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1 Introduction

The purpose of this article is to bring together some resuitsandom assignment and shortest path
problems, and to clarify how they relate to each other. Iti@aar, we investigate the consequences of
the two very different and hard proofs of th€2) limit theorem for the random assignment problem given
by David Aldous [1] and by Chandra Nair, Balaji Prabhakar &tayank Sharma [11].

The random shortest path problem had already been invesdigg Svante Janson [6] (and has recently
been further studied by R. Van der Hofstad, G. HooghiemsitaPa Van Mieghem [4; 5]). By putting the
papers [11] and [6] side by side, one can see that there issa climnection between these two random
optimization problems.

By establishing this connection we show that some resukdddus [1] must hold also for the shortest
path problem. Actually these properties are easier to kstiattirectly for the shortest path problem, and
by doing so we obtain, via the results of [11], new indepehgerofs of Aldous’ results.

2 Random assignment problems

Then by n exp(1) assignment problem can be defined as follows: Théeerdf ann by n matrix are
independent exp(1) random variables. &ssignmentis a set ofn. matrix positions, such that each row
and column contains exactly one of them. Tostof the assignment is the sum of these matrix entries.

A random variable that has been studied for a long time is thenmum costC),, of an assignment.
In 1979 D. Walkup [15] showed thdt (C,,) remains bounded as — oco. It was conjectured by Marc
Mézard and Giorgio Parisi [8; 9; 10] that as— o,

In her PhD thesis [13] in 1992, Birgitta Olin gave furtherammce for the Mézard-Parisi conjecture by
simulation, and proved an asymptotic lower bound.6f. From her simulations, she made the interesting
observation that in about half of the rows of the matrix, thelest entry in the row is also the one that
participates in the minimum assignment. She investigatiesditirther, and discovered what we will call
the2~*-law:

Theorem 1 Let the ordered sequence of entries in a particular row ofitfarix ber; < zo < --- < x,,.
Then for each positive integérthe probability thate; participates in the minimum assignment converges
to2~%asn — oo.

In 2001, the limit (1) was proved by David Aldous [1]. In thersapaper, he also gave a proof of
Theorem 1.

3 Exact formulas

In 1998, Parisi suggested another way of proving (1). Heaminjed in [14] that for every, E (C,,) is

given by the exact formula
1 1 1
E(Cn)—1+1+§+---+§. (2)
This conjecture was verified simultaneously and indepetiygier2003 by Chandra Nair, Balaji Prabhakar,

and Mayank Sharma [11], and by Svante Linusson and the guthdihe Linusson-Wastlund proof gives,
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as a by-product, an exact formula for the: 1 case of the~* law. It is proved in [7] that the probability
that the smallest entry in a row participates in the minim@signment is

1 1
2 + on 3)
Naturally one can ask whether there are similar exact faamtdri: > 2, but the approach taken in
[7] does not seem to give any information about this. We shat from the proof of (2) given by Nair,
Prabhakar and Sharma, one can deduce not only the formylauBalso exact results for the higher
values ofi, allowing a new proof of Theorem 1. In particular, we showt tha probability that the second
smallest entry in a row participates in the minimum assigmrisegiven by the formula (4) below.
It is quite remarkable that although the three proofs of (i¢gin [1; 7; 11] are very different, they all
give the; = 1 case of Theorem 1 as a by-product, and two of them allow prafdfse full theorem.

4 The shortest path in a random graph

Itis tempting to try to find a simple explanation of the form{8). It seems as if with probability/n, the
smallest entry will participate “just by chance”, and ifghi§ not the case, then with probability exactly
1/2, it will participate anyway because it is smallest.

There is another type of random minimization problem wheeeigely this situation occurs. This is the
problem of the minimum length path between two vertices @xdbmplete graph, where the edge lengths
are chosen independently from exp(1)-distribution.

We consider this problem on the complete grdph,; onn + 1 verticesuvy, ..., v,. We choose two
verticesvy andv,, and ask for the probability that the shortest edge figrbelongs to the shortest path
from vy to v,,. If “by chance” the shortest edge fromp happens to go directly ta,, then this is of course
also the shortest path ig,. Suppose therefore that the shortest edge fsgigoes to another vertex, say
v1. Then we can subtract the length of the edge v1) from the lengths of all edges from, including
the one tov;. In this new problem, the eddey, v1) has zero length, but all other edge lengths are still
independent and exp(1)-distributed. Since every path frpta v,, contains exactly one edge fram, the
same amount has been subtracted from all of them, so theeshpeth will still be the same. Moreover,
it is clear by symmetry that the probability that the edgg v1) belongs to the shortest path fram to
vy, IS exactlyl /2, since this happens if and only if without using the edgg v, ), the distance from,
to v, is shorter than the distance framto v,,. It follows that the participation probability of the shest
edge fromwy is given by (3).

This leads to the question whether the participation pridibabf the i:th shortest edge far> 2 is also
the same in the two problems. We show that this is the caseedwer, we give an independent proof that
the2~%-law holds also for the shortest path problem, thereby abitgia new proof of Theorem 1.

5 Combining the results on shortest paths and minimum assign-
ments

The shortest path problem was studied in detail by Svantsodaf6] in 1999 and more recently by
R. Van der Hofstad, G. Hooghiemstra and P. Van Mieghem [4\\f].first give a short account of some
of Janson’s results, and now we consider the complete gkapbn n vertices.
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Janson used thfirst passage percolatiomodel, where an infection starts at a root vertex, which we
now take to bey,, and spreads through each edge with exp(1) rate. It is ealsilgrved that the length
of the minimum path from,, to another vertex; is equal to the time at which; is infected. If, at a
certain momentk vertices are infected, then the time until the next verterfiscted isexp(k(n — k))-
distributed, since there akg¢n — k) edges that connect an infected vertex to a non-infecteddareover,
these waiting times are independent.

Lettq,...,t, be the ordered sequence of distances from the vertéa all the vertices of the graph,
includingu,, itself. Equivalentlyf4, .. .. t, are the times at which a new vertex gets infected. Then 0,
and the increments..; — ¢ are independent, with, 1 — tx ~ exp(k(n — k)).

In [11], the proof of the Parisi conjecture (2) is based onsaulteon minimum assignments in certain
submatrices, with a remarkable similarity to Janson’sltesun minimum paths. In an—1 by n matrix of
independent exp(1) entries, consider the costs of the mimissignments in the submatrices obtained
by deleting one of the columns. L&, ..., T, be the ordered sequence of these costs. The following
theorem was proved by Nair, Prabhakar and Sharma [11]:

Theorem 2 The increment§}..; — T} are independent, anfi, 1, — Ty, ~ exp(k(n — k)).

This is a quite deep theorem, and as we explain in Sectioni®délatively simple to prove that the
Parisi formula (2) follows from it. It has the consequencattive can couple the random— 1 by n
matrix with the edge lengths iy, in such a way thaf;, = T3 + t;, for everyk. Suppose now that we
introduce another vertex with independent exp(1) edge lengths . . ., z,, to then verticesuy, . . . , v,,
and that we extend the — 1 by n matrix by another row with independent exp(1) entrdés .. ., X,,.
Then we can couple the by n matrix with the edge lengths iR, in such a way tha¥;, = x;, for
everyk, and the entryX; participates in the minimum assignment if and only if theedf lengthxy,
participates in the minimum path from to v,,. This is because the minimum assignment in the matrix
consists of an entry; together with the minimum assignment in the matrix obtaimgdeleting column
1 in the originaln — 1 by n matrix, and similarly the shortest path from to v,, in the complete graph
consists of an edg@y, v;) (here possibly = n) together with the shortest path framto v, .

6 Proof of the 2~-law for the shortest path problem

In the percolation model, we now let the infection start & thertexvy, and spread to the vertices
v1,...,v, Dy rate 1 through every edge. If we do not care about the atitnak that the infection
spreads, we can think of this as a process in discrete timerendt each step, an edge is chosen uniformly
among all edges that connect an infected vertex to a noetadeone. The infection spreads through this
edge, and the edges that are chosen in this way form a tregrtives fromv, and eventually reaches all
vertices.

Instead of fixing another vertex, say, and asking for the probability that thigh shortest edge fromy
belongs to the shortest path framto v,,, we ask for the expected number of vertices among. . , v,
whose shortest path from starts with the:th shortest edge. This is of course the same thing apart from
a factorn. The following lemma shows that it suffices to show that 2né-law holds in the discrete
percolation model.

Lemmal If we fixi and letn — oo, then with high probability, thé:th edge grown from the roat, in
the percolation model is also theh shortest edge fromy.
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Proof: We have to show that with high probability, thehortest edges from the root are also the shortest
paths to the vertices they go to. This follows easily fromrémsults of Janson [6]. The typical distance be-
tween two randomly chosen vertices in the complete grapbdstiog n/n, and moreover the probability
that the distance is smaller than, slay,n/(2n) tends to zero as — oo. Therefore with high probability

in the limitn — oo, thei shortest edges from the root are all of length smaller thgm/(2n), and for
none of them there is a shortcut, that is, some other path allesntength to the same vertex. O

We can now give a proof of the—?-law for the shortest path problem. By the coupling desctinghe
previous section, this gives a new proof of Theorem 1.

Theorem 3 Let the edges of the complete graph on the vertiges. . , v, have independentzp(1)
lengths. Let the ordered sequence of edge lengths from ttexwg bex; < 25 < --- < z,,. Then for
each positive integei, the probability that the edge of lengih participates in the shortest path fromg
to v,, converges t@ ¢ asn — oo.

Proof: We letm; be the number of vertices that are reached from the root ¢frthuei:th edge grown
from the root in the percolation model (and = 0 if there are fewer thansuch edges). By symmetry,

n—+1
2 b

E(ml) =

since the root and the vertex reached in the first step of theolagion are competing on equal terms for
the remaining vertices. Similarly, for> 2, if k is the number of vertices that are not reached through any
of the firsti — 1 edges from the root, then conditioning bn> 0 we have

k+1

while obviouslym; = 0 if £ = 0. By induction on: it follows that for fixed:, asn — oo, we have

B (m:) = 5 +O(1),

where the error term comes from the probability thgt = 0 for some;j < ¢. Therefore the probability
that a given vertex, say,, is reached through theth edge from the root is

27"+ 0(1/n).

In view of Lemma 1, this completes the proof. O

7 An exact formula for the second shortest edge

We prove an exact formula for the probability that the secemdllest matrix entry in a row participates
in the minimum assignment, or equivalently, that the secsimattest edge from the root participates in
the shortest path to a particular vertex. However, singeftrimula turns out to be quite complicated, our
conclusion is that the formula is in itself of limited intste
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We consider the percolation process described earliercandition on the numberof vertices apart
from the root that are infected before the second edge isrmgfmm the root. The probability that this

number is equal tois given by
1

i(i+1)

Given that this happens, the vertex connected to the rodtdgecond edge from the root will compete
for the remaining vertices on equal terms amongithe2 vertices that are infected at this stage. Hence
the expected number of vertices that are reached througietitend edge from the root is
n—1i—1

i+ 2
It remains to find the probability that the second edge grawmfthe root in the percolation process is
also the second shortest edge from the root. ;e ¢, — ¢; be the times between the infections of
new vertices. The first edge grown from the root has leigthTheni — 1 more vertices are infected
through this edge, and the lengths of the edges from the oathiese vertices, say, ..., v;, areY; +
Yo+ Zo, Y1+ Yo+ Ys+Z5,... ., Y1+ -+ Y+ Z;, whereZy, ..., Z; are exp(1) variables, independent of
everything else. The next edge to spread the infection isehend edge from the root, which has length
Yi+- -+ Y.

In order for this edge to be the second shortest of the edgesthre root, first of ally; . ; must be the
smallest of the numbers,, ..., Z;, Y;,;. Conditioning on this is equivalent to conditioning on thvemrt
Y;+1 = 0. Given this, we can exclude the edge of leniitht - - - + Y; + Z;, and therl; must be smallest
of the number«Zs, ..., Z;_1,Y; and so on. Sinc#&; is exponential of raté(n — ¢ + 1), the probability
for all this is

1+

i—1

(i+2—-j)(n—i—1+}y)
Hz‘—j+(z‘+2—j)(n—z‘—1+j)'

J=1
Consequently, the probability that the second shortest &dgn vy belongs to the shortest path fram
to v, is given by
n—1 . 1—1 . . . .
1 1 n—i—1 (i+2—7)n—i—1437)
- 1 . 4
n;i(i+1)(+ i+ 2 )jl:[li—j+(i+2—j)(n—i—1+j) @

Fori = 2,3, 4,5 this evaluates ta /4, 19/72, 89/336 and2639/10000. The formula (4) can possibly
be simplified slightly, but it seems more interesting to trpbtain a better understanding of the connection
between the assignment and the shortest path problem iprthsbilistic model.

8 Aldous’ function h(z)

The proof of (1) given by Aldous in [1] is based on the solutidithe recursive distributional equation

X = min(& — X;), )]

where¢; are the times of the events in a rate 1 Poisson processXaade independent variables of the
same distribution a¥'. It is proved that théogistic distribution given by

1
l1+e®

PX <z)=
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is the unique solution to this equation. Then (1) is deduceh the following theorem:

Theorem 4 Letx be a positive real number. When— oo, the probability that a matrix entry partici-
pates in the minimum assignment given that it is equal/to, converges to a certain functidi{z) which
is given by

h(z) = P(z < X1 + X3),

whereX; and X, are independent random variables of logistic distribution

Moreover, it is shown that
e e —1+ux)
(1—e"7)2

Theorem 4 (which was conjectured already in [8]) seems toub@freach for the method employed in
[7], but again we give a new and independent proof by showiagthe same result holds for the shortest
path problem.

It follows from Janson’s results [6] that the shortest patimfv, to another vertex; in the complete
graph om + 1 verticesvg, . . ., v, ISt = Y1 +- - -+ Yy, whereYy, . .. | Y,, are independent and for every
Y; is exponential of raté(n + 1 — ¢), andk is chosen uniformly o, . . ., n independently o¥7, ..., Y,.

If v; is another vertex, then the differen¢ in distance ta; andv; is a sumyy; +- - -+Y;, wherek and
1 are chosen uniformly and (if we alloiv= j to hold with probabilityl /n) independently on, ..., n.
Here the sum should be interpreted in the obvious way as ainegam ifk > .

At this point we allow ourselves to be a little imprecise austjsay that unless or [ is very close to
1 or n, the sum of the deviations of the variabls, 1, . . ., ¥; from their means will most likely be small
compared to the impact that the choice$ @ind! have on the value ak¢. To find the suitably normalized
limit distribution of At we may therefore replace the variablgs. . ., Y,, by their mean values. Hence

h(z) =

Atm— oy L
T (k41)-(n—Fk) l-(n+1-1)

/B dx

a I(l - I) ’

wherea and correspond to the limitsd and/ of summation, and are therefore independent and uniform
on the interval0, 1]. This integral can be written

/ﬁ dz /a dz

1/2 z(l —z) 1/2 (1l —x)

It is therefore the difference of two independent equalktritiuted random variables whose distribution
can be found as follows:

o dz /a (1 1 )
— ~ 4+ ——) dz=loga —log(l — a).
/1/2 s(l=z)  Jip\z 1-z

We can approximate - At by the integral
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Moreover,

o e’ e’ 1
P(l — log(1 — =P ) = p — _ '
(OgO{ Og( O[)<SC) <1—Oé<e> (a<1+em) 1+ew 1+e—$

Hencen - At converges in distribution to the difference of two indepemdogistic variables. Since the
logistic distribution is symmetric, this is the same thirsgtlhe sum of two independent logistic variables.
Notice however that(t— E (¢)) does not converge to a logistic variable, since there will bensiderable
impact onnt coming from the fluctuations ity; for smalli. It is only the difference in distance that
converges to the difference of two independent logistitaides.

Now we can prove the analog of Theorem 4 for the shortest patsigm. Lety; andv; be two arbitrary
vertices in the complete graph an+ 1 verticesug, ..., v,. Consider the shortest paths from these two
vertices to the vertex,. A priori, it is highly unlikely that the edge connectingto v; will belong to any
of them, since this single edge will normally have length mgreater thatog n/n, the expected distance
to vo. If we now fix a positive real number, and condition on the edde;, v;) having lengthc /n, then
the probability that it belongs to the shortest path coringat; to vy is the same as the probability that
x/n < At, in other words that < n - At. Asn — oo, this converges to Aldous’ functidiz).

The limit (1) can now be established as in [1] by computingitiegral

o 2
/ x-h(z)dm:w—,
0 6

or as in [11] by first establishing the Parisi formula (2).

9 The Parisi formula

We can derive the Parisi formula (2) by showing that the etqublength of the first edge in the shortest
path between two given vertices K, 1 is

1 11 1
5(1+Z+§+"'+ﬁ)' (6)

Since we know that this is the same thing as the expected tthst entry in the first row in the minimum
assignment, (2) follows. We here point out that this folldineam some recent results of R. Van der
Hofstad, G. Hooghiemstra and P. Van Mieghem [4; 5]. Theskeasatstudied thehortest path tre€SPT)
in the complete graph with independent exp(1) edge lendihs.SPT is the tree formed by all edges that
belong to the shortest path from a specified root vertex toesmtfmer vertex.

Van der Hofstad, Hooghiemstra and Van Mieghem proved tleaeipected total length of the SPT is

equal to
1 1

1
1+4+9+---+n2,
in other words, the same number that occurs in the ParisidftarnSince the number of edges in the SPT
is n, it follows that the average length of an edge in the SPT ismglwy (6).
We now notice that each edge in the SPT is the first edge of ihrtesh path from exactly one vertex
to the root. Hence if we choose a vertgxuniformly amonguy, . . ., v,, and consider the first edge of the
shortest path from; to vy, then we are actually choosing an edge of the SPT with uniftistnibution

on itsn edges. Hence the expected cost of this edge is given by (6).
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10 Interpretation of the shortest path problem as an assignment
problem

It was noted by Chandra Nair (personal communication 20@)the shortest path problem on the com-
plete graph om + 1 vertices can be encoded as an assignment problemsirbgm matrix with entries
a(i, j) as follows. We label the rows by the numbérs..,n — 1 and the columns by the numbers
1,...,n. We now simply let the matrix entries be equal to the lengthth® edges between the corre-
sponding vertices. The entrieéi, ) fori = 1,...,n — 1 are all zero, but notice that with our numbering,
these entries are one step off the main diagonal. It is noilyaasified that an assignment in this matrix
must contain a set of entries corresponding to a path frgto v,, in the graph, and conversely any such
path can be completed to an assignment by combining it wéthnthtrix entriesi(¢, 7) for the vertices
that do not belong to the path. Hence the shortest path probfethe complete graph is equivalent to a
special case of the assignment problem.

In the random model, the matrix entries apart from fhe— 1)-diagonal of zeros are exponential
variables of rate 1. We have the symmet(y, j) = a(j,¢) for1 < i,j < n—1, but otherwise the variables
are independent. It can now be seen easily in the percolatamtel that this symmetry is immaterial, and
that the problem would essentially be the same even if eacbfpaertices were connected by two directed
edges of independent lengths. This is because in the pdocofaodel, only the lengths of the edges from
an infected to a non-infected vertex are considered. If ibiances were asymmetric, so that the distance
from v; to v; could be different from the distance from to v;, then since one of the vertices must be
infected before the other, only one of the two distancesavilr be considered. Another way to state this
is to say that there is an algorithm for finding the minimumgasient in the corresponding matrix that
never reads both aof(i, j) anda(j,) for ¢ # j. Hence it does not matter whether these variables are
actually equal, or just have the same random distribution.

This shows that the random shortest path problem on the aengtaphk,,; is equivalent to the
randomn by n assignment problem with a given zero cost— 1)-diagonal. We remark that assignment
problems with a given set of zero cost entries have beenestimi several authors [2; 3; 7]. In particular,
D. Coppersmith and G. Sorkin [3] proved in 1999 that the etgubealue of the assignment problem with
an (n — 1)-diagonal of zeros is asymptoticallyg n/n, which is equivalent to the corresponding result
for the shortest path problem established by Janson [6Eisdme year.

11 A generalization

We finally mention a very natural generalization which was/ed in [12] (see also [11]). | thank Chandra
Nair for pointing this out to me. As was explained in the poas section, the shortest path problem is
equivalent to an assignment problem with(an— 1)-diagonal of zero entries in the matrix.

If a row in the matrix contains independent exp(1) entrieg] we condition on the location of the
minimum entry in the row, then since every minimum assignneentains exactly one entry in the row,
we get an equivalent problem by subtracting the value of tlenmum from each entry in the row. This
leaves a zero in the position of the minimum, and by well-kngnoperties of the exponential distribution,
the remaining entries will still be independent and explik}¥ibuted.

Conditioning on anln — 1)-diagonal of zero entries is therefore equivalent to coowlitg on the
minimum entries in each of these— 1 rows occurring in different columns. It is therefore natuoa
conjecture that the following holds, and in fact this is Theen 3.3.1 of [12].
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Theorem 5 Theorem 2 holds even if we condition on the location of thermim entry in each of the
n — 1 rows of the matrix, or equivalently if we choose in an arbigravay one position in each row and
condition on these entries being zero.

We have seen that Theorem 2 of Nair, Prabhakar and Sharma tiedade solution of the recursive
distributional equation (5) considered by Aldous. It ishiigdesirable to obtain a better understanding of
this theorem and generalizations like Theorem 5, sincecthidd eventually lead to the solution of other
related problems, for instance the recursive distribati@uuation associated with the random travelling
salesman problem, described in [1].
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