for the
uniform [0, 1] TSP. The reason for this is twofold:

• It is of interest to show that the result (convergence in mean to the
explicit constant) is stable under minor changes of the problem setting,
and that therefore the limit L⋆ = 2.04... has the character of “universal
constant” for this type of problem.

• It is satisfying to be able to give an answer to a problem that has pre-
viously been studied by several researchers [16, 21, 22, 17] in precisely
the original setting.

3 The extended graph

We let ni be the number of vertices of capacity at least i. In this way, the
problem setting is completely specified by the numbers k and the essentially
finite sequence n1, n2, . . . . In principle, we allow for vertices of zero capacity,
although these are of course immaterial.

Suppose that k and n1, . . . nM are specified, where M is the maximum
capacity among the vertices. Naturally we assume that k is small enough to
allow for the existence of a k-flow. We let Ck(n1, . . . , nM) denote the cost of
the minimum k-flow in this graph.

We extend the graph by introducing an extra vertex vn+1 whose edges
have costs determined by Poisson processes of rate λ, where λ is a parameter
that will eventually tend to zero. We say that a vertex v participates in
a flow if the flow contains an edge incident to v. It turns out that the
probability that vn+1 participates in the minimum k-flow in the extended
graph is asymptotically proportional to λ as λ → 0. To be specific, we let
vn+1 have capacity 1 although for our purposes this does not matter. We
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let Pk(n1, . . . , nM) be the normalized probability that the extra vertex vn+1

participates in the minimum k-flow in the extended graph, in other words,

Pk(n1, . . . nM) = lim
λ→0

1

λ
P (vn+1 participates).

If v is an ordinary vertex of capacity i ≥ 1, then except in some cases
of probability O(λ2), the edge (vn+1, v) will participate in the minimum k-
flow if and only if its cost is smaller than Ck(n1, . . . , nM)−Ck−1(n1, . . . , ni −
1, . . . , nM), where the second term represents the minimum cost of a (k−1)-
flow with respect to the capacity function obtained by decreasing the capacity
of v by 1 to i − 1. Hence

Pk(n1, . . . , nM) = (n1 − n2)E (Ck(n1, . . . , nM) − Ck−1(n1 − 1, . . . , nM))

+ (n2 − n3)E (Ck(n1, . . . , nM) − Ck−1(n1, n2 − 1, . . . , nM)) +

...

+ nME (Ck(n1, . . . , nM) − Ck−1(n1, . . . , nM − 1))

= n1E (Ck(n1, . . . , nM)) − (n1 − n2)E (Ck−1(n1 − 1, . . . , nM))−
· · · − nME (Ck−1(n1, . . . , nM − 1)) . (8)

This means that if we would know Pk(n1, . . . , nM) for all values of k and
n1, . . . , nM , then we could recursively compute E (Ck(n1, . . . , nM)) through
the equation

E (Ck(n1, . . . , nM)) =
1

n1
Pk(n1, . . . , nM)

+
n1 − n2

n1
E (Ck−1(n1 − 1, . . . , nM))

+
n2 − n3

n1
E (Ck−1(n1, n2 − 1, . . . , nM)) +

...

+
nM

n1
E (Ck−1(n1, . . . , nM − 1)) . (9)

Our estimates of E (Ck(n1, . . . , nM)) are based on obtaining upper and
lower bounds on Pk(n1, . . . , nM).
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3.1 The oracle

In order to estimate Pk(n1, . . . , nM), we imagine that there is an oracle who
knows the costs of all edges, and that we can ask questions to the oracle
about the edge costs. We will construct a protocol for asking these questions
which is such that the answers determine whether or not vn+1 participates in
the minimum flow, and so that we can control the conditional distribution of
the edge costs, and thereby estimate the probability that vn+1 participates.

3.2 The nesting property

The following lemma describes a fundamental property of the minimum cost
flows. We let Fk be the minimum cost k-flow. We assume that the edge costs
are generic in the sense that Fk is uniquely determined for each k.

Lemma 3.1. For every k for which there exists a (k + 1)-flow, each vertex
is incident to at least as many edges in Fk+1 as in Fk. In other words, the
degree of a vertex with respect to Fk+1 is at least as large as the degree with
respect to Fk.

Proof. Let H = Fk△Fk+1 be the symmetric difference of the minimum k-
and (k + 1)-flows, that is, the set of edges that belongs to one of them but
not to the other. We decompose H into paths and cycles in the following
way: At each vertex v, if v has full degree in one of the two flows Fk and
Fk+1, then we pair up the edges (incident to v) of the other flow with these
edges. Thus H is decomposed into paths and cycles in such a way that the
symmetric difference of any of Fk and Fk+1 with the union of a number of
such paths and cycles is a flow.

By minimality and genericity, there can be no “balanced” such component
(that is, one that contains equally many edges from Fk as from Fk+1), since
this would imply that either Fk or Fk+1 could be improved upon. For the
same reason, there can be no two components which together are balanced.
The only remaining possibility is that H is a single path whose ends both
belong to Fk+1, which proves the statement.

Remarkably, it turns out that Lemma 3.1 is essentially the only thing we
need to know about the flow problem in order to obtain our results.
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4 A lower bound

The protocols for asking the questions to the oracle will be designed dif-
ferently depending on whether we are trying to obtain a lower or an upper
bound on Pk(n1, . . . , nM). The lower bound is the easier one, and in this
section we describe the protocol used for this purpose.

4.1 The protocol

We start with the extended graph on the vertices v1, . . . , vn, vn+1 and un-
known edge costs. We gather information about the edge costs by asking
questions to the oracle. At each stage, a certain set of vertices are exposed,
and the remaining vertices are unexposed. There is a number r which is up-
dated during the process. At each stage, all vertices with degree in Fr equal
to their capacity are exposed (and possibly some more vertices). We know
the following:

1. All the edges in Fr and their costs.

2. The costs of all edges between exposed vertices.

3. For each exposed vertex v, the minimum cost of the edges not in Fr

connecting v to an unexposed vertex.

4. The minimum cost of the edges not in Fr connecting two unexposed
vertices.

Notice that in 3 and 4, we only know the minimum cost, not the location
of the edge having this cost. We also assume that it can be verified from
the information at hand that Fr is indeed the minimum r-flow. Initially,
r = 0 and no vertex is exposed. At each stage of the process, the following
happens:

• We compute a potential minimum (r + 1)-flow under the assumption
that for all exposed vertices, their minimum cost edge to an unexposed
vertex go to different vertices. Actually this computation can be done
in polynomial time, but this fact is not needed here.

By Lemma 3.1, the minimum (r + 1)-flow will use at most two unex-
posed vertices. Hence either it contains the minimum cost edge con-
necting two unexposed vertices, or at most two of the minimum cost
edges connecting an exposed vertex to an unexposed one.
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• If the proposed minimum flow contains the minimum edge connecting
two unexposed vertices, then it must indeed be the minimum (r + 1)-
flow, and the value of r is increased by 1. We ask the oracle for the
location of this edge. If one or both of its endpoints reach their full
degree, that is, their degree in Fr+1 is equal to their capacity, then they
become exposed, and we ask the oracle for the further information that
is then required.

• Otherwise the proposed flow includes up to two edges from exposed
vertices to unexposed ones. Then we ask the oracle to reveal the un-
exposed endpoints of these edges. Unless there are two such edges and
they happen to have the same endpoint, which already has degree one
less than its capacity in Fr, the proposed flow is indeed the minimum
(r+1)-flow, and the value of r is increased. In this case, we again check
if some unexposed vertex reaches full degree in Fr+1, and if so, ask the
oracle for the further information required.

In case of a “collision” at a vertex of remaining capacity 1, the proposed
flow is not a flow. We then expose the vertex where the collision occurs,
and ask the oracle for the further information needed. We complete the
round of the process without updating the value of r.

4.2 Estimate of the probability that vn+1 participates

We wish to estimate the probability that vn+1 participates in the minimum
k-flow. Suppose that at a given stage of the process, there are m ordinary
(that is, not counting vn+1) unexposed vertices, and that vn+1 is not exposed.
There are two cases to consider.

Suppose first that an edge between two unexposed vertices is going to be
used. The total rate of the edges between unexposed vertices is

(

m

2

)

+ O(λ)

and the total rate of the edges from vn+1 to the other unexposed vertices is
λm. Hence, neglecting higher order terms, the probability that vn+1 is one
of the two endpoints of the minimum edge is

λm
(

m
2

) =
2λ

m − 1
.
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Secondly, suppose that up to two edges from exposed to unexposed ver-
tices are going to be used. If there are two such edges, then we may assume
that their unexposed endpoints are revealed one at a time, with a coin flip
deciding which one to be revealed first. If the first unexposed endpoint has
remaining capacity 1, then this vertex will be exposed immediately. In case
there is a collision, this will then be discovered immediately.

If there are m ordinary remaining unexposed vertices, then the total rate
of the edges from a particular exposed vertex v to them is m+λ, and conse-
quently the probability that vn+1 is the other endpoint of the minimum edge
from v is (again neglecting smaller terms)

λ

m
.

This will hold also for the second edge of two at one stage of the process,
provided m denotes the number of remaining unexposed vertices at that
point.

4.3 The urn process

In order to obtain a lower bound on the probability that vn+1 participates in
the minimum k-flow, we model the process above by a process where balls
are drawn from an urn, an idea that was introduced in the study of the
random assignment problem in [7]. There are n balls of weight 1, one for
each ordinary vertex. There is also a ball labeled vn+1 of infinitesimal weight
λ. We will consider processes where balls are drawn from the urn under
various rules for replacement.

When a ball is drawn from the urn, it is drawn at random with proba-
bilities proportional to the weights. This means that if at a given moment
there are m ordinary balls in the urn, together with the ball labeled vn+1,
then each ordinary ball has probability 1/m + O(λ) of being drawn, and the
ball vn+1 has probability λ/m + O(λ2).

We design a process where the probability of ever drawing the ball vn+1

is at most as large as the probability that vn+1 participates in the minimum
k-flow. Basically this process is as follows: Balls are drawn one at a time
from the urn. The balls drawn from the urn are put back into the urn until
they have been drawn a number of times equal to their capacity, that is, the
capacity of the corresponding vertex. Then they are removed.
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It is clear that this perfectly models the second case above. The un-
exposed endpoint of the minimum unexposed edge from an exposed vertex
is chosen in the same way as a ball from the urn, uniformly except with
infinitesimal probability λ/m for the ball vn+1.

The first case can be modeled by allowing an adversary to draw two balls
from the urn without putting the first ball back before drawing the second
one (but then removing them or putting them back according to the usual
rule). In this case, the ordinary balls are drawn with uniform distribution on
the

(

m
2

)

pairs of balls, while the ball vn+1 has total probability

λ

m
+

λ

m − 1

of being drawn. Since
λ

m
+

λ

m − 1
<

2λ

m − 1
,

the ball vn+1 has smaller probability of being drawn in the urn process. Hence
the urn process gives a lower bound on the probability that vn+1 participates
in the minimum k-flow.

If we measure the rank of the process of finding the minimum k-flow by
counting all exposed vertices according to their capacity, and the unexposed
vertices according to their degree in the minimum r-flow, then if the vertex
vn+1 is chosen before the process reaches rank 2k, then it must participate in
the minimum k-flow (the converse does not hold since exposed vertices may
have degree one less than their capacity). This means that the probability
of drawing the ball vn+1 among the first 2k balls in the urn process is a
lower bound on the probability Pk(n1, . . . , nM) that vn+1 participates in the
minimum k-flow.

We now pass to a continuous time version of the urn process. In this
version, each ball is popping out of the urn at times governed by a Poisson
process of rate equal to the weight of the ball (as long as we put the ball
back into the urn each time it pops out). Equivalently, each time we put
the ball back into the urn, it will stay there for an amount of time which is
exponentially distributed and independent of everything else in the process.

Lemma 4.1. Let Tl(n1, . . . , nM) be the expected time until l balls have been
drawn in the urn process provided that balls are replaced immediately and
according to capacities given by n1, . . . , nM . Then

Pk(n1, . . . , nM) ≥ T2k(n1, . . . , nM).
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Proof. In the continuous time version, the probability that the ball vn+1 is
drawn among the first 2k balls is (neglecting higher order terms) λ times the
expected amount of time until 2k balls have been drawn (ignoring the ball
vn+1 itself, which anyway just has an infinitesimal influence).

4.4 The two-dimensional urn process

We now use Lemma 4.1 and the results of Section 3 to obtain a lower bound
on ECk(n1, . . . , nM). We do this by introducing a two-dimensional version
of the urn process. In this version, there are two independent urn processes
on the vertices. The two processes take place in two independent directions
along the x- and y-axes in a two-dimensional time plane. For each vertex vi,
we let Pi(x) be the number of times that the vertex vi has been drawn in the
first process (the x-process) up to time x. Similarly, Qi(y) is the number of
times that vi has been drawn in the second urn process up to time y. We
define the rank of the process for the single vertex vi at time (x, y) by

Ranki(x, y) = min(Pi(x), ci) + min(Pi(x) + Qi(y), ci). (10)

Then the total rank of the process is defined by

Rank(x, y) =
n

∑

i=1

Ranki(x, y).

We let Rl = Rl(n1, . . . , nM) be the region in the positive quadrant of the
x-y-plane for which Rank(x, y) < l.

Theorem 4.2.

E (Ck) ≥ E (area(R2k)) .

Proof. Let x0 be the time at which the first ball is drawn in the x-process.
Then the expected area of the part of R2k that lies in the strip 0 < x < x0 is

1

n1
T2k(n1, . . . , nM)

which by Lemma 4.1 is smaller than or equal to

1

n1
Pk(n1, . . . , nM),
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which is the first term in the right hand side of (9).
The probability that the first ball to be drawn has capacity i is

ni − ni+1

n1

,

and if this happens, then by induction, the expected area of the remaining
part of R2k (for which x > x0) is smaller than or equal to

E (Ck−1(n1, . . . , ni − 1, . . . , nM)) .

5 An upper bound

When we derive the upper bound, we modify the protocol for asking questions
to the oracle. Again we assume that there are n vertices v1, . . . , vn, each with
a given capacity ci, and we let M be the maximal capacity. Moreover, we
assume for convenience that

2k ≤
∑

i

ci − M.

Although this does not hold in the 2-factor problem, it is easy to extend
the upper bound to the remaining cases by ad hoc methods, see Lemma 5.5
below.

5.1 The protocol

As before, we ask questions to the oracle in order to successively find the
minimum r-flow for r = 1, . . . , k. Fr denotes the minimum r-flow. We let
Γr be the set of vertices vi of full degree, that is, of degree equal to their
capacity ci in Fr. In each stage, the following information is known to us:

1. The edges of Fr and their costs.

2. The costs of all edges between vertices in Γr.

3. The costs of a further set of edges arising from collisions (see below).
These are edges from a vertex in Γr to a vertex of remaining capacity
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1, that is, whose degree in Fr is one less than its capacity. Each such
edge is the cheapest edge not in Fr from its endpoint in Γr to a vertex
outside Γr. In particular, from each vertex in Γr there is at most one
such edge.

4. For each v ∈ Γr, the cost of the cheapest edge from v other than the
edges already specified in 2 and 3, to a vertex outside Γr.

5. The cost of the cheapest edge not specified under 2 or 3 between two
vertices not in Γr.

Notice that in 4 and 5, it is only the costs that are known to us, not the
locations of the edges of these costs.

Just as for the lower bound, we now compute, using this information,
the minimum cost of an (r + 1)-flow under the assumption that there is no
collision. By Lemma 3.1, Fr+1 is obtained from Fr by switching an alternating
path starting and ending at vertices (possibly the same) outside Γr.

We then ask the oracle whether our proposed flow is actually a flow. If
it is, then it is the minimum (r + 1)-flow. The only reason it may not be a
flow is that the two endpoints of the alternating path may go to the same
vertex, and this vertex may already have degree (in Fr) only one less than
its capacity.

If the oracle tells us that this is the case, then we ask the oracle to
reveal to us the location of the collision. The colliding edges must then
be the minimum edges (not in Fr) from their respective endpoints in Γr to
vertices outside Γr. We further ask the oracle about the minimum cost of the
remaining edges from these two vertices. Then we repeat the process until
the oracle tells us that no collision takes place.

5.2 Estimate of the probability that vn+1 participates

When the oracle tells us that the proposed (r + 1)-flow is valid, there are a
number of possibilities.

• Fr+1 is obtained from Fr by adding the cheapest edge not in Fr between
two vertices not in Γr. In this case, the probability that this edge is
incident to vn+1 is

mλ
(

m
2

) =
2λ

m − 1
,
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where m is the number of ordinary vertices not in Γr.

• The alternating path ends in two unknown vertices. Then since we are
conditioning on the event that there is no collision, the probability that
one of the endpoints of the alternating path is vn+1 is at most

2mλ

m2 − m
=

2λ

m − 1
.

• The alternating path has one end consisting of an edge whose cost is
known according to (3) above. Then we are conditioning on the event
that the other endpoint is another vertex. The probability that the
other endpoint is vn+1 is

λ

m − 1
.

• The alternating path ends in two known edges. The probability that
vn+1 participates is zero.

Again this can be modeled by the urn process. This time we design the
urn process so that the probability of drawing the ball vn+1 is at least as
large as the probability that vn+1 participates in the minimum k-flow.

Basically, the process will still be the same, each vertex is represented by
a ball, and balls are drawn at random from the urn with the rule that a ball
is removed when it has been drawn a number of times equal to its capacity.
However, in order to model the various cases above, we imagine an adversary,
who is now trying to maximize the probability of ever drawing the ball vn+1.

We allow the adversary to perform the following operations:

• At any time, to choose to draw an ordinary ball (of his choice) of
remaining capacity 1. This corresponds to the last of the cases above,
when one or two edges from earlier collisions are used in the minimum
(r + 1)-flow.

• At any time, to block a certain ball from being drawn, that is, temporar-
ily keep it from being drawn, and instead choose uniformly between the
other balls. This has two functions: Firstly, by blocking a randomly
chosen ball, our adversary can increase the probability of drawing the
ball vn+1 as the first of two balls in a pair from λ/m to λ/(m − 1), in
order to correctly model the first case above. Secondly, by blocking the
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first ball in a pair from immediately being drawn again, our adversary
is allowed to draw two balls without replacement.

Again we pass to a continuous time model. The adversary is now allowed,
at the start of the process, or immediately after a ball has been drawn, to
draw any number of balls of remaining capacity 1, and then to block one ball
from being drawn until the next time a ball is drawn. After the next time, he
may choose to block another ball. The goal of the adversary is to maximize
the expected time until 2k balls have been drawn.

Obviously our adversary cannot gain anything from voluntarily drawing
a ball of remaining capacity 1 from the urn. Either this ball would later have
been drawn anyway, or it wouldn’t. Since this does not influence the times
at which the other balls are drawn, the time until 2k balls are drawn cannot
increase because the adversary chooses to draw a ball.

We therefore only have to consider the second possibility, that is, that
our adversary blocks a ball of his choice from being drawn. The following
lemma shows that there is a simple optimal strategy for the adversary. Let
Uk(n1, . . . , nM) be the expected amount of time until k balls have been drawn,
with an optimal blocking strategy from an adversary who wishes to maximize
the time.

Lemma 5.1. The best strategy for our adversary is to consistently block a
ball of maximal remaining capacity. Equivalently (supposing that ni > 0 for
1 ≤ i ≤ M),

Uk(n1, . . . , nM) = Tk(n1 − 1, . . . , nM − 1).

To prove this, we first establish another lemma.

Lemma 5.2. If i ≤ j, then

Tk(n1, . . . , ni − 1, . . . , nM) ≥ Tk(n1, . . . , nj − 1, . . . , nM).

Proof. We have

Tk(n1, . . . , ni − 1, . . . , nM) =

1

n1
+

n1 − n2

n1
Tk−1(n1 − 1, n2, . . . , ni − 1, . . . , nM) + . . .

+
ni − ni+1

n1
Tk−1(n1, . . . , ni − 2, . . . , nM) + . . .

+
nM

n1
Tk−1(n1, . . . , ni − 1, . . . , nM − 1). (11)
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There may be non-decreasing (and therefore impossible) sequences of ar-
guments here, but these terms will have coefficient zero. If we expand
Tk(n1, . . . , nj − 1, . . . , nM) in the same way, then by induction it is clear
that the desired inequality holds termwise.

Proof of Lemma 5.1. If we expand Uk(n1, . . . , nM) recursively, then we ob-
tain

Uk(n1, . . . , nM) =
1

n1 − 1
+

n1 − n2

n1 − 1
Uk−1(n1 − 1, . . . , nM) + . . .

· · · + nM

n1 − 1
Uk−1(n1, . . . , nM − 1)

− 1

n1 − 1
min

i
(Uk−1(n1, . . . , ni − 1, . . . , nM)) . (12)

We therefore have to show that Uk−1(n1, . . . , nM − 1) is minimal among
Uk−1(n1, . . . , ni − 1, . . . , nM). Suppose first that nM ≥ 2. Then by induction

Uk−1(n1, . . . , nM − 1) = Tk−1(n1 − 1, . . . , nM − 2)

and

Uk−1(n1, . . . , ni − 1, . . . , nM) = Tk−1(n1 − 1, . . . , ni − 2, . . . , nM − 1).

The inequality now follows from Lemma 5.2. If on the other hand nM = 1,
then by induction,

Uk−1(n1, . . . , nM−1) = Tk−1(n1 − 1, . . . , nM−1 − 1)

and

Uk−1(n1, . . . , ni − 1, . . . , 1) = Tk−1(n1 − 1, . . . , ni − 2, . . . , nM−1 − 1).

Here obviously

Tk−1(n1 − 1, . . . , nM−1 − 1) ≤ Tk−1(n1 − 1, . . . , ni − 2, . . . , nM−1 − 1),

since the expected time until k − 1 balls have been drawn cannot increase
because some of the capacities are increased.

This gives the following upper bound on Pk(n1, . . . , nM):
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Lemma 5.3.

Pk(n1, . . . , nM) ≤ T2k+M(n1, . . . , nM).

Proof. Obviously the time until 2k balls have been drawn when the adversary
blocks a ball of capacity M is not longer than the time until 2k + M balls
have been drawn in the ordinary urn process.

Lemma 5.3 gives the following upper bound on the expected cost of the
minimum flow:

Theorem 5.4.

ECk(n1, . . . , nM) ≤ Earea(R2k+M(n1, . . . , nM)).

Proof. This is proved in the same way as Theorem 4.2.

Remark: It is now clear why we have assumed that 2k ≤
∑

i ci − M .
Otherwise the region R2k+M has infinite area.

5.3 An ad hoc result

We here insert a simple argument showing that we can use Theorem 5.4 to
obtain an upper bound also for the 2-factor problem. The method we use
here gives a bound which is far from the best possible, but it is quite simple.
If all vertices have capacity 2, then Theorem 5.4 above gives an upper bound
on the expected cost of an (n − 1)-flow.

Lemma 5.5. Suppose that all vertices have capacity 2. Then

ECn − ECn−1 = O

(

(log n)1/2

n1/2

)

. (13)

We take a graph with Poisson edge costs and randomly colour the edges
with two different colours, say red and blue. We let the red edges have rate
c and the blue edges have rate 1− c, where the value of c will be chosen later
as a function of n. We take the minimum (n−1)-flow on the blue edges, and
let x0 and y0 be the vertices that do not have full degree in this (n− 1)-flow
(possibly x0 = y0). We then choose distinct vertices x1, y1, x2, y2, . . . , xp, yp

such that there are edges connecting xi and yi in the minimum (n− 1)-flow,
and p ≥ n/3 (this is always possible, the worst case is when the minimum
(n−1)-flow consists mainly of cycles of length 3). We then use the red edges
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to complete an assignment of x0, . . . , xp to y0, . . . , yp, regarding the edges
(xi, yi) as zero-cost edges. This can be done at cost

O

(

log n

cn

)

,

see for instance [9]. This produces a 2-factor of expected cost at most

ECn−1 + O(c) + O

(

log n

cn

)

.

By taking c = (log n)1/2/n1/2, we obtain (13).

6 The limit region for the 2-factor problem

In the following, we focus on the 2-factor problem and its “incomplete” re-
laxations, that is, flow problems for which the capacity of each vertex is 2.
It turns out that for large n, the region R2n will have a shape that with
high probability is close to a particular “limit region”. In Section 7 we state
and prove this more precisely. Here we outline the argument and the result
non-rigorously. The expected area of R2n is a lower bound for E (Cn) (the
cost of a 2-factor) and an upper bound for E (Cn−1). Hence by Lemma 5.5
we can use it as an approximation for the expected cost of a 2-factor.

From (10), the average rank of a vertex at time (x, y) is found to be

E (Ranki(x, y)) = 4 − 2e−x − xe−x − xe−x−y − 2e−x−y − ye−x−y.

The boundary of the limit region is where this is equal to 2, that is, when
(

1 +
x

2

)

e−x +

(

1 +
x + y

2

)

e−x−y = 1.

By the area preserving linear change of variable z = x + y, we see that the
area of this region is equal to the area of the region given by

(

1 +
x

2

)

e−x +
(

1 +
z

2

)

e−z ≥ 1, 0 ≤ x ≤ z,

in the x-z-plane. The area is therefore

1

2

∫ ∞

0

y(x) dx,

where y(x) is the positive solution to the equation (1 + x/2)e−x + (1 +
y/2)e−y = 1. This is the number L⋆ defined in the introduction.
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7 Estimate of the size of the region R

In this section, we assume that no vertex has capacity greater than 2. Similar
estimates can be obtained under weaker assumptions stating that the maxi-
mum capacity is not too large compared to n, but we are mainly interested
in applications to the random TSP.

Suppose that l, n1 and n2 are given, and that n = n1, that is, there are
no vertices of zero capacity. We wish to estimate the expected area of the
random region R = Rl(n1, n2) given by the points (x, y) for which

Rank(x, y) < l.

Recall that the rank is defined by

Rank(x, y) =
n

∑

i=1

Ranki(x, y),

where Ranki(x, y) = min(Pi(x), ci) + min(Pi(x) + Qi(y), ci).
We must assume that l ≤ n1 + n2, since otherwise the region R will have

infinite area. We let R⋆ = R⋆
l (n1, n2) be the non-random region given by

E (Rank(x, y)) ≤ l.

Our goal is to obtain the following upper bound on the difference between
the area of R⋆ and the expected area of R:

Theorem 7.1. If no vertex has capacity greater than 2, then

|E (area(R)) − area(R⋆)| = O

(

(log n)3/2

n1/2

)

.

This will immediately give the following estimate of the expected cost of
a 2-factor:

Corollary 7.2.

EZ̃n = L⋆ + O

(

(log n)3/2

n1/2

)

.

Proof. The area of the corresponding region R⋆
2n is equal to L⋆ independently

of n. By (13), the expected difference between the minimum 2-factor and
the minimum (n − 1)-flow is smaller than the stated error term.
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The rest of this section is devoted to the proof of Theorem 7.1. We first
estimate the area of the part of R that lies inside a rectangle with sides [0, 2]
and [0, 2 log n]. This rectangle will be called the basic rectangle. We will
make use of the following Chernoff type bound, whose proof we omit.

Lemma 7.3. Suppose that X = X1 + · · · + Xn is a sum of n independent
variables that take the values 0 or 1. Let δ > 0. Then

P (X − E (X) ≥ δ) ≤ e−δ2/2n.

The expected area of R is the same thing as the double integral over the
positive quadrant of the probability that the point (x, y) belongs to R. We
estimate the integral over the basic rectangle.

For nonnegative x and y, let θi(x, y) be the number of vertices for which
Ranki(x, y) ≥ i. Then

Rank(x, y) = θ1(x, y) + θ2(x, y) + θ3(x, y) + θ4(x, y).

We fix x and y, and let ε > 0. If Rank(x, y) deviates by at least εn
from its expected value, then one of θi(x, y) for i = 1, . . . , 4 must deviate
by at least εn/4 from its expected value. Since each θi(x, y) is a sum of n
independent 0-1-variables, the probability for this is by Lemma 7.3 at most

4e−ε2n/32.

We choose ε so that

e−ε2n/32 =
1

n2
,

that is, we put

ε =
8(log n)1/2

n1/2
.

We divide the basic rectangle into three parts according to whether (for
a point (x, y)), E (Rank(x, y)) is smaller than l − εn, between l − εn and
l + εn, or greater than l + εn.

In the first region, the probability that a point belongs to R is at least
1 − 4/n2 while in the third region this probability is at most 4/n2. We now
bound the area of the middle region. We have

d

dx
E (Rank(x, y)) ≥ d

dx

n
∑

i=1

E min(Pi(x), ci).
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For each i,

d

dx
E min(Pi(x), ci) =

(

1 + x +
x2

2!
+ · · · + xci−1

(ci − 1)!

)

e−x

is decreasing, and the minimum value occurs when ci = 1. Therefore

d

dx
E (Rank(x, y)) ≥ ne−2

inside the basic rectangle.
It follows that for a fixed y, the width of the middle region at height y is

at most
2nε

ne−2
= 2e2ε =

16e2(log n)1/2

n1/2
.

Hence the area of the middle region is at most

32e2(log n)3/2

n1/2
.

We conclude that the expected area of the part of R that lies inside the
basic rectangle deviates from the area of the part of R⋆ that lies in the basic
rectangle by at most

O

(

(log n)3/2

n1/2

)

+ O

(

log n

n2

)

= O

(

(log n)3/2

n1/2

)

. (14)

Next we estimate the area of the part of R⋆ that lies outside the basic
rectangle. R⋆ lies entirely within the region x < 2. For a single vertex,
the remaining capacity at time y, that is, the capacity minus the number of
times the ball has been drawn, is larger when the capacity is larger. For this
estimate, we may therefore assume that all vertices have capacity 2.

The average rank of a single process at time y is
∫ y

0

(1 + t) · e−t dt,

since the rank increases every time the ball is drawn and it is the first or
second time it is drawn. Therefore the expected remaining capacity at time
y is

∫ ∞

y

(1 + t) · e−t dt = (2 + y) e−y. (15)
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Hence the area of the part of R⋆ that lies outside the basic rectangle is at
most

e2

∫ ∞

2 log n

(2 + y)e−y dy = e2 · 3 + 2 log n

n2
,

which is smaller than (14).
It follows that the expected area of the part of R that lies inside the basic

square deviates from the area of R⋆ by at most

O

(

(log n)3/2

n1/2

)

.

Lemma 7.4. Let X be the expected area of the part of R that lies inside the
basic rectangle. Let p be the probability that the process along the x-axis is
not completed at time x = 2. Let q be the probability that the process along
the y-axis is not completed at time y = 2 log n. Then

E (area(R)) ≤ X(1 + p + p2 + . . . )(1 + q + q2 + . . . ) =
X

(1 − p)(1 − q)

= X(1 + O(p) + O(q)) = X + O(p) + O(q), (16)

as p, q → 0.

Proof. We divide the positive quadrant of the x-y-plane into rectangles of
size 2×2 log n. We obtain an upper bound on E (area(R)) by assuming that
whenever we pass to a new rectangle and the urn process is not completed,
we restart the process.

We now show that with high probability the region R will be inside the
basic rectangle.

Lemma 7.5.

E min(Pi(2), ci) ≥ (1 − e−1)ci >
5

8
ci.

Proof. We divide the interval [0, 2] into ci subintervals of length at least 1,
and then count the number of intervals that contain some event of the Poisson
process.
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Consequently

E (Rank(2, 0)) ≥ 5

4
n ≥ l +

n

4
.

If
θ2(2, 0) + θ4(2, 0) < l/2,

then either θ2(2, 0) or θ4(2, 0) must be smaller by at least n/16 than its
expected value. Since each θi(2, 0) is a sum of n independent 0-1-variables,
by Lemma 7.3 the probability for this is at most

2e−n/512.

Next we turn to the process along the y-axis. The probability that there
is some ball that is not drawn at least 2 times up to time y is at most

n(1 + y)e−y =
1 + 2 log n

n
, (17)

if y = 2 log n. Hence the bounds on p and q are both better than

O

(

(log n)3/2

n1/2

)

.

Theorem 7.1 and Corollary 7.2 follow.

8 Uniform edge costs, the TSP, and conver-

gence in probability

We now return to the original problem, to prove that Ln converges in prob-
ability to L⋆.

8.1 A bound on the cost of the most expensive edge

in the minimum 2-factor

We now consider the 2-factor problem on the complete graph Kn. We let the
random variable α be the cost of the most expensive edge in the minimum
2-factor. In [12], Alan Frieze proved the following bound, showing that α is
with high probability of order log n/n. Frieze considered uniform [0, 1] edge
costs, but his argument is equally valid for exponential edge costs.
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Lemma 8.1 (Frieze [12]). For all n and all sufficiently large ζ,

P

(

α ≥ ζ log n

n

)

≤ n−ζ/4.

Proof. It follows from the last equation in the proof of Lemma 7 of [12] that
there is an absolute constant A such that for every ζ and every n,

P

(

α ≥ ζ log n

n

)

≤ n−ζ/3+A.

If ζ ≥ 12A, then n−ζ/3+A ≤ n−ζ/4.

Corollary 8.2.

E (α) = O

(

log n

n

)

.

8.2 Talagrand’s bound on the variance

In [29], M. Talagrand developed a quite general and powerful method for
bounding the fluctuations of certain random variables occurring in product
spaces. As one of many applications, he gave what was at the time the best
known upper bound on the variance of the cost of the assignment problem.
We quote Theorem 8.1.1 of [29], or rather the special case used in Section 10
on the assignment problem. Let v > 0 and let Y1, . . . , YN be independent
random variables with arbitrary distribution on the interval [0, v]. Let

Z = min
β∈F

∑

i≤N

βiYi,

where F is a family of vectors in R
N (in our case the βi’s are nonnegative,

but Talagrand’s theorem holds without this assumption). Let

σ2 = max
β∈F

∑

i≤N

β2
i .

Moreover, let µ be a median for the random variable Z.

Theorem 8.3 (Talagrand 1995). For every w > 0,

P (|Z − µ| ≥ w) ≤ 4 exp

(

− w2

4σ2v2

)

.
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When we apply this theorem to the random 2-factor problem, the βi’s will
be equal to 1 or 2, where the coefficients that are equal to 2 come from the
possibility of using multiple edges. A 2-factor contains n edges, and although
the coefficients βi cannot all be equal to 2, for simplicity we use the bound
σ2 ≤ 4n.

If we take v = 1, the resulting bound will be too weak to be inter-
esting. We therefore modify the problem by replacing the edge costs Y by
min(Y, ζ log n/n). Let µζ be a median of the cost Zζ in the modified problem.
It now follows from Theorem 8.3 with v = ζ log n/n that for all w > 0,

P (|Zζ − µζ| ≥ w) ≤ 4 exp

(

− w2n

16ζ2(log n)2

)

,

and consequently by Lemma 8.1, for all sufficiently large ζ ,

P (|Z − µζ| ≥ w) ≤ 4 exp

(

− w2n

16ζ2(log n)2

)

+ n−ζ/4.

By taking

ζ =
w2/3n1/3

4 log n
,

we obtain

P (|Z − µζ| ≥ w) ≤ 5 exp

(

−w2/3n1/3

16

)

.

The requirement that ζ should be sufficiently large is equivalent to assum-
ing that w is at least a certain constant times n−1/2(log n)3/2. We therefore
introduce yet another parameter t and put

w =
t(log n)3/2

n1/2
.

We can then conclude that for all sufficiently large t,

P

(

|Z − µζ | ≥
t(log n)3/2

n1/2

)

≤ 5 exp

(

−t2/3 log n

16

)

. (18)

A small remaining problem is that for a fixed n, µζ depends on t. Equation
(18) therefore only says that for every t, there is some interval of length
2tn−1/2(log n)3/2 that contains Z with probability at least

1 − 5 exp(−t2/3 log n/16).
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Since we demand that t be larger than some absolute constant, we may
assume that 5 exp(−t2/3 log n/16) < 1/2. In this case the interval must also
contain the median µ of Z. We can therefore conclude that for sufficiently
large t,

P

(

|Z − µ| ≥ 2t(log n)3/2

n1/2

)

≤ 5 exp

(

−t2/3 log n

16

)

. (19)

Here it is clear that the right hand side tends to zero rapidly enough
to give a O(log n)3/2/n1/2 bound on the standard deviation of Z. Since
Z = Z̃n = Cn is the cost of the minimum 2-factor, we obtain the following
bounds.

Theorem 8.4.

var(Z̃n) = O((log n)3/n).

Moreover,

E
(

(Z̃n − L⋆)2
)

= O((log n)3/n).

Proof. It follows from (19) that

E
(

(Z̃n − µ)2
)

= O

(

(log n)3

n

)

,

and this is clearly an upper bound on the variance. By coincidence, our bound
on the standard deviation happens to be of the same order as the bound on
∣

∣

∣
EZ̃n − L⋆

∣

∣

∣
obtained from Theorem 7.1 and Corollary 7.2. Therefore also

the second statement follows.

Remark: This bound on the variance would be valid also for the assign-
ment problem (Frieze’s proof of his Lemma 7 would be valid, and the details
actually simpler), and would therefore constitute an improvement over Tala-
grand’s O((logn)4/(n(log log n)2) bound. The reason that we get a sharper
bound is that we are using Frieze’s bound in Lemma 8.1 which is better by a
factor log n than the corresponding bound used by Talagrand in [29]. How-
ever, these details are not important. An exact formula for the variance in
the assignment problem (with exponential edge costs) was obtained in [33],
but Talagrand’s Theorem 8.3 of course has a much wider scope.
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8.3 Uniform versus exponential edge costs

We can now prove that it makes only little difference if instead we take the
edge costs to be uniformly distributed in the interval [0, 1]. We let Z and
Z̃ be the cost of the minimum 2-factor given uniform [0, 1] and exponential
edge costs respectively. Since the mapping

x 7→ − log(1 − x) = x +
x2

2
+

x3

3
+ · · · ≥ x

transforms a uniform [0, 1] random variable x to an exponential random
variable, it is clear that Z is stochastically dominated by Z̃. We therefore
only have to establish a lower bound on E (Z).

Again let α be the cost of the most expensive edge in the minimum 2-
factor, this time under uniform [0, 1] edge costs. Then the transformation
x 7→ − log(1 − x) will give a 2-factor of cost at most

log(1 − α)

α
Z,

in the exponential cost setting, thereby showing that

Z̃ ≤ log(1 − α)

α
Z =

(

1 +
α

2
+

α2

3
+ . . .

)

· Z

≤
(

1 + α + α2 + . . .
)

· Z =
Z

1 − α
. (20)

Hence
Z ≥ (1 − α) Z̃.

It follows that EZ = EZ̃ − E
(

αZ̃
)

. Here E
(

αZ̃
)

= E (α)E
(

Z̃
)

+

cov(α, Z̃). We can use the inequality

cov(α, Z̃) =
var(α) + var(Z̃) − var(α − Z̃)

2
≤ var(α) + var(Z̃)

2
.

Moreover, since α has support in [0, 1], we have var(α) ≤ E (α). Combining
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all this, we get

EZ = EZ̃ − E
(

αZ̃
)

= EZ̃ − E (α)E
(

Z̃
)

− cov(α, Z̃)

≥ EZ̃ − E (α)E
(

Z̃
)

− var(α) + var(Z̃)

2

≥ EZ̃ − 1

2
varZ̃ − E (α)

(

1

2
+ EZ̃

)

. (21)

We have already established that var(Z̃) = O((log n)3/n), and E (α) =
O(log n/n), and of course EZ̃ = O(1). We therefore conclude that Corol-
lary 7.2 and Theorem 8.4 are valid also in the uniform [0, 1] setting:

Theorem 8.5. Let Zn be the cost of the minimum 2-factor in the complete
graph with independent [0, 1] edge costs. Then

EZn = L⋆ + O

(

(log n)3/2

n1/2

)

,

and

var(Zn) = O

(

(log n)3

n

)

.

8.4 The TSP versus the 2-factor problem

In [12], Alan Frieze studied the relation between the 2-factor problem and
the TSP on the complete graph Kn with uniform [0, 1] edge costs. With our
notation, Ln is the length of the minimum tour and Zn is the length of the
minimum 2-factor. Frieze proved that

Ln − Zn = o(1) whp as n → ∞. (22)

When the edge costs are known, Zn is computable in polynomial time.
In [12], Frieze showed that with high probability, the minimum 2-factor can
be “patched” to a tour at small extra cost, and that this can be done in
polynomial time. Hence a polynomial time algorithm will produce a tour
that with high probability is not much worse than the minimum tour.

At the time of Frieze’s paper, very little had been established rigorously
about the asymptotic distribution of Zn. Theorem 8.5 fills this gap.

We quote the following high probability bound from [34], although similar
and possibly better bounds have been established eslewhere.
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Lemma 8.6.

E
(

(Ln − 4ζ(2))+
)

= O

(

(log n)3/4

n1/4

)

, as n → ∞.

Proof. In [34], this was proved for the bipartite graph Kn,n. It is of course
still valid in the complete graph Kn if n is even, since we can then choose
an arbitrary bipartition of the vertices. If n is odd, we can first construct a
tour containing n − 1 vertices, and finally insert the last vertex in the tour
with the method used in the proof of Lemma 5.5.

Together with (22) and Theorem 8.5 this already shows that

E |Ln − L⋆| → 0.

We finally establish a bound on the rate of convergence similar to the one in
[34].

Lemma 8.7. With a failure probability of O(1/ logn), the minimum 2-factor
contains at most n0.7 cycles of length at most

log n

3 log log n
.

Proof. We estimate the number of cycles of size at most k with no edge
longer than (log n)2/n (in the whole graph, without regard to the minimum
2-factor). The expected number of such cycles is at most

k
∑

l=1

(n!)

(n − l)!
· (log n)2l

n2l
≤ k(log n)2k.

We now take

k =
log n

3 log log n
.

Then the expected number of cycles of length at most k is at most

log n

3 log log n
· (log n)2 log n/(3 log log n)

=
log n

3 log log n
· exp

(

2 log n

3 log log n
· log log n

)

=
log n

3 log log n
· n2/3 = O(n0.7).

(23)
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8.5 Simple path extension

A technical obstacle is that if we condition on the minimum 2-factor, the costs
of the remaining edges in the graph will no longer have the same distribution.
To overcome this, we use the same method as in the proof of Lemma 5.5. We
randomly “colour” the edges with different colours. Here we let the edges be
of four types that we label I, II, III, IV. The edges of type I have rate 1− 3c
and the edges of types II, III, IV have rate c each, where c is dependent on
n and will be chosen later. In any case, c will tend to zero as n → ∞. We
also give the edges of type II, III, IV a random orientation. Our strategy is
to find the minimum 2-factor on the edges of type I, and then use the other
edges to “patch” the cycles of this 2-factor to a tour. Throughout, we allow
a failure probability of O(1/ logn), which is actually much smaller than we
need in order to establish Theorem 1.1.

We show that with high probability, the edges of type II can be used to
turn the minimum 2-factor into a set of edges consisting of one long path,
and o(n/ log n) cycles, at o(1) extra cost.

We consider the minimum 2-factor on the type I edges. We assume that
this 2-factor satisfies the conclusion of Lemma 8.7, that is, there are fewer
than n0.7 cycles of size at most log n/(3 log log n).

Now we use the type II edges to connect most of these cycles by what we
call simple path extension. We start with an arbitrary vertex u0 and choose
the shortest type II edge directed from u0 to a vertex u1 in a different cycle.
Then we let u2 be a vertex adjacent to u1 in this cycle, and connect u2 to
a vertex in yet another cycle by choosing the shortest type II edge directed
from u2, and so on.

We continue this process until the number of vertices that are not con-
nected to the path is at most

n

(log n)1/2
.

We estimate the total cost of the simple extension phase. The total number
of cycles in the minimum 2-factor is at most

n0.7 + O

(

n log log n

log n

)

= O

(

n log log n

log n

)

.

This is an upper bound on the number of steps in the simple extension phase.
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Figure 2: Simple path extension.

The expected cost of each step is at most

O

(

(log n)1/2

cn

)

.

Hence the expected total cost of the simple extension phase is

O

(

log log n

c(log n)1/2

)

.

8.6 Expander theorem

The final phase of turning the 2-factor into a tour uses the type III and IV
edges. We are going to use the seven cheapest type III edges directed away
from each vertex. These edges will be called rotation edges. It turns out that
with failure probability O(1/ logn) (actually much less), the set of rotation
edges has a certain good expander property.

Definition 8.8. If S is a set of vertices, then we let S ′ be the set of vertices
that are connected to S by a directed rotation edge.

The expander property we want to obtain is the following: For every set
S of vertices with |S| ≤ n/8, we have |S ′| ≥ 4 |S|. The following theorem can
be established with the same method as the proof of Theorem 4.6 of [34].

Theorem 8.9 (Expander theorem). With failure probability O(1/ logn), the
set of rotation edges has the desired expander property.
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Figure 3: Rotation of the main path.

8.7 Rotation phase

When we enter the rotation phase, we assume that there is a path that
contains all but O(n/(logn)1/2) vertices, and that these remaining vertices
constitute at most

3n log log n

(log n)3/2

cycles. We also assume that the rotation edges constitute a set with the good
expander property. We will show that each of the remaining cycles can be
absorbed into the path by using O(log n) rotation edges possibly together
with one type IV edge.

The rotation operation is carried out as follows (see Figure 3). Let P be
a path, and let a be one of its endpoints. If there is a rotation edge from a
to another vertex b in P , then by replacing one of the edges from b by this
edge, we obtain a new path (on the same set of vertices) with one of the
neighbours a′ of b as endpoint. The operation can then be iterated by using
rotation edges from a′.
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Let End0 = {a}, and let Endi be the set of vertices in V that can become
enpoints of the path by performing at most i rotations. If for a particular
value of i fewer than n/8 vertices belong to Endi, then by the expander
property, either there is a rotation edge from one of the vertices of Endi to
a vertex outside P , or there are at least twice as many vertices in Endi+1 as
in Endi.

This shows that the size of Endi will grow exponentially with i until either
there is a rotation edge to a vertex outside P , or at least one eighth of the
vertices in P can become enspoints of the main path by performing at most
i rotations.

In the former case, we can extend the main path by using rotation edges
only. In the latter case, we pick one of the cycles outside the main path, and
connect it to the main path by using the cheapest type IV edge from this
cycle to one of the possible endpoints of the main path.

Finally, after absorbing all the remaining cycles into the main path, we
turn this path into a tour by performing the same operation once more, this
time treating the other endpoint of the main path as the cycle to be absorbed.

8.8 Estimate of the cost of the TSP

We can now complete the proof of Theorem 1.1. We first estimate the cost
of the 2-factor on the type I edges, and the path extension phase. The type
I edges have density 1 − 3c, and we solve the minimum 2-factor problem for
these edges. The expected cost of this is

L⋆

1 − 3c
= L⋆ + O(c),

and the variance is of order (log n)3/n. The standard deviation is of order
(log n)3/2/n1/2, and therefore we can afford to let the algorithm fail if the
cost of the minimum 2-factor is larger than L⋆/(1 − 3c) + (log n)5/2/n1/2.

We now turn to the cost of the rotation phase. There are

O

(

n log log n

(log n)3/2

)

steps, and each step uses O(log n) rotation edges. Each rotation edge has
expected cost O(1/(cn)). This gives a total expected cost of

O

(

log log n

c(log n)1/2

)
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for the rotation edges. This is the same as the cost of the simple extension
phase. The type IV edges will cost only O(1/(cn)) each, so the cost of these
edges can be absorbed into this term.

Summing up, the expected cost of |Ln − L⋆|, given that the algorithm
succeeds, is bounded by

O(c) + O

(

(log n)5/2

n1/2

)

+ O

(

log log n

c(log n)1/2

)

.

To minimize this, we let c be the solution to the equation

c =
log log n

c(log n)1/2
,

that is, we let

c =
(log log n)1/2

(log n)1/4
.

This gives the error term

O

(

(log log n)1/2

(log n)1/4

)

.

The extra contribution from the cases of failure is, by Lemma 8.6, only
of order O(1/ logn). This completes the proof of Theorem 1.1.

As is explained in [12], there is reason to believe that the difference be-
tween Ln and Zn is in general at most of order (log n)2/n, which is much
smaller than the standard deviation of Zn (this has been established for the
asymmetric TSP in [11]).
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[22] Mézard, Marc and Parisi, Giorgio, Mean-field equations for the matching
and the travelling salesman problems, Europhys. Lett. 2 (1986) 913–918.
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