
Annals of Combinatorics 11 (2007) 459-470

0218-0006/07/040459-12

DOI 10.1007/s00026-007-0329-7
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jowas@mai.liu.se

Received January 2, 2007

AMS Subject Classification: 05A05, 05D40

Abstract. We study the length Lk of the shortest permutation containing all patterns of length k.
We establish the bounds e−2k2 < Lk ≤ (2/3 + o(1))k2 . We also prove that as k → ∞, there are
permutations of length (1/4+o(1))k2 containing almost all patterns of length k.
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The research that led to this paper started at FPSAC’01 in Arizona and some of the
results were presented at FPSAC’02 in Melbourne. In Arizona, Stanley presented the
mathematical work of the late Simion. Among many other things, she was a pioneer in
the field of pattern avoiding permutations. In his talk, Stanley mentioned that Simion
and Schmidt [6] gave a formula for the number of permutations of length n that do not
avoid any pattern of length three. There is little hope of finding a similar formula for
arbitrary pattern of length k, considering how complex the theory of pattern avoiding
permutations becomes for larger k. But listening to Stanley, the four present authors
became curious about a related question:

The pattern packing problem: What is the length Lk of the shortest permutation con-
taining all patterns of length k?

We later found that this pattern packing problem was posed already in 1999 by
Arratia [3], but only trivial bounds on Lk have been given so far. The similar problem
of finding the maximal number of patterns that can occur in permutations of length n
was treated by Albert et al [1]. The pattern packing problem is of course reminiscent of
other dense packing problems, such as that of finding a shortest bit sequence containing
every binary k-word as a contiguous subsequence. For the latter problem there is a
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well-known solution, the so called de Bruijn sequences, which contain every k-word
exactly once (see, e.g., [4]). We cannot hope for such an efficient solution to the pattern
packing problem. For instance, the shortest possible permutation containing all patterns
of length k = 2 is evidently of length L2 = 3 (there are four of them: 132, 213, 231, 312).
But such a permutation contains

(3
2

)

= 3 subsequences of length 2, of which at most two
can have different patterns.

In spite of our efforts, the problem is still unsolved. We offer the conjecture that
Lk ∼ k2/2 asymptotically.

Our story is one of partial results, to be developed in eight sections as follows.

(1) The minimal length Lk of a permutation containing all k-patterns lies between k2/e2

and k2.
(2) We represent patterns by dot configurations on a square grid and characterize com-

pact representations in terms of ascents and inverse descents.
(3) We introduce a “game” called the pedestrian game to describe equivalent represen-

tations of a pattern.
(4) Strong convergence of the game implies a unique terminal position.
(5) The terminal configuration is in fact the compact representation of the pattern.
(6) By a probabilistic argument (see [2] for background on the probabilistic method),

we show that any dot configuration can be played onto white squares of a k by 3k/2
chessboard. This improves the upper bound to Lk ≤ 3k2/4. A modification of the
argument gives the upper bound Lk ≤ (2/3+o(1))k2, our main result.

(7) A variation: If we relax our ambition to find a permutation containing almost all
k-patterns, we show that a length of k2/4+o(k2) suffices.

(8) A second variation: If we are satisfied with a permutation containing each k-pattern
or its inverse, then a length of k2/2 is sufficient.

1. Elementary Bounds on Lk

In this section, we show that Lk is of order k2 and obtain the elementary bounds men-
tioned by Arratia [3]:

k2

e2 ≤ Lk ≤ k2. (1.1)

The lower bound is derived from the observation that the total number of k-subsequences
in the permutation must be at least as big as the number of all possible k-patterns. In
other words,

(

Lk

k

)

≥ k!,

or equivalently,
Lk(Lk −1) · · ·(Lk − k +1)≥ (k!)2. (1.2)

By an elementary estimate, k! ≥ kke−k. Hence

Lk
k ≥ Lk(Lk −1) · · ·(Lk − k +1)≥ (k!)2 ≥ k2ke−2k.
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The lower bound in (1.1) follows. In particular, we obtain a lower bound of

liminf
k→∞

Lk

k2 ≥ e−2.

In [3], this bound was conjectured to be sharp.
The simple upper bound of Lk ≤ k2 is obtained as follows. Define a k2-permutation

by arranging the numbers between 1 and k2 into k sequences of length k, each decreas-
ing by k in every step, the sequences taken in increasing order. For example, for k = 3
the permutation of length 9 is 741852963. The dot matrix of such a permutation (with
values increasing upwards) looks like a slightly tilted square:

r

r

r

r

r

r

r

r

r

7 4 1 8 5 2 9 6 3

Clearly every k-pattern can be found in this permutation; simply take one dot in each
row and column of the tilted square. For example, the pattern 231 is found in the
subsequence 483.

2. More Compact Packings

Since the rows in the tilted square actually correspond to increasing subsequences,
while the columns correspond to decreasing subsequences, it is possible to realize a
pattern by a more compact subset of dots in the tilted square. For example, the permu-
tation pattern 231 is realized by all the following dot patterns in the tilted square (and a
few others).

s
s

s
s s

s
s

s

s
s s

s

There is a direct way of compactifying the dot representation of a pattern in the tilted
square: Start with the dot matrix of the pattern. If a pair of adjacent columns have the
dots ascending (descending, respectively) from left to right, it is called an ascent (de-
scent, respectively). Draw a vertical line at every ascent, and a horizontal line at every
descent in the inverse permutation (obtained by reflection in the line y = x). Adjust
the dots so that they lie straight in the rows and columns induced by the lines. If we
also move the obtained configuration as far down and to the left as possible we call it
the compact representation of the pattern. For example, the compact representation of
2614357 is obtained as follows:
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compact dots

The compact position of a given permutation π = (π1 π2 π3 · · · πk) can alternatively
be described directly in terms of numbers of descents and ascents. Let d(π) be the
number of descents in π, and let a(π) be the number of ascents. A descent in the inverse
π−1 is a pair of symbols x, x + 1 such that x + 1 comes before (but not necessarily
adjacent to) x in the permutation π. Such a pair is therefore called an inverse descent.
If x comes before x+1 we call it an inverse ascent.

For each symbol πi in π, we count the ascents before πi, that is, pairs π j, π j+1 with
j < i and π j < π j+1. We also count the inverse descents below πi, by which we mean
pairs of symbols x, x+1 such that x < πi and x+1 comes before x. It is easy to verify
the following lemma.

Lemma 2.1. One obtains the compact dot configuration of π in the tilted square by
putting, for each symbol πi in π, a dot in the site that has as many columns to the left of
it as there are ascents before πi, and as many rows below it as there are inverse descents
below πi.

3. The Melbourne Pedestrian Game

We now introduce a “game” for transforming dot patterns. The setting is k pedestrians
walking on a square grid in Melbourne. In Australian traffic, as a pedestrian you are
supposed to look for any traffic to your right before you cross a street, and also watch
out for any traffic to your left on the other side of the street. Thus, in our game a
pedestrian is allowed to take a step forward to an unoccupied site on the grid if and only
if there is nobody anywhere to her right before she takes the step, and will be nobody
anywhere to her left after she has taken the step. “Forward” may be any direction on
the grid (north, south, east, or west).

u6
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��������������

Observe that moves are reversible. A position in the game is a placement of the k
pedestrians on k distinct sites on the grid. Two positions are game equivalent if one can
be reached from the other by a sequence of moves. Since moves can be reversed, this is
an equivalence relation.
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Proposition 3.1. Two positions are game equivalent if and only if they realize the same
pattern in the tilted square.

Proof. The pattern realized by a position is invariant under the game: When a dot moves
one step it changes its relative position only to dots that are to the right of the old site or
to the left of the new site, but a move can be made only when no such dots are present.
Hence, positions that are game equivalent realize the same pattern.

To prove the converse, we shall prove that any position can be played to a permu-
tation (one dot in each row and column of a k by k board). By the game invariance of
patterns, this permutation must be the unique permutation realizing this pattern. Hence
any two positions that realize the same pattern can be played to each other via the per-
mutation.

For any position, we can play the eastmost dot of the top row upwards as far as we
want. Among the remaining dots we can again play the eastmost dot of the top row
upwards as far as it does not reach the row of the first dot. Continuing in this way, we
obtain a position with the dots on distinct rows. We then perform the same operation on
columns, playing one dot at a time eastwards. Since this can be done without changing
the row of any dot, we reach a position where the dots occupy sites on k distinct rows
and k distinct columns.

Any empty rows or columns can be filled by moving the dot from the row or column
next to it. Hence we obtain a permutation.

Corollary 3.2. There are k! game equivalence classes with k pedestrians.

The following theorem establishes a connection between the pedestrian game and the
pattern packing problem.

Theorem 3.3. Lk is the minimal size of a union of one representative from each game
equivalence class in the pedestrian game with k pedestrians.

Proof. A set S of sites which is a union of one representative from each game-equivale-
nce class has the property that every position can be played so that all dots are moved
into S. Hence the permutation that is represented by S contains each pattern of length k.
Conversely, a permutation that contains each pattern of length k can be represented as
a set of sites with the property that any position with k dots can be played into it. This
set of sites therefore contains a representative of each game-equivalence class.

4. Strong Convergence of the Pedestrian Game

In this section we consider the pedestrian game played on a k by k board. Proposition
3.1 still holds in this setting, for a position with k dots which contains several dots
in the same rows or columns can be untangled within the board limits. The modified
procedure is as follows.

First move the top dot to the top row, if necessary. Then make sure that there are
at least two dots in the top two rows, possibly by moving a second dot to the north. In
general, for every m ≤ k, make sure that there are at least m dots in the top m rows. This
also means that the bottom k−m rows will contain at most k−m dots. In particular, the
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bottom row contains at most one dot, and by moving the bottom dot to the south, we can
make sure that there is exactly one. Repeating this for each row, i.e., moving south if
necessary, we get exactly one dot in each row. Note that we have obtained this without
horizontal moves. This means that if the same operation is performed on columns, we
reach a permutation, i.e., a position where each row and each column contains exactly
one dot.

Hence each game-equivalence class on the k by k board has a unique representative
with one dot in each row and one dot in each column. We now show that there is another
natural representation of game-equivalence classes.

Proposition 4.1. Each game-equivalence class on the k by k board has a unique repre-
sentative from which it is impossible to make a move in the south or west directions.

Proof. By the directed pedestrian game, we mean the pedestrian game played on the
positive quadrant, with the restriction that only moves in the south and west directions
are permitted. A position where no such move is possible is called a terminal position.
As we will show, the directed pedestrian game is strongly convergent, which means that
from any given initial position, all move sequences lead to the same terminal position
in the same number of moves. It is clear that this also proves the proposition.

A simple criterion for strong convergence is the polygon property [5]: In any posi-
tion where two different moves, x and y, are legal, there are two play sequences of the
same length and beginning with x and y respectively leading to the same position.

Lemma 4.2. The directed pedestrian game on the k by k board is strongly convergent.

Proof. We have to verify the polygon property. In this case, we show that two different
moves from the same position actually commute, that is xy and yx are both legal and
give the same result.

If one and the same dot can make a move in either of the directions south and west,
then it is clear that after a south move , the move to the west will still be legal, and vice
versa.

If two different dots can move in any of the two legal directions, it is easy to see that
these moves cannot interfere. It follows that the directed pedestrian game is strongly
convergent.

s s s s
s

s s s
s s

s
s

s
s s

s
s
s

Figure 1: The six terminal positions in the directed pedestrian game for k = 3.

5. The Terminal Position Is the Compact Representation

The unique terminal position of the directed pedestrian game provides a canonical dot
representation for every k-pattern. We shall see that it is the same compact configuration
that we constructed from the ascents and inverse descents of the permutation.
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Theorem 5.1. The compact dot representation of π is the terminal position correspond-
ing to π.

Proof. First, we show that this position represents the permutation π. Consider any pair
of symbols x < y that occur in order, that is

π = ( · · · x · · · y · · · ).

Then there is at least one ascent between x and y, so the dot corresponding to y is in
a column east of the dot corresponding to x. Since x < y, there are at least as many
inverse descents below y as there are below x, so either the dots are in the same row, or
the one corresponding to y is higher.

If the pair occurs in the wrong order, that is, π = ( · · · y · · · x · · · ), then there are
at least as many ascents before x as there are before y, and at least one more inverse
descent below y than below x. Hence in this case the dot corresponding to x will be in a
row south of the dot corresponding to y, and in the same column or a column east of it.

This shows that every pair of dots has the correct relative location. Hence the posi-
tion described represents π.

To show that the position we have defined is a terminal position, we first prove that
no dot can move west. The dot corresponding to the symbol π1 obviously cannot. If
a pair πi−1, πi is a descent, then the dot corresponding to πi−1 will be above the one
corresponding to πi, in the same column. Hence the dot corresponding to πi cannot
move west. If on the other hand πi−1, πi is an ascent, then the dot corresponding to πi−1
will be in the column immediately to the west of the dot corresponding to πi, and above
it or in the same row. Hence the dot corresponding to πi still cannot move west.

To show that no dot can move south either, we note that the symbol 1 is already in
the bottom row. If a pair x−1 · · ·x is an inverse ascent, the corresponding dots will be
in the same row so the x-dot cannot move south. And for an inverse descent x · · ·x−1,
the x-dot will have the other dot one row below, in the same column or to the east. In
either case, it cannot move south.

6. The Main Result

Our original motive for studying compact configurations was a desire to improve the
upper bound Lk ≤ k2. The following computer generated table of Lk for small k points to
the existence of a tighter bound. We thank Anders Claesson for computer calculations.

k 1 2 3 4 5
Lk 1 3 5 9 13

To our disappointment, the union of all compact configurations covers all of the k× k-
board except a thin slice along the border which is asymptotically insignificant. A closer
study of the optimal permutations found by the computer revealed that it may be easier
to pack sparse configurations in a chessboard full of holes!

For k = 3, there exist only two permutations of minimal length (Lk = 5) containing
all k-patterns. One of them is 41352, which can be interpreted in terms of chessboards.
As shown in the figure, 41352 is given by the white squares of the 3 by 3 chessboard in
our standard way of associating patterns with subsets of squares on the grid.



466 H. Eriksson et al.

s

s

s

s

s

Figure 2: The white squares permutation 41352.

The same thing is true for k = 5; the thirteen white squares of a 5× 5 chessboard
define a permutation containing all 5-patterns. It is tempting to conjecture that the white
squares permutation of any k× k-board contains all k-patterns, at least if k is odd, and
in the first draft of this paper we gave in to that temptation. From our failed attempts to
prove this conjecture a probabilistic argument emerged that nonconstructively demon-
strates the existence of a counterexample. Fortunately, a similar argument proves that a
fifty percent wider rectangle can accommodate all patterns on its white squares.

Theorem 6.1. The permutation given by the white squares of the k×b3k/2c chessboard
contains all k-patterns, therefore

Lk ≤
3
4

k2, for k > 1.

Proof. For any given pattern, we start with the standard dot configuration in the k by k
square to the west. If all dots are already on white squares, we are done; otherwise, some
horizontal moves need to be made. Going from west to east, each time we encounter a
dot on a black square, we move it together with all dots east of it one step. If the black
dot is the second dot in a descent, this mass move goes west, otherwise it goes east.
(Clearly, such a mass move does not change what pattern is represented by the dots.) If
we are lucky, the dots will stay within the stipulated rectangle, but we may as well have
bad luck, as shown in the figure.

Returning to the starting position, we note that some vertical moves may be possi-
ble. At every inverse ascent, we have the option of moving the upper dot, along with all
dots above it, one step to the south (still representing the same pattern).

We now claim that there exists a subset of these southwards moves such that when
performing the (forced) eastwards moves afterwards we stay inside the board. To prove
this we use a probabilistic argument. For every inverse ascent, we flip a coin. On heads,
we do nothing; on tails, we move the upper dot and every dot above it to the south.
The dots obviously stay within the original k by k square. As before, we then make
the necessary moves in the horizontal direction to put the dots on white squares, and we
will show that there is now a nonzero probability of the dots staying inside the stipulated
rectangle.

We estimate the expected number of moves to the east, counting a move to the west
as −1. The first dot will cause a move to the east if it is on a black square after the
southward moves. Every other dot will cause a move if after the southward moves it is
on a square of the color opposite to that of the previous dot. This is because if the dot
is on a black square then its predecessor is on a white square, so it does not move, and
so the dot remains on a black square to move in its own right; whereas, if the dot is on
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Figure 3: Two ways to move 2461735 to white squares.

a white square then its predecessor is on a black square, so it moves and causes the dot
to pass to a black square where it then moves in its own right. The potential move will
be to the west if the dot is the second dot in a descent, and otherwise to the east.

The key point is that the probability of a dot being on a square of color opposite to
that of the previous dot is 1/2 as soon as there is at least one potential southward move
that will change the color of the upper dot but not of the lower one. This is the case as
soon as there is at least one inverse ascent in the inverse interval between them. It is
easy to see that this will happen unless πi, πi+1 is a descent by 1. In the special case,
like 54, the probability of the dots occupying squares of different colors drops to zero.

To sum up, the first dot will cause at most one move to the east, and for the others, a
descent by one will contribute zero moves to the east, while a descent by more than one
will contribute −1/2 and an ascent 1/2 to the expected number of moves to the east.
Therefore the expected number of necessary moves to the east is at most

1+
1
2

a(π).

Hence with one exception, the identity permutation [123 · · ·k] with k−1 ascents (which
is trivial), the expected number of moves to the east is at most k/2, so some lucky
outcome of the coin flips will need at most bk/2c extra columns in order to play all the
dots to white squares.

As mentioned it turned out not to be true for all k that the permutation of white
squares on the k by k board contains all patterns of length k. However, we still believe
that Lk ∼ k2/2 asymptotically. We now show that a slight modification of the argument
gives an improved upper bound of (2/3+o(1))k2.

Theorem 6.2.
Lk ≤

2
3

k2 +O
(

k3/2(logk)1/2
)

.

Proof. We use diagonals running from north-west to south-east on the board, but every
third such diagonal as “white squares” instead of every other. As before, we start with
the standard dot pattern in the south-west k by k square. We make random vertical
moves at the inverse ascents, but now we choose uniformly between three options:
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Playing the dot and everything above it one step to the south, doing nothing, or playing
the dot and everything above it one step to the north. To accommodate these moves, the
height of the board has to be larger than k, but we return to this in a moment.

We then play to the east to put the dots on the right squares. For every pair of
adjacent dots with an inverse ascent between them, we need (in the worst case) 0, 1,
or 2 moves with uniform distribution. As before, no move is needed at a descent by 1.
Therefore the expected number of moves to the east is at most k.

Now consider only the cases where the topmost dot ends up at height at most k + t,
where t is a positive number that will be chosen later as a function of k. We first estimate
the probability of this event, that is, of staying on a board of height k+ t after the north-
south moves. This is the same thing as the probability that X1 + · · ·+Xn ≤ t, where the
Xi are independent random variables uniformly distributed on {−1, 0, +1} and n < k is
the number of inverse ascents.

If X is uniform on {−1, 0, +1}, then it can be verified by elementary calculus that
for every real λ,

E
(

e λX
)

=
1
3

e−λ +
1
3

+
1
3

e λ ≤ e λ2/3.

Hence

P(X1 + · · ·+Xn > t) =P
(

e λ(X1+···+Xn) > e λt
)

≤
E

(

e λ(X1+···+Xn)
)

e λt

≤exp
(

λ2n/3−λt
)

=exp
(

−3t2

4n

)

, (6.1)

if we choose λ = 3t/2n.
Hence if we condition on the event that the north-south moves stay within a board

of height k + t, then the expected number of necessary moves to the east is at most

k

1− exp
(

− 3t2

4n

) .

Since n < k, it follows that for every t there is some choice of north-south moves
for which the dot configuration stays within a board of height k + t and width k +
k/

(

1− exp
(

−3t2/4k
))

.
We therefore wish to choose t so that the area of this board is minimized. For

simplicity, we choose t =
√

k logk so that exp
(

−3t2/4k
)

= exp(−3logk/4) = k−3/4.
Then the board has area

(

k +
√

k logk
)

· k ·
(

2+O
(

k−3/4
))

= 2k2 +O
(

k3/2(logk)1/2
)

.

Since we have chosen every third square on this board, we have

Lk ≤
2
3

k2 +O
(

k3/2(logk)1/2
)

.
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7. Variation 1: Permutations Containing Almost All k-Patterns

We show that a permutation need not be much longer than k2/4 in order to contain
almost all patterns of size k.

Theorem 7.1. Let f be a function such that f (k) tends to infinity as k does. Then there
is a sequence σ(k) of permutations of length less than k2/4 + f (k)k 3/2 that contains
almost all patterns of size k in the sense that the fraction of patterns of length k that are
not contained in σ(k) tends to zero as k tends to infinity.

Proof. Let π be a random permutation of length k. We can write d(π) = dodd + deven,
where dodd and deven are the number of descents in odd and even position, respectively,
that is, dodd is the number of descents (πi, πi+1) for which i is odd, and deven is the
number of such descents for which i is even. Then both dodd and deven are binomial
distributed. Their distributions can therefore be approximated by normal distributions
with mean k/4 and standard deviation O

(√
k
)

.
Now let g be a function such that g(k)→∞ as k →∞. Then the probability that deven

or dodd deviates by more than g(k)
√

k/2 from k/4 tends to zero as k tends to infinity.
Hence the probability that d(π) < k/2−g(k)

√
k tends to zero. Similarly, the probability

that a
(

π−1) < k/2−g(k)
√

k tends to zero.
It follows that, with high probability, the compact dot representation of π fits in a

square of side k/2 + g(k)
√

k. Hence there is a permutation of size
(

k/2+g(k)
√

k
)2

that contains almost all patterns of size k.
If we put

(

k/2+g(k)
√

k
)2

= k2/4+ f (k)k3/2,

then it is clear that g tends to infinity if and only if f does. The theorem follows.

8. Variation 2: Permutations Containing Pattern or Inverse

We can construct a permutation Tk of length
(k

2

)

which in a slightly weaker sense con-
tains every pattern of length k. This permutation consists of the elements on and below
the diagonal in the tilted square. For example, T2 =312 and T3 =641523.

Theorem 8.1. For every pattern τ of length k, the permutation Tk contains either τ or
τ−1.

Proof. A dot in the terminal position of a permutation will be outside Tk only if the
sum of the number of ascents before the symbol and the number of inverse descents
below it is at least k. An inverse descent in τ is of course a descent in τ−1, so the total
number of ascents and inverse descents is a(τ)+d

(

τ−1). If that total is less than k, the
permutation Tk will certainly contain τ. Analogously, if the total a

(

τ−1)+d(τ) is less
than k, the permutation Tk will certainly contain τ−1.

But there are k−1 positions which are either descents or ascents, so we have

d(τ)+a
(

τ−1)+d
(

τ−1)+a(τ) = 2(k−1).

The theorem follows from the fact that either τ or its inverse must have the property that
the total number of ascents plus the total number of inverse descents is at most k−1.
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