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We explore a similarity between then by n random assignment problem and the random shortest path problem
on the complete graph onn + 1 vertices. This similarity is a consequence of the proof of the Parisi formula for
the assignment problem given by C. Nair, B. Prabhakar and M. Sharma in 2003.

We give direct proofs of the analogs for the shortest path problem of some results established by D. Aldous in
connection with hisζ(2) limit theorem for the assignment problem.
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1 Introduction
The purpose of this article is to bring together some resultson random assignment and shortest path
problems, and to clarify how they relate to each other. In particular, we investigate the consequences of
the two very different and hard proofs of theζ(2) limit theorem for the random assignment problem given
by David Aldous [1] and by Chandra Nair, Balaji Prabhakar andMayank Sharma [11].

The random shortest path problem had already been investigated by Svante Janson [6] (and has recently
been further studied by R. Van der Hofstad, G. Hooghiemstra and P. Van Mieghem [4; 5]). By putting the
papers [11] and [6] side by side, one can see that there is a close connection between these two random
optimization problems.

By establishing this connection we show that some results ofAldous [1] must hold also for the shortest
path problem. Actually these properties are easier to establish directly for the shortest path problem, and
by doing so we obtain, via the results of [11], new independent proofs of Aldous’ results.

2 Random assignment problems
Then by n exp(1) assignment problem can be defined as follows: The entries of ann by n matrix are
independent exp(1) random variables. Anassignmentis a set ofn matrix positions, such that each row
and column contains exactly one of them. Thecostof the assignment is the sum of these matrix entries.

A random variable that has been studied for a long time is the minimum costCn of an assignment.
In 1979 D. Walkup [15] showed thatE (Cn) remains bounded asn → ∞. It was conjectured by Marc
Mézard and Giorgio Parisi [8; 9; 10] that asn → ∞,

E (Cn) →
π2

6
. (1)

In her PhD thesis [13] in 1992, Birgitta Olin gave further evidence for the Mézard-Parisi conjecture by
simulation, and proved an asymptotic lower bound of1.51. From her simulations, she made the interesting
observation that in about half of the rows of the matrix, the smallest entry in the row is also the one that
participates in the minimum assignment. She investigated this further, and discovered what we will call
the2−i-law:

Theorem 1 Let the ordered sequence of entries in a particular row of thematrix bex1 ≤ x2 ≤ · · · ≤ xn.
Then for each positive integeri, the probability thatxi participates in the minimum assignment converges
to 2−i asn → ∞.

In 2001, the limit (1) was proved by David Aldous [1]. In the same paper, he also gave a proof of
Theorem 1.

3 Exact formulas
In 1998, Parisi suggested another way of proving (1). He conjectured in [14] that for everyn, E (Cn) is
given by the exact formula

E (Cn) = 1 +
1

4
+

1

9
+ · · · +

1

n2
. (2)

This conjecture was verified simultaneously and independently in 2003 by Chandra Nair, Balaji Prabhakar,
and Mayank Sharma [11], and by Svante Linusson and the author[7]. The Linusson-Wästlund proof gives,
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as a by-product, an exact formula for thei = 1 case of the2−i law. It is proved in [7] that the probability
that the smallest entry in a row participates in the minimum assignment is

1

2
+

1

2n
. (3)

Naturally one can ask whether there are similar exact formulas fori ≥ 2, but the approach taken in
[7] does not seem to give any information about this. We show that from the proof of (2) given by Nair,
Prabhakar and Sharma, one can deduce not only the formula (3), but also exact results for the higher
values ofi, allowing a new proof of Theorem 1. In particular, we show that the probability that the second
smallest entry in a row participates in the minimum assignment is given by the formula (4) below.

It is quite remarkable that although the three proofs of (1) given in [1; 7; 11] are very different, they all
give thei = 1 case of Theorem 1 as a by-product, and two of them allow proofsof the full theorem.

4 The shortest path in a random graph
It is tempting to try to find a simple explanation of the formula (3). It seems as if with probability1/n, the
smallest entry will participate “just by chance”, and if this is not the case, then with probability exactly
1/2, it will participate anyway because it is smallest.

There is another type of random minimization problem where precisely this situation occurs. This is the
problem of the minimum length path between two vertices in the complete graph, where the edge lengths
are chosen independently from exp(1)-distribution.

We consider this problem on the complete graphKn+1 on n + 1 verticesv0, . . . , vn. We choose two
verticesv0 andvn and ask for the probability that the shortest edge fromv0 belongs to the shortest path
from v0 to vn. If “by chance” the shortest edge fromv0 happens to go directly tovn, then this is of course
also the shortest path tovn. Suppose therefore that the shortest edge fromv0 goes to another vertex, say
v1. Then we can subtract the length of the edge(v0, v1) from the lengths of all edges fromv0, including
the one tov1. In this new problem, the edge(v0, v1) has zero length, but all other edge lengths are still
independent and exp(1)-distributed. Since every path fromv0 to vn contains exactly one edge fromv0, the
same amount has been subtracted from all of them, so the shortest path will still be the same. Moreover,
it is clear by symmetry that the probability that the edge(v0, v1) belongs to the shortest path fromv0 to
vn is exactly1/2, since this happens if and only if without using the edge(v0, v1), the distance fromv1

to vn is shorter than the distance fromv0 to vn. It follows that the participation probability of the shortest
edge fromv0 is given by (3).

This leads to the question whether the participation probability of the i:th shortest edge fori ≥ 2 is also
the same in the two problems. We show that this is the case. Moreover, we give an independent proof that
the2−i-law holds also for the shortest path problem, thereby obtaining a new proof of Theorem 1.

5 Combining the results on shortest paths and minimum assign-
ments

The shortest path problem was studied in detail by Svante Janson [6] in 1999 and more recently by
R. Van der Hofstad, G. Hooghiemstra and P. Van Mieghem [4; 5].We first give a short account of some
of Janson’s results, and now we consider the complete graphKn onn vertices.
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Janson used thefirst passage percolationmodel, where an infection starts at a root vertex, which we
now take to bevn, and spreads through each edge with exp(1) rate. It is easilyobserved that the length
of the minimum path fromvn to another vertexvj is equal to the time at whichvj is infected. If, at a
certain moment,k vertices are infected, then the time until the next vertex isinfected isexp(k(n − k))-
distributed, since there arek(n−k) edges that connect an infected vertex to a non-infected one.Moreover,
these waiting times are independent.

Let t1, . . . , tn be the ordered sequence of distances from the vertexvn to all the vertices of the graph,
includingvn itself. Equivalently,t1, . . . , tn are the times at which a new vertex gets infected. Thent1 = 0,
and the incrementstk+1 − tk are independent, withtk+1 − tk ∼ exp(k(n − k)).

In [11], the proof of the Parisi conjecture (2) is based on a result on minimum assignments in certain
submatrices, with a remarkable similarity to Janson’s results on minimum paths. In ann−1 byn matrix of
independent exp(1) entries, consider the costs of the minimum assignments in then submatrices obtained
by deleting one of the columns. LetT1, . . . , Tn be the ordered sequence of these costs. The following
theorem was proved by Nair, Prabhakar and Sharma [11]:

Theorem 2 The incrementsTk+1 − Tk are independent, andTk+1 − Tk ∼ exp(k(n − k)).

This is a quite deep theorem, and as we explain in Section 9, itis relatively simple to prove that the
Parisi formula (2) follows from it. It has the consequence that we can couple the randomn − 1 by n
matrix with the edge lengths inKn in such a way thatTk = T1 + tk for everyk. Suppose now that we
introduce another vertexv0 with independent exp(1) edge lengthsx1, . . . , xn to then verticesv1, . . . , vn,
and that we extend then − 1 by n matrix by another row with independent exp(1) entriesX1, . . . , Xn.
Then we can couple then by n matrix with the edge lengths inKn+1 in such a way thatXk = xk for
everyk, and the entryXk participates in the minimum assignment if and only if the edge of lengthxk

participates in the minimum path fromv0 to vn. This is because the minimum assignment in the matrix
consists of an entryXi together with the minimum assignment in the matrix obtainedby deleting column
i in the originaln − 1 by n matrix, and similarly the shortest path fromv0 to vn in the complete graph
consists of an edge(v0, vi) (here possiblyi = n) together with the shortest path fromvi to vn.

6 Proof of the 2−i-law for the shortest path problem
In the percolation model, we now let the infection start at the vertexv0, and spread to the vertices
v1, . . . , vn by rate 1 through every edge. If we do not care about the actualtimes that the infection
spreads, we can think of this as a process in discrete time, where at each step, an edge is chosen uniformly
among all edges that connect an infected vertex to a non-infected one. The infection spreads through this
edge, and the edges that are chosen in this way form a tree thatgrows fromv0 and eventually reaches all
vertices.

Instead of fixing another vertex, sayvn, and asking for the probability that thei:th shortest edge fromv0

belongs to the shortest path fromv0 to vn, we ask for the expected number of vertices amongv1, . . . , vn

whose shortest path fromv0 starts with thei:th shortest edge. This is of course the same thing apart from
a factorn. The following lemma shows that it suffices to show that the2−i-law holds in the discrete
percolation model.

Lemma 1 If we fixi and letn → ∞, then with high probability, thei:th edge grown from the rootv0 in
the percolation model is also thei:th shortest edge fromv0.
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Proof: We have to show that with high probability, thei shortest edges from the root are also the shortest
paths to the vertices they go to. This follows easily from theresults of Janson [6]. The typical distance be-
tween two randomly chosen vertices in the complete graph is aboutlog n/n, and moreover the probability
that the distance is smaller than, say,log n/(2n) tends to zero asn → ∞. Therefore with high probability
in the limit n → ∞, thei shortest edges from the root are all of length smaller thanlog n/(2n), and for
none of them there is a shortcut, that is, some other path of smaller length to the same vertex. 2

We can now give a proof of the2−i-law for the shortest path problem. By the coupling described in the
previous section, this gives a new proof of Theorem 1.

Theorem 3 Let the edges of the complete graph on the verticesv0, . . . , vn have independentexp(1)
lengths. Let the ordered sequence of edge lengths from the vertex v0 bex1 ≤ x2 ≤ · · · ≤ xn. Then for
each positive integeri, the probability that the edge of lengthxi participates in the shortest path fromv0

to vn converges to2−i asn → ∞.

Proof: We letmi be the number of vertices that are reached from the root through thei:th edge grown
from the root in the percolation model (andmi = 0 if there are fewer thani such edges). By symmetry,

E (m1) =
n + 1

2
,

since the root and the vertex reached in the first step of the percolation are competing on equal terms for
the remaining vertices. Similarly, fori ≥ 2, if k is the number of vertices that are not reached through any
of the firsti − 1 edges from the root, then conditioning onk > 0 we have

E (mi) =
k + 1

2
,

while obviouslymi = 0 if k = 0. By induction oni it follows that for fixedi, asn → ∞, we have

E (mi) =
n

2i
+ O(1),

where the error term comes from the probability thatmj = 0 for somej < i. Therefore the probability
that a given vertex, sayvn, is reached through thei:th edge from the root is

2−i + O(1/n).

In view of Lemma 1, this completes the proof. 2

7 An exact formula for the second shortest edge
We prove an exact formula for the probability that the secondsmallest matrix entry in a row participates
in the minimum assignment, or equivalently, that the secondshortest edge from the root participates in
the shortest path to a particular vertex. However, since this formula turns out to be quite complicated, our
conclusion is that the formula is in itself of limited interest.
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We consider the percolation process described earlier, andcondition on the numberi of vertices apart
from the root that are infected before the second edge is grown from the root. The probability that this
number is equal toi is given by

1

i(i + 1)
.

Given that this happens, the vertex connected to the root by the second edge from the root will compete
for the remaining vertices on equal terms among thei + 2 vertices that are infected at this stage. Hence
the expected number of vertices that are reached through thesecond edge from the root is

1 +
n − i − 1

i + 2
.

It remains to find the probability that the second edge grown from the root in the percolation process is
also the second shortest edge from the root. LetYi = ti+1 − ti be the times between the infections of
new vertices. The first edge grown from the root has lengthY1. Theni − 1 more vertices are infected
through this edge, and the lengths of the edges from the root to these vertices, sayv2, . . . , vi, areY1 +
Y2 +Z2, Y1 +Y2+Y3 +Z3, . . . , Y1+ · · ·+Yi +Zi, whereZ1, . . . , Zi are exp(1) variables, independent of
everything else. The next edge to spread the infection is thesecond edge from the root, which has length
Y1 + · · · + Yi+1.

In order for this edge to be the second shortest of the edges from the root, first of allYi+1 must be the
smallest of the numbersZ2, . . . , Zi, Yi+1. Conditioning on this is equivalent to conditioning on the event
Yi+1 = 0. Given this, we can exclude the edge of lengthY1 + · · ·+ Yi + Zi, and thenYi must be smallest
of the numbersZ2, . . . , Zi−1, Yi and so on. SinceYi is exponential of ratei(n − i + 1), the probability
for all this is

i−1
∏

j=1

(i + 2 − j)(n − i − 1 + j)

i − j + (i + 2 − j)(n − i − 1 + j)
.

Consequently, the probability that the second shortest edge fromv0 belongs to the shortest path fromv0

to vn is given by

1

n

n−1
∑

i=1

1

i(i + 1)

(

1 +
n − i − 1

i + 2

) i−1
∏

j=1

(i + 2 − j)(n − i − 1 + j)

i − j + (i + 2 − j)(n − i − 1 + j)
. (4)

For i = 2, 3, 4, 5 this evaluates to1/4, 19/72, 89/336 and2639/10000. The formula (4) can possibly
be simplified slightly, but it seems more interesting to try to obtain a better understanding of the connection
between the assignment and the shortest path problem in thisprobabilistic model.

8 Aldous’ function h(x)
The proof of (1) given by Aldous in [1] is based on the solutionof the recursive distributional equation

X = min(ξi − Xi), (5)

whereξi are the times of the events in a rate 1 Poisson process, andXi are independent variables of the
same distribution asX . It is proved that thelogisticdistribution given by

P (X < x) =
1

1 + e−x
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is the unique solution to this equation. Then (1) is deduced from the following theorem:

Theorem 4 Let x be a positive real number. Whenn → ∞, the probability that a matrix entry partici-
pates in the minimum assignment given that it is equal tox/n, converges to a certain functionh(x) which
is given by

h(x) = P (x < X1 + X2),

whereX1 andX2 are independent random variables of logistic distribution.

Moreover, it is shown that

h(x) =
e−x(e−x − 1 + x)

(1 − e−x)2
.

Theorem 4 (which was conjectured already in [8]) seems to be out of reach for the method employed in
[7], but again we give a new and independent proof by showing that the same result holds for the shortest
path problem.

It follows from Janson’s results [6] that the shortest path from v0 to another vertexvi in the complete
graph onn+1 verticesv0, . . . , vn is t = Y1 + · · ·+Yk, whereY1, . . . , Yn are independent and for everyi,
Yi is exponential of ratei(n + 1− i), andk is chosen uniformly on1, . . . , n independently ofY1, . . . , Yn.
If vj is another vertex, then the difference∆t in distance tovi andvj is a sumYk+1+· · ·+Yl, wherek and
l are chosen uniformly and (if we allowi = j to hold with probability1/n) independently on1, . . . , n.
Here the sum should be interpreted in the obvious way as a negative sum ifk > l.

At this point we allow ourselves to be a little imprecise and just say that unlessk or l is very close to
1 or n, the sum of the deviations of the variablesYk+1, . . . , Yl from their means will most likely be small
compared to the impact that the choices ofk andl have on the value of∆t. To find the suitably normalized
limit distribution of∆t we may therefore replace the variablesY1, . . . , Yn by their mean values. Hence

∆t ≈
1

(k + 1) · (n − k)
+ · · · +

1

l · (n + 1 − l)
.

We can approximaten · ∆t by the integral

∫ β

α

dx

x(1 − x)
,

whereα andβ correspond to the limitsk andl of summation, and are therefore independent and uniform
on the interval[0, 1]. This integral can be written

∫ β

1/2

dx

x(1 − x)
−

∫ α

1/2

dx

x(1 − x)
.

It is therefore the difference of two independent equally distributed random variables whose distribution
can be found as follows:

∫ α

1/2

dx

x(1 − x)
=

∫ α

1/2

(

1

x
+

1

1 − x

)

dx = log α − log(1 − α).
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Moreover,

P (log α − log(1 − α) < x) = P

(

α

1 − α
< ex

)

= P

(

α <
ex

1 + ex

)

=
ex

1 + ex
=

1

1 + e−x
.

Hencen · ∆t converges in distribution to the difference of two independent logistic variables. Since the
logistic distribution is symmetric, this is the same thing as the sum of two independent logistic variables.
Notice however thatn(t−E (t)) does not converge to a logistic variable, since there will bea considerable
impact onnt coming from the fluctuations inYi for small i. It is only the difference in distance that
converges to the difference of two independent logistic variables.

Now we can prove the analog of Theorem 4 for the shortest path problem. Letvi andvj be two arbitrary
vertices in the complete graph onn + 1 verticesv0, . . . , vn. Consider the shortest paths from these two
vertices to the vertexv0. A priori, it is highly unlikely that the edge connectingvi to vj will belong to any
of them, since this single edge will normally have length much greater thanlog n/n, the expected distance
to v0. If we now fix a positive real numberx, and condition on the edge(vi, vj) having lengthx/n, then
the probability that it belongs to the shortest path connecting vi to v0 is the same as the probability that
x/n < ∆t, in other words thatx < n · ∆t. As n → ∞, this converges to Aldous’ functionh(x).

The limit (1) can now be established as in [1] by computing theintegral
∫

∞

0

x · h(x) dx =
π2

6
,

or as in [11] by first establishing the Parisi formula (2).

9 The Parisi formula
We can derive the Parisi formula (2) by showing that the expected length of the first edge in the shortest
path between two given vertices inKn+1 is

1

n

(

1 +
1

4
+

1

9
+ · · · +

1

n2

)

. (6)

Since we know that this is the same thing as the expected cost of the entry in the first row in the minimum
assignment, (2) follows. We here point out that this followsfrom some recent results of R. Van der
Hofstad, G. Hooghiemstra and P. Van Mieghem [4; 5]. These authors studied theshortest path tree(SPT)
in the complete graph with independent exp(1) edge lengths.The SPT is the tree formed by all edges that
belong to the shortest path from a specified root vertex to some other vertex.

Van der Hofstad, Hooghiemstra and Van Mieghem proved that the expected total length of the SPT is
equal to

1 +
1

4
+

1

9
+ · · · +

1

n2
,

in other words, the same number that occurs in the Parisi formula. Since the number of edges in the SPT
is n, it follows that the average length of an edge in the SPT is given by (6).

We now notice that each edge in the SPT is the first edge of the shortest path from exactly one vertex
to the root. Hence if we choose a vertexvi uniformly amongv1, . . . , vn and consider the first edge of the
shortest path fromvi to v0, then we are actually choosing an edge of the SPT with uniformdistribution
on itsn edges. Hence the expected cost of this edge is given by (6).
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10 Interpretation of the shortest path problem as an assignment
problem

It was noted by Chandra Nair (personal communication 2005) that the shortest path problem on the com-
plete graph onn + 1 vertices can be encoded as an assignment problem in ann by n matrix with entries
a(i, j) as follows. We label the rows by the numbers0, . . . , n − 1 and the columns by the numbers
1, . . . , n. We now simply let the matrix entries be equal to the lengths of the edges between the corre-
sponding vertices. The entriesa(i, i) for i = 1, . . . , n−1 are all zero, but notice that with our numbering,
these entries are one step off the main diagonal. It is now easily verified that an assignment in this matrix
must contain a set of entries corresponding to a path fromv0 to vn in the graph, and conversely any such
path can be completed to an assignment by combining it with the matrix entriesa(i, i) for the verticesi
that do not belong to the path. Hence the shortest path problem on the complete graph is equivalent to a
special case of the assignment problem.

In the random model, the matrix entries apart from the(n − 1)-diagonal of zeros are exponential
variables of rate 1. We have the symmetrya(i, j) = a(j, i) for 1 ≤ i, j ≤ n−1, but otherwise the variables
are independent. It can now be seen easily in the percolationmodel that this symmetry is immaterial, and
that the problem would essentially be the same even if each pair of vertices were connected by two directed
edges of independent lengths. This is because in the percolation model, only the lengths of the edges from
an infected to a non-infected vertex are considered. If the distances were asymmetric, so that the distance
from vi to vj could be different from the distance fromvj to vi, then since one of the vertices must be
infected before the other, only one of the two distances willever be considered. Another way to state this
is to say that there is an algorithm for finding the minimum assignment in the corresponding matrix that
never reads both ofa(i, j) anda(j, i) for i 6= j. Hence it does not matter whether these variables are
actually equal, or just have the same random distribution.

This shows that the random shortest path problem on the complete graphKn+1 is equivalent to the
randomn by n assignment problem with a given zero cost(n − 1)-diagonal. We remark that assignment
problems with a given set of zero cost entries have been studied by several authors [2; 3; 7]. In particular,
D. Coppersmith and G. Sorkin [3] proved in 1999 that the expected value of the assignment problem with
an (n − 1)-diagonal of zeros is asymptoticallylog n/n, which is equivalent to the corresponding result
for the shortest path problem established by Janson [6] in the same year.

11 A generalization
We finally mention a very natural generalization which was proved in [12] (see also [11]). I thank Chandra
Nair for pointing this out to me. As was explained in the previous section, the shortest path problem is
equivalent to an assignment problem with an(n − 1)-diagonal of zero entries in the matrix.

If a row in the matrix contains independent exp(1) entries, and we condition on the location of the
minimum entry in the row, then since every minimum assignment contains exactly one entry in the row,
we get an equivalent problem by subtracting the value of the minimum from each entry in the row. This
leaves a zero in the position of the minimum, and by well-known properties of the exponential distribution,
the remaining entries will still be independent and exp(1)-distributed.

Conditioning on an(n − 1)-diagonal of zero entries is therefore equivalent to conditioning on the
minimum entries in each of thesen − 1 rows occurring in different columns. It is therefore natural to
conjecture that the following holds, and in fact this is Theorem 3.3.1 of [12].



10 Johan Ẅastlund

Theorem 5 Theorem 2 holds even if we condition on the location of the minimum entry in each of the
n − 1 rows of the matrix, or equivalently if we choose in an arbitrary way one position in each row and
condition on these entries being zero.

We have seen that Theorem 2 of Nair, Prabhakar and Sharma leads to the solution of the recursive
distributional equation (5) considered by Aldous. It is highly desirable to obtain a better understanding of
this theorem and generalizations like Theorem 5, since thiscould eventually lead to the solution of other
related problems, for instance the recursive distributional equation associated with the random travelling
salesman problem, described in [1].
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[9] Mézard, M. and Parisi, G.,Mean-field equations for the matching and the travelling salesman prob-
lems, Europhys. Lett.2 (1986) 913–918.
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