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In these comments, we shall be concerned with just 
two variants of ordinary regression, RIDGE and STEIN. 

Our interest is focused in this way because we have given 
considerable thought to estimators of these types in our 
own research over recent years on empirical Bayes and 
Stein-type estimation, because more analytical power can 
be brought to bear on these methods than suggested in 
the paper, and because for the loss functions used, the 
performance of these estimators depends on the experi- 
mental inputs only through the eigenvalues of the matrix 
X'X. This last reason simplifies matters greatly for 
understanding RIDGE and STEIN, although it does not 
apply to most of the other 57 varieties. For lack of space, 
and because we haven't studied them carefully, we will 
not discuss the confidence contour constraint variants 
of Section 2.4.5 of RIDGE and STEIN. 

This leaves STEINII, RIDGAI, and SRIDG as the only three 
rules under consideration. When the eigenvalues { A , )  of 
X'X are equal, STEINJI and RIDGII reduce to the same 
rule, but SRIDG behaves very badly, being highly non-
minimax. By making use of arguments in [3], it easily 
can be shown to be substantially and uniformly improved 
upon by the James-Stein rule. We also expect SRIDG to 
perform poorly when the eigenvalues are unequal, which 
happened in the simulation. Since SRIDG is so complicated 
in general, and has not been recommended elsewhere, we 
shall take RIDGnr to be the only interesting version of 
RIDGE considered in the study. 

Certainly the most dramatic conclusion of the study is 
that a version of the ridge method, in the form of RIDGII, 

is the best method used in the study and dominates a 
Stein-type method, in the form of STEINII. While we 
agree with this conclusion, and have made similar state- 
ments in our own work [2, 31, we believe different 
language should be used; language based on an under- 
standing of why this is so. In particular, we see justifi- 
cation for RIDGRI arising out of the empirical Bayes 
literature in combination with the implicit assumptions 
of this experiment, and not from the ridge-trace graphical 
technique used for estimation of regression coefficients. 

The reader should note that sTEINnr is not the James- 
Stein rule (which we shall term JSTEIN) [4], and over- 
shrinks JSTEIN by a factor of [(n - p + 2)/(72 - p)]p/ 
(p - 2), or 12/7 in this case. This sacrifices about 51 
percent of the improvement in risli of JSTEIN over the 
ordinary regression estimator (OREG) for the loss function 
SPE. We make this statement for the data of these ex- 
periments, knowing that the authors claim the contrary 
a t  the end of Section 2.4.1. The risli function for SPE 

loss is a function only of CEN, the noncentrality param- 
eter, which takes on the five values CEN = 10, 50, 100, 
200, 500 in this experiment. The approximate value of 
the risk a t  these points (actually an upper bound) is 
5.00, 5.74, 5.87, 5.93, and 5.972 for JSTEIN while STEINRI 

has 5.51, 5.87, 5.93, 5.97, and 5.986. Ordinary regression 
has SPE risk of 6.00 for all values of CEN, and so even 
JSTEIN would not improvc least squares substantially in 
these experiments. The James-Stein estimator should not 

be applied with the loss SEB, and is known not to be 
minimax in this case. 

But RIDGM also is better than JSTEIN in these experi- 
ments. This is expected for experiments or problems 
where the regression parameters {P,) have an exchange- 
able prior distribution. In the Dempster, Schatzoff, and 
Wermuth experiments, the random rotation matrix G 
tends to symmetrize the prior distribution, and this fact 
combined with the dispersed set of eigenvalues insures 
that RIDGM will be better. Professor Thisted's comments 
are much more complete on this issue. 

In relation to the preceding paragraph, one of our 
concerns about the widespread application of ridge re- 
gression is that, being a data-based Bayes rule against 
an exchangeable prior, it is necessary to feel confident 
in the exchangeability assumption, while in most real 
regression problems the statistician couldn't be. In 
certain nonregression problems, for instance in the ex-
amples of [2], exchangeability seems plausible a priori, 
but when this assumption is violated significantly, ridge 
rules can be much worse than the ordinary regression 
rule. That is, ridge rules are not minimax in general. We 
will put these issues in more mathematical form to make 
the argument clearer. 

If we allow ourselves the luxury of thinking of n as 
large (instead of 20) so that a2 may be assumed known 
(this could be relaxed at the price of additional mathe- 
matical complexity), the Dempster, Schatzoff, and 
Wermuth estimation problem may be expressed in 
canonical form as the problem of observing 

independently with Vi 5 a2/Ai and a2 known, Yi = a< 
= (Cb);, C being the principal components orthogonal 
transformation defined in Section 2.2. In this notation 
0; = (CP); is to be estimated with risli function 

where Li = 1for SEB and Li = l/Vi for SPE. 
1,ctting A = a2/k, the independent prior distributions 

lead to the Bayes estimator 

EOi I Yi = (1 - Bi) Yi , Bi 5 Vi/(Vi + A) . (1.4) 

We say that (1.4) is an "empirical Bayes estimator" if 
A is estimated from the independent marginal distribu- 
tions (derived by integrating out the distributions of 0i 
in (1.1) with respect to (1.3)) 

and then the estimate A is used in (1.4) in place of the 
unlinown value A. 

Defining Ai Yi2 - Vi, we have E A ~= A, so these 
are p independent unbiased statistics which may be used 
to estimate the unlinown value A. Obvious unbiased 
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estimates of A are of the form 

The choice Wi = Wi(A) .c 1/Var (Ai) = .5/(Vi + A) 
results in the RIDGRI estimate if Wi(A) is replaced by 
w~(A) in (1.6). The rule we proposed in [2] for the 
toxoplasmosis data, which we label EBJILE, derives from 
Wi(A) .c l /{Var (Ai) l 2  = .25/(Vi + A)2, Wi(A) re-
placed by w ~ ( A )  in (1.6). This is the optimal linear 
estimator in (1.6)) and is equivalent to the maximum 
likelihood estimator of A from (1.5). Hence the term 
E B R ~ L Esignifies the empirical Bayes model with maximum 
likelihood estimation of A. 

Both of the estimators of the preceding paragraph take 
advantage of the exchangeability of (1.3) and therefore 
are superior to STEINM and JSTEIN for priors of the form 
(1.3). I t  is essential to note, however, that if (1.3) were 
replaced by O i  -- N(0, ViA) then JSTEIN, which in this 
notation is (1 - ( p  - 2) /C Yj2/Vj)Yi, and STEINM 

~vould outperform EBMLE and RIDGAL The experiment 
therefdre has proved that the array of experimental re- 
gression coefficients is better represented by Var (0;) = A 
than Var (Oi) = ViA. 

Carter and Rolph used their own version of RIDGJI 

quite successfully in an empirical Bayes application to 
spatial analysis [I]. (Actually both the Carter-Rolph 
rule and EsnrLE [2] were modified slightly so that they 
reduce to the James-Stein rule when the Vi all are equal.) 
While we don't know whether EBMLE or RIDGM is better 
for small or moderate p, EBIVZLEmust be better for large 
p if (1.3) holds because of its relation to the maximum 
likelihood estimator. I t  would be interesting to compare 
these rules on the 160 data sets of the experiment. 

If the Vi are sufficiently unequal, then for certain 
configurations of the parameters el, . . . , O,, both EBMLE 

and RIDGRXcan be much worse than OREG for both losses 
SEB and SPE. (The problem rests precisely with the 
component having the large Vi or small Xi ,  i.e., the com- 
ponent most ridge papers are concerned about.) JSTEIN, 

of course, is guaranteed to improve upon OREG for SPE, 

while it  is not minimax for SEB. 

I t  should be clear from the preceding discussion about 
SRIDG, RIDGM, and EBMLE that there are many ways to 
estimate the constant k from the data. Although almost 
every ridge paper published, including this one, has 
presented a different method, the expression "the ridge 
estimator" continues to be used. In fact, ridge estimators 
are a class of Bayes rules against normal priors indexed 
by Ic ,  and the effectiveness of a given rule depends upon 
how k is estimated. Some published ridge estimators are 
drastically different from others, and some are disas-
trously bad. We believe that the important problem now 
is to find estimators of k which have good risk properties 
in the class of all possible estimators. 

Because most applications of Stein's rule require its 
generalization to the unequal variances situation, and 

because ridge regression formally reduces to this situa- 
tion, we have given a great deal of thought to the problem 
framed by (1.1)-(1.5) over the past several years. This 
includes derivation of a wide class of minimax estimators 
which encompasses most estimators already proven to be 
minimax by other writers. We also have considered 
numerous empirical Bayes rules, partly in light of a 
necessary condition for minimaxity. In the equal variance 
situation of James and Stein [4], minimax rules with 
Bayesian properties against exchangeable priors exist, 
but when orthogonal invariance is sacrificed this happy 
result disappears. When the variances V, are sufficiently 
unequal, our current understanding is as follows. A 
fundamental tension exists between minimax and empiri- 
cal Bayes (or ridge) requirements, and no rules appear to 
exist which are satisfactory from both standpoints. One 
cannot approximate the Bayes rule agai*st the prior 
(1.3) without risk of doing worse than the Gauss-Markov 
estimator. Improvement on the Gauss-illarkov estimator 
in regression situations therefore can be guaranteed only 
with external information about the prior distribution of 
the regression coefficients. Unfortunately, such infor-
mation is not available for many applications. 

To summarize, the statistician has a choice of shrink- 
age rules to consider in applications to real data, and 
must be careful in exercising this choice because, while 
the rewards can be great, so also can be the penalties. No 
choice uniformly dominates the Gauss-Marliov estimator 
for all loss functions. The statistician, therefore, must 
know enough about his data and about the properties .of 
the alternative estimators available to him to make an 
intelligent choice of rule. For the Dempster, Schatzoff, 
and Wermuth experiments, the exchangeable prior, and 
therefore the use of RIDGM or E B ~ I L E ,seems to be justified 
in aggregate, although the statistician who looks a t  the 
160 individual problems might choose not to use the same 
rule in all of these situations. Other experiments could 
give opposite conclusions, so the reader's faith in the 
results of this experiment ultimately depends on how 
much he believes the Dempster, Schatzoff, and Wermuth 
data sets typify real world experi;nce. 
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Comment 
ARTHUR E. HOERL* 

The authors are to be congratulated for so clearly 
presenting such a breadth of material. In addition, the 
theoretical Bayesian development which leads to the 
RIDGM algorithm is most ingenious and goes a long way 
in attaining a realistic share of the ridge potential in 
reducing mean square error. 

In the joint papers [2, 31, where simulation was used 
to examine ridge algorithms, orthogonal Z matrices of 
various dimensions and conditionings were defined. 
Random vectors a with specified norm (designated as 
a2 = a'a) and E were generated, and the resultant least 
squares and ridge regression were characterized through 
a quadratic loss function. In these simulations our origi- 
nal algorithm relied on the minimum quadratic loss esti- 
mate ki = a2/ai2. This is, as the authors state, an interest- 
ing identity since it  depends on a d 2  (and a2) only and not 
on its corresponding eigenvalue Xi. However, one can 
readily satisfy oneself that when using sample estimates 
the resultant loss is relatively large. Therefore, this 
motivated us to use a single k, equal to the harmonic 
mean of the p values kl, . . ., k,, i.e., 

Subsequent to this simulation publication [2], an 
iterative algorithm with an empirical stopping rule based 
on successive estimates of a'a has been published [3]. 
Since the sample value 8'6 overestimates a'a, k, tends to 
underestimate its goal value. Therefore, since the first 
ridge cut, k,,, results in an improved estimate, d ~ , ,  of a, 
then dB1 based on the square length of dB,, would perhaps 
be a better estimate of a. The suicessive estimates k,i can 
be repeated until the rate of change in k,i has stabilized. 
This can be specified under an empirical stopping rule. 

For the purposes of multiple comparisons of many 
estimation techniques, the authors were wise in formu- 
lating their comparisons by averaging their results over 
a range of signal-to-noise. However, for the purposes of 
evaluating a few algorithms it is perhaps more illustrative 
to display the relative effectiveness bf each a t  specific 
values of signal-to-noise since it  is not exclusively the 
frequentists who would argue that in formulating a 
simulation strategy the following criterion be used: if it  
can be shown that one estimator is superior to another 
for all specified values of a'a over a wide spectrum of 
conditioning and a range of p, then regardless of the real 
world frequency distribution of a'a (assuming a finite 
domain), that estimator is preferable to the other. If 

*Arthur E. Hoerl is Professor, Department of Statistics and Computer Science, 
University of Delaware, Newark, DE 19711, 

the two estimators vacillate in superiority as a function 
of a'a, some subjective judgment wouldthen be required. 
As an example of this approach, the following is presented. 

Using the Gorman-Toman data [I] with two spec- 
trums of eigenvalue structure used in [2, 31, a series of 
200 simulations was performed for each a'a value. The 
uniform random number generator described in the 
Appendix served as the basis for the simulation. Unit 
normals were generated by summing 12 random uniforms 
on (-5, -5). Least-squares estimates d, were generated 
by 8, = a, + E, with E, defined by the sum of 12 
uniforms divided by dX,.Sample values s2, of a2 = 1, 
were defined by the sum of 25 squared unit normals 
divided by the df 25. 

For the 10-factor basic (the same eigenvalue structure 
as originally published) the results in Section a of the 
table were obtained. As a guide, the expectation for the 
F ratio is included. The critical value of F (10, 25) with 
a = .05 is 2.24. For Section a, the expectation for the 
least-squares error is 32.58 and the maximum potential 
is defined to be the minimum possible square error for 

Average Square Error 

Maxi-
Ordi- Itera- mum 
nary Basic tive poten-

E(F Ratio) L.S. ka k RlDGM tial 

a. 10-Factor Basic -
1 1.20 34.12 7.99 6.80 2.18 .88 

5 1.63 31.85 8.83 8.57 5.15 3.47 

10 2.17 30.03 9.66 9.89 7.53 5.52 

15 2.72 31.55 11.06 11.15 9.10 7.01 

25 3.80 30.70 12.75; 12.81 12.05 9.51 

50 6.52 34.28 18.23 18.23 17.83 13.82 

100 12.0 31.84 20.76 20.76 20.56 16.53 

200 22.8 30.12 24.69 24.69 24.92 19.55 

500 55.4 32.99 30.33 30.33 30.45 23.84
loOO 110, 30.08 30.41 30.41 30.51 24.67 

2500 273. 32.09 30.64 30.64 30.64 23.99 

10000 1088. 32.77 32.73 32.73 32.73 27.78 

100000 10871. 35.44 35.38 35.38 35.38 28.29 


b. 10-Factor Wide 

1 1.20 530 50.1 .99 2.92 .87 

5 1.63 584 64.4 4.93 6.71 3.52 

10 2.17 602 55.3 9.64 7.68 5.87 

15 2.72 544 54.9 14.1 10.1 7.88 

25 3.80 589 57.7 21.4 12.9 10.7 

50 6.52 559 62.8 26.2 22.1 17.6 


12.0 572 ' 71.6 32.0 31.6 27.5 
200 22.8 615 97.5 49.8 54.0 43.2 
500 55.4 561 120. 88.7 89.4 62.2 
1000 110. 568 160. 133. 138. 85.3

2500 
 273. 555 253. 240, 243. 138. 

10000 1088. 597 448. 448. 449. 218. 

100000 10871. . 565 546. 546. 545. 282. 
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each data set using a single k.  This is defined by 

Max Pot = Min 
1c20 Xi + k 

Similarily, for the second simulation, with an assumed 
eigenstructure (4.25, 1.50, 1.25, 1.00, .778, .6, .4, .2, .02, 
.002), the 200 trial averages are given in Section b of the 
table. Here, the expectation for the least-squares error 
is 563.15. 

These results suggest, then, the resultant effectiveness 
similarity between the author's RIDGM and the current 
iterative algorithm. This prompts a need for a broad 
comparison, over a significant range of p and con-
ditioning, of these ridge algorithms together with other 
ridge algorithms which are currently under study. This 
suggested study would also need to be concerned with 
the broader aspects of estimation including weighting 
and prediction. Means for disseminating this information 
a t  an early date would help to reduce unnecessary dupli- 
cation and computational effort. Perhaps even a group 
of interested participants could pool their resources and 
talents in defining, formulating, and carrying out the 
detailed simulations. 

With the increasing reliance on simulation in regression 
it would seem propitious to develop a standardized 
procedure that would be reasonably acceptable. Here it  
is suggested that sampling conditioned on an a norm is 
one approach. This has the major attribute of avoiding 
the question of what constitutes a typical regression 
problem. 

Dempster, Schatzoff, and Wermuth suggest that 
another device to evaluate prediction might be a jacli- 
knifing type of technique. This has been extensively 
investigated by Hoerl and Kennard and found deficient. 
In fact, the basic idea was extended to include what we 
called duplex (splitting the data into two groups under 
a variety of criteria) and multiplex (defining all possible 
subsets (,") and selecting all or some fractionated pro- 
portion of all nondegenerate sets). In every instance over 

DAVID M. ALLEN* 

To establish some points for reference, I will begin by 
expressing some of my own thoughts regarding regression. 
We have a random vector y and a full-rank, nonstochastic 
matrix X. The matrix X is said to be ill-conditioned if 
there exists a t  least one vector C such that IlCll = 1 and 
IlXCll is "small." We denote E(y) by y, and we suppose 

*David M. Allen is Associate Professor, Department of Statistics, University 
of Kentucky, Lexington, KY 40506. 
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a variety of simulations, the technique was found 
wanting. 

APPENDIX: UNIFORM RANDOM NUMBER O N  [ - .5,  .51 
Define an arbitrary irrational number A truncated to 12 significant 

digits with a normalized floating-point as 

The generation of the uniform random numbers was obtained by 
the following steps. 

1. Form the normalized floating-point number 

with the remainder 

where r _< b - 12 and A X B + REMAINDER = 1 with a 24 
digit product A X B. The mantissas of the respective 
numbers R and A satisfy the condition 

0 < MANT (R) < MANT (A) . 
The assumption here is that the mantissa of the remainder R 
after 12 significant places is independent of the divisor. 

2. Form C = RIA as (0.xxx- - -x)10% Set c to zero and store 
as the new A. 

3. The new C is assumed uniform on [.I, 1.1. 
4. Subtract 0.1 from C and divide by 0.9 for [0, 11. 
5. Uniform numbers on [- .5, .5] can be defined by subtracting 

0.5 from C/0.9. 

No more than 100,000 consecutive numbers should be used with 
the same original seed to be well assured of a nonrepeated chain. 
An unlimited run (with no repeating chain) can be achieved by 
adding one to A on a fixed count of say every 50,000 numbers. 

In  no instance has the algorithm degenerated in over lo8 uses. 
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Comment 

there exists a vector @ such that y = X @ .I will malie 
some harsh statements about @ and then illustrate them 
using a simple example. The example depends on 
X = (XIIXB(XB),X* = (x1(x2(x3*),and p where the 
vectors are given in the table. 

What is the interpretation of @ ?  Let p,  and x,, denote 
the ith elements of y and x,. Since p, = C, z,,,BI for all i, 
it is often appealing to suppress the subscript i and regard 
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Vectors Used in Examples 

p as a linear function ,of continuous variables xl, x2, and 
23. A common interpretation is: pj is the change in p 

accompanying a unit change in xj with all other x's 
constant. The problem with this interpretation is that an 
ill-conditioned X precludes all other x's constant. For the 
X of the example the relationship 

is always satisfied. This requires x2 or 2 3  to change if xl 
changes as much as .2. If XI increases by one and the 
sum of absolute changes in 2 2  and 2 3  is kept as small as 
possible subject to (I), then x2 does not change and x3 
increases by .5714. Thus the change in p accompanying 
a unit change in xl with minimum changes in x2 and x3 
is P1 + .571483 and not PI. If X is ill-conditioned then, 
@ has little or no interpretation. 

The vector p is unique. Its elements are expected 
values of observable random variables and are inter-
pretable. If X has not been correctly specified (Who 
really knows X?), then there may not exist a @ such 
that p = X@.If X is correctly specified but ill-condi- 
tioned, then @ is fickle with regard to small perturbations 
of the elements of X. In the example, both X and X* 
are correct specifications in that their columns span the 
same vector space and p is in that space. The maximum 
absolute difference between corresponding elements of X 
and X* is .14, yet @ = (-41950/49, -41950/49, 1200)' 
and @*= (42050/49, 42050/49, -1200)' are drastically 
different. 

A. F. M. SMITH* 

Interest in alternatives to ordinary least-squares pro- 
cedures for the analysis of the normal linear model is now 

* A.F.M. Smith is Lecturer, Department of Statistics and Computer Science, 
University College London, Gower Street, London WClE 6BT, England. 

The estimation of a linear combination of the elements 
of @ where the variance of the least-squares estimator is 
greater than u2 will be termed an extrapolation. That is, 
the precision of the estimator is less than the precision 
of a direct observation on that linear combination (if 
such observation were possible). If X is ill-conditioned, 
then estimation of an individual element of @ is often 
an extreme form of extrapolation. For the X of our 
example the respective variances of estimators of P1, P2, 
and P3 are 18.22u2, 18.22u2, and 35.716u2. 

Because of the high dimensionality of typical regression 
problems it is impossible to conduct a comprehensive 
simulation study. However, the authors have come closer 
than any other study I have seen. I believe interpretation 
of regression is most difficult when X is highly ill-condi- 
tioned and thus regard Experiment 1 as being more 
valuable than Experiment 2. In view of my harsh state- 
ments about @,I would rather have a (A.8) than @ as a 
factor in the study design. This would systematically 
generate different p in the appropriate vector space. For 
similar reasons, I place more credence on the analysis 
by SPE (A.ll) than on the analysis by SEB (A.lO). I am 
impressed by the potential of REGF methods and look 
forward to studying them further. 

The authors mention conflicts among different methods. 
If we do not extrapolate, these apparent conflicts may 
be of less consequence than they indicate. Evaluation of 
SPE cannot involve extrapolation, while evaluation of SEB 

often is extrapolation. This statement is supported by 
the fact that the coefficient variation of SPE is less than 
the coefficient of variation of SEB. 

The authors caution against expecting any favorite 
procedure to be automatically applicable. I emphatically 
agree. In my example, the variance of the least-squares 
estimator of (-51.14, 25.66, -18.21)@ is .097554u2, 
which is quite good for 15 observations. However, for 
(- 50.74, 26.06, -18.77)@ the variance is 46.62u2. Except 
for unrealistically large values of u2, ridge is worse than 
least squares in mean square error for both cases. We 
should recognize the existencevf situations where no 
estimation, by any method, is warranted. The second 
linear combination just mentioned is such a case. The 
data simply does not contain much information about 
that linear combination. 

Comment 

widespread among both Bayesian and frequentist stat- 
isticians, and the authors are to be congratulated on their 
timely and stimulating contribution. 

I shall confine my comments to just two aspects of this 

http:(-51.14


97 

(:) only 

Simulation of Alternatives to Least Squares 

wide-ranging study: the first concerns the relationship 
between continuous and discrete shrinking methods ; the 
second relates to the authors' formulation of the pre- 
diction problem. 

A link between continuous and discrete shrinking 
methods is implicit in a result established by Leamer 
and Chamberlain [4, Theorem 11,which shows that the 
RIDGE estimat~r-given here by (2.1) with Q equal to 
the identity matrix-can be written as a weighted-
average of the 2p least-squares estimators corresponding 
to all possible ways of constraining subsets of the p 
regression coefficients to be zero. The weighted-average 
forms REGF and DRGF are not quite of this form, since 

such least-squares estimators are combined (for 
some chosen r), but it .~rould, perhaps, be worthwhile 
exploring the connection further. In particular, an 
examination of the weights given by Leamer and Cham- 
berlain [4, Eq. (4)] and those discussed in Appendix B 
of this paper reveals great similarity, especially for DRGF. 

Indeed, apart from the fact that Leamer and Chamberlain 
assume the variance u2 to be known, it appears that DRGF 

could be derived by expressing RIDGE as a weighted-
average and then forming a renormed weighted-average 
using only those terms corresponding to r nonzero-
constrained components (see [4, Eq. (3) and (4)] and 
Appendix B, (B.2), (B.7), (B.8), (B.9) with a = r). A 
closer study of this connection might well give some 
insight into the comparative performances of these 
estimators. (A similar analysis could be made of the 
relationship between PRI and an alternative weighted- 
average representation of RIDGE given in [4, Theorem 21.) 

I find the comparison of estimators using prediction 
mean square error rather difficult to interpret. Indeed, 
it seems to me that this part of the study is both mis- 
leading and misguided in so far as it identifies the pre- 
diction problem with that of predicting a set of future 
values a t  precisely the same design points as have been 
used in estimating the regression coefficients. This 
obscures many of the features of interest that are present 
in the more general prediction problem and leads the 
authors to conclude that there is less scope for improve- 

ment over least squares in the prediction context. Brown 
[I] has shown that this is not necessarily true, and his 
arguments have been extended to a more general shrink- 
age estimation setting by Goldstein [3]. 

The point at issue can be summarized as follows. Let 
us assume that b* is an estimator of @ from (A.l), and 
that we wish to predict 712 future values of Y correspond-
ing to a design matrix Xo(??z X p), the latter scaled in 
such a way that X,b* is the desired predictor. (Note that 
the authors consider only the special case m = n, 
Xo = X.) I t  can be shown that if b* is taken to be the 
RIDGE estimator, then the derivative, with respect to k, 
of the predictive mean square error, evaluated at Ic = 0, 
is equal to -2a2C ,  (B,,/X,), where B,, = (C XoTXoCT) ,,, 
and C and X, are defined by (A.5). In this more general 
setting, it is the relationship between the B,, and the 
A, which determines the scope for saving in predictive 
mean square error. The case considered by the authors 
has the special form B,, = X, and gives no insight into 
the greater scope for improvement which occurs when 
the larger values of B,, correspond to small values of 
A,; i.e., when the directions in which predictions are 
required turn out to be those which are poorly estimated 
on the basis of the original design matrix. 

Finally, I should like to draw attention to a splendid 
example of RIDGE in action-that of "Election Night 
Forecasting" in the U.K. [a]-where a version of RIDGE 

triumphs over all-comers, including OREG (k = 0) and 
ZERO (k = m ) .  
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cases is the orientation of the true coefficient vector 
relative to the relevant coordinate system. 

In  the case of best-subset methods or Bayesian mix- 
tures of them, it seems to us that the relevant coordinates 
are in terms of the orthogonal basis in variable space 
defined by the independent variables as given, either 
standardized or not. The coefficient pj  can be considered 
the length of the projection of @ on the jth basis vector. 
Coefficient vectors oriented near the space spanned by a 
small set of the basis vectors will be well approximated 
by subset regression models, and methods assuming that 
they are so oriented should be an improvement over 
methods, such as least squares, that do not. In  effect, 
subset methods shrink the coefficient vector in the direc- 
tion of planes determined by a subset of the basis vectors. 
If that is appropriate, they do well. 

The other class of estimators, ridge methods and their 
generalizations, can be defined as 

0 = (X'X + Q)-'X'Y 

where Q is a positive-semi-definite matrix, or as a limit 
of such estimators. The independent variables matrix X 
is almost always assumed to be corrected for the mean, 
and is usually assumed to be standardized so that X'X 
is a correlation matrix. The properties of such an esti- 
mator are best understood in terms of the relative 
eigenvectors of X'X and Q. I t  is well linown that X'X 
and Q can be simultaneously diagonalized. That is, there 
is a nonsingular matrix A such that 

A'X'XA = A = diag [A1, Xz, . . ., X,] 
and 

A'QA = K = diag [kl, k2, . . .,k,] . 

The rows of A-' are proportional to the eigenvectors 
of X'X relative to Q. For ordinary ridge regression, 
Q = K = kI, and A is orthogonal. For generalized ridge 
regression, A is orthogonal and Q is the matrix having 
the same eigenvectors as X'X and eigenvalues kl, . . . ,k,. 
For Marquardt's generalized inverse, Q can be taken 
as a limit of matrices of this form, with the ki correspond- 
ing to the smallest eigenvalues Xi of X'X approaching 
infinity and those corresponding to larger eigenvalues 
being zero. 

This diagonalization induces transformations of the 
parameters and independent variables : 

@ -t A-l@ = a or @ = Aa , 
and 

X + X  = XA . 
We can express the estimator 0 as 

@ 	 = [(A1)-'AA-' + (A1)-'KA-'1-'X'Y 
= A(A + K)-'A'X'Y = A(A + K)-'X'Y 
= A& , where & = A-I@ = (A + K ) - ' ~ ' Y  . 

Thus @ and 0 can be expressed in terms of a and 8, which 
represent the coordinates relative to the rows of A-I (the 
columns of A, if A is orthogonal). These characterize the 
orientation of @ and @ relative to these eigenvectors. 

From the point of view of the paper, as well as of many 
other authors, the relevant property of an estimator is a 
generalized mean square error criterion 

7" EL(@- @)lw(@- @)I = E L ( &  - a)'lZ'(& - a)] , 
where W = W' and lZ'= AWA'. In  the usual cases 
@ = diag [wl, w2, . . . , zo,], i.e., W is also diagonalized 
by A. Both SEB (W = I = lZ') and SPE (W = X'X, 
lZ' = A) are of this form. Then 

7' 	 = t r  (lZ'Cov [dl) + t r  lZ ' (~[d  - a]E[& - a]') . 

But Cov [a ]  = u2(A + K)-lA(A + K)-I and 

~ [ a- a] = ((A + K)-lA - 1)a = - (A + K)-'Ka . 
Thus 

I t  is easy to check that 7' is minimized for any choice 
of wi > 0 [I] by ki = u2/ai2, in accordance with Hoerl 
and Kennard's result for W = I [3]. The minimized 
value, which in some sense represents the best that one 
could do using any estimator in this class of estimators, is 

For least squares, (K = 0)) me have 

Thus in each canonical direction the amount of pos-
sible improvement over least squares is (Xiai2/u2)/ 
(1 + X,ai2/u2). For fixed a i / u  the improvement is greatest 
for smallest X i .  This provides much of the motivation 
for Marquardt's generalized inverse estimator. However, 
for fixed Xi, no matter hoxv small, this ratio can be made 
as close to one as desired if the corresponding canonical 
coefficient ai is large enough. In  summary, we may con- 
clude that the closer the coefficient vector is to the space 
spanned by the eigenvectors corresponding to the larger 
eigenvalues A,, the more improvement ought to be pos- 
sible over least squares. 

The above considerations indicate to us that any ex- 
periment designed to explore the merits of various adap- 
tive ridge estimators, i.e., estimators with K chosen 
depending on the data (usually on &L~/s ) ,  should have, 
as one of the primary factors, variation of @ relative to  
the eigenvectors of X'X, i.e., variation of a. The second 
important factor is, of course, the pattern of eigenvalues 
of X'X. The direction of the eigenvectors is meaningful 
only with respect to their relationship with @.This is 
why variation of a should be a factor rather than the 
eigenvectors. 

One difficulty in evaluating the results of the present 
experiment is that the eigenvectors, or more importantly, 
the a's, are not given. The orientation is left to chance, 
without much indication of how the construction of 
patterned correlation matrices constrains a. Even when 
the eigenvector matrix of the nonstandardized form of 
X'X is chosen randomly (uniformly over the orthogonal 
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A. Orientation of Simulated Alpha's 

A l .  EIG = 64.0 16.0 4.0 2.0 1.0 0.5 C O R = n o  A2. EIG = 64.0 16.0 4.0 2.0 1.0 0.5 COR =no 
BETA = 32.0 16.0 8.0 8.0 8.0 8.0 MCL =no BETA = 1.0 1.0 1.0 0.0 0.0 0.0 MCL =yes 

A3. EIG = 30.0 30.0 30.0 20.0 20.0 20.0 COR =yes  A4. EIG = 30.0 30.0 30.0 20.0 20.0 20.0 COR = y e s  
BETA= 1.0 1.0 1.0 1.0 1.0 1.0 M C L = ~ O  BETA = 32.0 16.0 8.0 0.0 0.0 0.0 MCL = yes 

NOTE: EIQ denotes eigenvalues of X'X matrix, and BETA denotes the "true" regression coefficients. 

group), the eigenvectors of R, the correlation matrix, are 
not random. Still less random are the eigenvectors of 'R 
after it is massaged to have high collinearity and/or 
multicollinearity. To get a clearer picture of what might 
have happened in the experiments described in the 
paper, we conducted a small simulation study to investi- 
gate the distribution of a,for fixed 0, when the eigenvec- 
tors of X'X were chosen randomly and X'X was stand- 
ardized and massaged exactly as described in the paper. 
There is considerable difficulty in presenting the results 

because the orientation of a! is best expressed as a point 
on the unit sphere in 6-space. One simplification followed 
from the observation that we could always take a! as 
being in the orthant defined by aj > 0, j = 1, . . ., 6. 
To reduce the dimensionality, we looked a t  the orienta- 
tion of a! in some of the twenty three-dimensional sub- 
spaces defined by sets of three coordinate axes. An 
effective way of displaying such three-dimensional orien- 
tations is by means of an equiareal plot of a hemisphere 
(in this case, an octant) on a disk (quadrant). Figure A 
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Eigenvalue Patterns for SEB Simulation Study 

Eigenvalues 
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Pattern no. 
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A I  = Al /Az  
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A3 

A4 

A5 

A6 

EIG 
MCL 
COL 

shows four typical plots. Each circle is actually four 
plots, one for each of the four three-dimensional subspaces 
containing the eigenvectors a l  and a6 corresponding to 
the largest eigenvalue and the smallest eigenvalue of the 
correlation matrix, respectively. Thus, starting at the 
upper right and proceeding clockwise, the four quadrants 
display the orientations of the simulated a's in the spaces 
spanned by al l  an, and as;  all ar ,  and as ;  all aa, and a6 ;  
and -al, as, and as, respectively, where the aj's are the 
eigenvectors corresponding to Xi, the j th eigenvalue in 
decreasing order of magnitude. 

Figure A1 corresponds to a situation in which there is 
no introduced collinearity or multicollinearity. In this 
case the distribution of the aj's is exchangeable, although 
probably not completely random (isotropic), and hence 
we would not expect to see any marked pattern. In fact 
the display shows a fairly uniform distribution of direc- 

B. Ratio of SEB for Ridge Methods to 
SEB for Least Squares a 

Ratio 
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1.0 

Ratio 

2 3 4 5 6 7 8 9 
Pattern Number 

82. Canonical Coefficients: a' = (V50, V50)  
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83.  Canonical Coefficients: or' = (0,lO) 

9 10 

61. Canonical Coefficients: or' = (10,O) a Number of regressors: p = 2. 
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tions. In  the other three cases with either collinearity, 
multicollinearity, or both, the distributions are clearly 
not random. Figures A2 and A4 display a marked 
tendency for al to be large relative to a6, exactly the 
situation for which we would expect ridge methods to be 
an improvement over least squares. The degree of con-
sistency displayed by Figure A4 is, indeed, quite re-
markable. The "inner" aj's are, however, quite random. 
Figure A3 shows a case for which both a l  and a6tend to 
be bounded away from zero, and to be rather highly 
correlated. Again the "inner" ajls are relatively random. 
For emphasis, we would like to repeat that  these a's 
were chosen as described in the paper, using 100 different 
random sets of eigenvectors. For the data sets discussed 
in the paper corresponding to  Figure A4, for which a's 
are not given, it is clear we can say quite a lot about 
the orientation of a relative to a l  and as, even though the 
original eigenvectors were chosen randomly. 

To study the effect of varying the a's more explicitly 
than was done in the paper, we conducted another small 
simulation study. We restricted our investigation to a 
comparison of least squares with a few ridge-type esti- 
mators. No best-subset methods or their relatives were 
included. The particular procedures selected were (with 
the mnemonics used in our plots) : 

B : RIDGM in the paper, ridge with empirical Bayes k; 
c :  ICRIDG in the paper, ridge with- shrinkage to the F = 1 

contour ; 
I : PRIF in the paper, adaptive form of Marquardt's generalized 

inverse [5]; 
L :  Ridge regression with k estimated as p s 2 / B L ~ ' $ ~ ~as sug-

gested by Hoerl, Kennard, and Baldwin [4]; 
o:  	Generalized ridge regression as proposed by Hoerl and 

Kennard [3] with K = diag [kl, ..., k,] computed using 
a method of Hemmerle [2]; 

C. Ratio of SEB for Ridge Methods to 

SEB for Least Squares 
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C3. Canonical Coefficients: a' = (0, 0.5, 0.5, 0.5, 0.5, V99) 

b Number of regressors: p = 6. 

M :  	OPT in paper, generalized ridge with the correct (unrealiz- 
able) optimal ki's, yields a lower bound for ridge type 
estimators. 

Computations were carried out for p = 2 and p = 6 with 
variety of canonical regression coefficients a and eigen- 
values A. The a's were standardized so that a'a = 100. 
The variance a2 was assumed to be 1. For each com- 
bination (a, A), 1000 regressions with n = 20 were 
simulated and the average SEB calculated. The eigenvalue 
patterns for p = 2 and p = 6 are given in the table with 
the patterns ordered by the ratio of the largest eigenvalue 
to the smallest eigenvalue (i.e., the condition number of 
the correlation matrix). For p = 6, eight of the eigen- 
value combinations correspond to correlation matrices 
constructed according to the 23 combinations of the 
factors EIG, COL, and MCL in Experiment 2 of the paper. 
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Different randomly chosen rotations were used in con- 
structing each of these matrices. 

The results are too lengthy to give in full here. The 
general flavor is given in Figures B and C. Figure B 
(p = 2) and Figure C (p = 6) are semi-log plots of the 
ratio of the average SEB for each method to the average 
SEB for least squares. A point above the SEB = 1 line 
indicates the superiority of least squares. The abscissa is 
simply the eigenvalue pattern. Thus, the condition 
number of the correlation matrix increases from left to 
right. For both p = 2 and p = 6 there are clear gains 
for the ridge methods relative to least squares when al 
(the canonical regression coefficient associated with the 
largest eigenvalue) is large. However, the gains become 
losses when there are substantial at's associated with the 
smaller eigenvalues, provided the condition number of 
the matrix is not too large. For extreme eigenvalue 
patterns, there appear to be guaranteed gains from the 
ridge methods, irrespective of the a's, at least within the 
range of a patterns we studied. The basic point is that 
for moderately ill-conditioned matrices (say correspond- 
ing to the degree of collinearity and multicollinearity 
studied in the paper) it is not at all clear that ridge 
methods offer a clear-cut improvement over least squares 
except for particular orientations of @ relative to the 
eigenvectors of X'X. 

Looking again more closely at Figure A (as well as 
other similar plots not given here), we see that there were 
cases where a1was in fact the dominant component, even 
though no explicit decision was made-to make it so. This 
is a result of the choice of particular levels of factors 
BETA, MCL, and COR. Perhaps a more suitable procedure 
would have been to choose the orientations of the a's 

RONALD A. THISTED* 

Dempster, Schatzoff, and Wermuth have taken on the 
task of determining how best to achieve in practice the 
gains over least squares that are guaranteed to us in 
theory when the regression coefficients number three or 
more. They have given us a catalog of rules and, within 
the limitations of their study, have given us much insight 
into the behavior that these rules display and their 
performance relative to one another. Their conclusions 
are striking, particularly their assertion that ridge-
regression rules are markedly superior to Stein-type 
estimators, and it is primarily toward this result that I 

* Ronald A. Thisted is Assistant Professor, Department of Statistics, University 
of Chicago, Chicago, IL 60637. This work was funded in part by a National Science 
Foundation graduate fellowship. 

randomly, or even better, to choose combinations (a, A) 
in a systematic experimental design. 

The Monte Carlo computations just discussed were 
performed using FORTRAN programs on a CDC 6400 com- 
puter. The random normal deviates used were generated 
using a library routine NORAIAL based on a method pro- 
posed by Marsaglia and Bray [6]. The uniform random 
numbers used by NoRJrAL were produced by a multipli- 
cative congruential generator using modulus 248 and 
multiplier 513. Because the simulations were intended to 
be illustrative and preliminary, no attempt has been 
made to determine standard errors for the ratios of SEB 

in Figures B and C. All the curves in a plot were based 
on the same sets of randomly generated least-squares 
estimates aLs. However, different plots were based on 
independent samples of random deviates. 
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Comment 

shall direct my attention. Several remarks are in order 
which perhaps will clarify the scope and generality of 
their findings. These comments are primarily concerned 
with the relative merits of RIDGE estimators and Stein- 
type estimators. 

The study attempts to separate the effects of col- 
linearity, multicollinearity, and eigenvalue pattern by 
including separate factors for each of them in the ex-
periments. However, both SPE and SEB for OREG, RIDGM, 

and STEINW depend upon XTX only through its eigen- 
values. Furthermore, higher levels of COL (an MCL in 
Experiment 2) simply represent additional broadening 
of the eigenvalue spectrum. Consequently, it is not 
surprising to see significant main effects for each of these 
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Experiment 2) simply represent additional broadening 
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surprising to see significant main effects for each of these 
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factors and nonsignificant interactions in Table 3. I t  is 
important to recognize that these factors are not different 
effects but one and the same-the effect of highly unequal 
eigenvalues. As the reduction to principal components 
shows, multicollinearity and collinearity affect SEB and 
SPE only to the extent that they spread out the eigen- 
values of XTX. 

After discussing the optimality of RIDGE and STEIN 

rules, each of which is Bayes for a particular prior dis- 
tribution on a: and any quadratic loss, the authors proceed 
to require a "rule for determining k from the sample 
data." Of course this simply won't do for the subjectivist 
Bayesian, for whom k represents a judgment on the 
precisions of components of a. Further, it is important 
to note that we may forfeit the previously mentioned 
optimality if k is a function of the data. 

I t  is curious that STEINM does so badly with respect to 
SPE. I t  is well known [2] that the problem of estimating 
regression coefficients with SPE loss is equivalent to 
estimating the mean of a multivariate normal distri- 
bution with equal variances and loss function L(6, Q) 
= 116 - Q/!"g! Furthermore, Efron and Morris [I] show 
that in the latter problem the James-Stein positive-part 
rule cannot be substantially improved upon in very much 
of the parameter space. From the fact that STEINM is 
so badly beaten in SPE by RIDGM we must conclude tha t :  
STEINM is not equivalent to the James-Stein rule; the 
parameters chosen in the study are restricted to regions 
of the parameter space more favorable to  RIDGE rules 
than to  STEIN-type rules; or that in this particular trip 
to Monte Carlo the house has taken its cut, and that the 
results we see are not representative. This observation 
brings us to our final point. 

Bayes rules are not optimal only when the statistician 
has quantified his prior beliefs about a by specifying a 
probability distribution for it. They are also optimal, 
for instance, when the parameters in each experiment 
actually are generated by some random mechanism, the 
distributional properties of which are known to the 
statistician. In  the latter case it makes sense to speak of 
a "correct" prior distribution for a. The authors are 
correct in their remark (p. 80) that,  

To assert that RIDGE is better [than STEIN] in practice is 
equivalent to asserting that its prior assuniptions are more 
nearly correct over the range of the statistician's experience. 
Note especially that if the RIDGE prior is correct then the RIDGE 

estimator is optimum for any quadratic loss function, including 
SEB and SPE. 

Consequently, when we observe RIDGM to be the big 
winner both in SEB and SPE, a rough application of Bayes 

theorem leads us to conclude with high posterior prob- 
ability, that for these data, the RIDGE prior and not the 
STEIN prior is "more nearly correct." 

Consider, thefi, the random mechanism by which a is 
selected in this study. First of all, Q is fixed, then a random 
orthonormal matrix G is generated. For any fixed vector 
u, Gu is uniformly distributed on the p sphere of radius 
/ / u / / .The matrix G corresponds to CT of Appendix A. 
Consequently, a = GTe has a uniform distribution on 
the p sphere of radius / I @ / / .  I t  is easy to see that, since 
a:, -a:, and ( -al, az,. . . ,a,) * have the same distribution, 

Hence, the method used to generate a: has mean zero and 
equal component variances. Thus the prior variances of 
the ail by which we mean the variances of the random 
mechanism generating the ai in this study, are equal and 
not proportional to the inverse eigenvalues. 

As the authors point out in the quoted passage, this 
setup is highly favorable to RIDGE, and it ought not, to 
be surprising that RIDGM beats STEINM even on SPE, the 
loss function most favorable to STEIN-type estimators. 
Furthermore, the more disparate the eigenvalues, the 
worse STEIN-type rules will do in this experiment com- 
pared to RIDGE rules, since the STEIN prior is less like the 
"correct" prior. I t  is easy to predict on these grounds 
that STEINRI will improve its performance in Experiment 
2, since there are two vectors of eigenvalues added to 
those of the first experiment, each of which is less extreme 
than one of the vectors from the first experiment, so that 
the average spread in the eigenvalues is reduced. STEINM 

improves dramatically. 
Let us return then t o  the data analyst, "who knows 

only his data and not the underlying parameters," and 
let us leave him with two words of caution. The condi- 
tions represented in the present experiment may not 
represent those likely to occur inCpractice. Further, it is 
perhaps still too early to recommend ridge regression for 
routine use in data analysis. 
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Rejoinder 
A. P. DEMPSTER, MARTIN SCHATZOFF, and NANNY WERMUTH 

1. INTRODUCTION 

Since the discussants' comments fall into a few distinct 
categories, we shall organize our responses by topic 
rather than respond to each discussant separately. We 
preface our remarks with some comments of a general 
nature. 

Our first observation on reading the six sets of com-
ments is that all of the discussants are primarily in- 
terested in RIDGE methods, or in the comparison of RIDGE 

and STEIN procedures. Thus despite years of nidespread 
use of techniques such as stepwise regression and regres- 
sion on principal components, there is no mention of 
these methods by the discussants. We believe that the 
indicated direction of interest is due to a combination of 
the lack of theoretical understanding of the latter classes 
of procedures, and the analytical and philosophical 
attractiveness of the RIDGE and STEIN approaches. 
Possibly the performance comparisons produced by our 
study are such as to dampen interest in many common 
methods. Two of the discussants, Allen and Smith, ex- 
pressed interest in the REGF methods, but did not offer 
substantive remarks. 

A second observation is that there are no comments on 
the analysis of the results of the experiments. We were 
worried that someone might question our use of OREG in 
producing Table 5 ,  while we clearly suggested in the 
paper that methods such as RIDGal and FREGF offered 
possibilities for improved estimation. 

Third, we are impressed by the variety and seriousness 
of the commenters' views on the broad classes of methods 
covered by the labels RIDGE and STEIN. We believe that 
the state of the art in these areas is well reflected in the 
discussion. 

In  considering the specific points raised by the dis- 
cussants, it appears that most of these may be appro- 
priately classified as follows : 

1. Design of the experiment, 
2. Theoretical aspects of RIDGE and STEIN methods, 
3. Estimation of the RIDGE parameter ( k ) ,  
4. Criteria for evaluating alternate methods, and 
5. What to do with real data. 

We discuss in the next section what we consider to be the 
relevant aspects of various comments pertaining to these 
issues. 

2. DISCUSSION OF SPECIFIC COMMENTS 
2.1 Design of the Experiment 

As with any Monte Carlo type of study, hard conclu- 
sions must usually be confined to the domain of investi- 

gation, with extrapolation to unexplored regions of the 
parameter space difficult at best, and often hazardous. 
Accordingly, we have not made sweeping claims as to the 
general applicability of our results, but rather have at- 
tempted to explore the effects of some parameters of 
interest on a large number of different estimation pro- 
cedures. 

Two of the discussants' papers (Allen; and Bingham 
and Larntz) argued for variation of a: rather than @ in 
the experimental design, while a third (Thisted) stressed 
that the design factors COL and MCL affect the risk func- 
tions based on SPE ,and SEB only through the X's, for 
OREG, RIDGM, and STEINM. In both instances, our rationale 
was to provide comparative evaluation o f  these pro-
cedures with various types of stepwise selection of vari- 
ables. We expected these comparisons to be sensitive to 
variation in the p's as well as to the pattern and degree of 
correlations in the independent variables. I t  should be 
pointed out that in the simulation examples presented 
by Hoerl, based on random, selection of the a's with 
specified norm, RIDGM had very high efficiency relative 
to the maximum potential, over wide ranges of the norm. 

A second comment on the design, made both in the 
Thisted and Efron and Morris papers, has to do with our 
use of a random rotation matrix. Their claim is that this 
type of randomization would tend to symmetrize the 
prior distribution of the p's, resulting in exchangeable 
prior distributions that would naturally favor RIDGM 

against other methods. This idea is intriguing, but is 
not made very precise in the comments. Perhaps it 
means that random rotation makes the coordinates a: 
distribute in a way which appears exchangeable over the 
160 data sets. Note that both RIDGE and REGF assume 
prior exchangeability among the components of 0, but 
are very different methods which dominate each other in 
different stituations, so exchangeability is not a sufficient 
description of a prior distribution of 0 to guide the data 
analyst. In  any case, the actual distribution of @ over 
our 160 data sets is a very simple, known, discrete dis- 
tribution, as opposed to the symmetrized distribution, 
whatever that is. I t  seems a small swindle to base inter- 
pretations on an artificially scrambled distribution of a's 
rather than the simple known distribution of 0. An 
interesting question remains : how should we have syste- 
matically varied our factor @ to produce fairer com-
parisons of the relative strengths and weaknesses of 
RIDGE and STEIN? 
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2.2 Theoretical Aspects of RIDGE and STEIN Methods 

Efron and Morris state that STEINM is not the James- 
Stein rule, as we have been careful to note in Section 
2.4.1. We wish to point out that JSTEIN and STEINM are 
both STEIN-type procedures in that they shrink uniformly 
on all principle axes, and that they differ only in the 
degree of shrinkage. We maintain our contention that 
JSTEIN would have performed worse on our data than 
STEINM. I t  thus appears that statistical theory is in 
conflict with our empirical results. 

We believe that statisticians should no longer accept 
without question the assumptions of Efron, Morris, and 
Thisted that statistical techniques should be evaluated 
theoretically by means of frequentist risk functions de- 
pending on unknown parameter values. We were careful 
in our paper to define SPE and SEB in terms of actual 
errors of estimation, and not in terms of theoretical 
averages of such errors, whether frequentist or Bayesian. 
Our comment may be illustrated by Thisted's statement, 
"both SPE and SEB for OREG, RIDGM, and STEINM depend 
upon XTX only through its eigenvalues," which is 
literally false according to our definitions. I t  is also false, 
in general, when a prior distribution of @ is available, 
whether SEB and SPE are reinterpreted as posterior ex-
pectations given a data set, or are prior expectations of 
such Bayes risks. The statement is true for prior ex-
pectations of a game player who knows @,but the 
relevance and applicability of this game to data analysis 
is a matter of current dispute. 

Having expressed serious reservations about the mean- 
ing of the Efron-Morris-Thisted theory, we do wish to 
express our admiration for their efforts, and our wish to 
understand the insights which-they feel the theory gives. 
Their comment about the general incompatibility of 

I. minimax and empirical Bayes seems to us to capture a 
real dilemma of much of statistics: except in rare, 
mathematically nice, and overly taught, circumstances, 
there is no sure-thing principle to protect us against the 
need for hard prior judgments. 

2.3 Estimation of the RIDGE Parameter 

Efron and Morris's statement that ". . . ridge esti- 
mators are a class of Bayes rules against normal priors 
indexed by k, and the effectiveness of a given rule 
depends upon how k is estimated" summarizes the 
situation very concisely. 

We believe that we have demonstrated remarkable 
empirical properties for the RIDGM rule for estimating k .  
We have received a letter from ~rofessoi  Hoerl, written 
after his original commentary on our paper, in which he 
alludes to a recent comparative evaluation of a number 
of ridge estimators over a spectrum of signal-to-noise, 
He states, "Based on a broad comparison of all the 
algorithms, with p = 10, yours is the most effective. In  
fact, the degree to which your algorithm achieves near 
potential is startling." We are not sure whether he is 
referring to the study presented in his discussion of our 
paper, or to a further exploration not yet reported. 

We agree with Efron and Morris that it would have 
been desirable to include EBMLE in our set of RIDGE 

methods. Our failure to do so was due to an error which 
led 'us to believe until too late in the study that RIDGM 

was equivalent to EBMLE. We would conjecture that 
EBMLE should be slightly better than RIDGM on our 
criteria. 

Perhaps there are some Bayesian statisticians as 
Thisted states "for whom k represents a judgment on 
the precisions of components of cr." A more usual con- 
temporary Bayesian formulation would be to regard k as 
an unknown which needs a prior distribution just like 
other unknowns. The use of an estimated @ associated 
with an estimated k is a crude approximation to  the 
center of a posterior distribution, which is reasonably 
stable across a plausible range of smooth priors on k. 
We did not spell this out because our paper is not pri- 
marily Bayesian in outlook. We do feel, however, and 
Efron, Morris, and Thisted apparently agree, that the 
success of RIDGM must relate to some type of fit between 
the design of our study and the Bayesian assumptions 
which make RIDGM a near-optimum technique. 

2.4 Criteria for Evaluation of Alternate Methods 

Smith, and Efron and Morris have addressed them- 
selves to the question of criteria for comparing different 
methods. 

Specifically, Smith is concerned about our use of SPE 

as a measure of predictive error, because it is defined only 
at the same design points used in the experiment. He 
correctly points out that it ". . . gives no insight into the 
greater scope for improvement which occurs . . . when 
the directions in which predictions are required turn out 
to be those which are poorly estimated on the basis of 
the original design matrix." I t  would have been interest- 
ing to expand the design to incorporate evaluation of 
predictive errors at points other than those included in 
the original design. 

Efron and Morris state that JSTEIN should not be 
applied with the loss SEB, because it is not minimax in 
this case. We believe, however, that SEB is a very im- 
portant criterion, since it  oft,en happens that the principal 
objective of a regression study is to estimate the values 
of the regression coefficients. 

2.5 What  to Do with Real Data 

The problem of what to do with real data is not solved 
by our study. Efron and Morris, and Thisted correctly 
caution against the routine application of any shrinkage 
rule, and indeed we have adopted exactly the same 
posture in our paper. None of the discussants offered any 
concrete proposals, however, as to how one should pro- 
ceed when analyzing real data. Nor were there any 
comments on our suggestions other than those by Hoerl, 
who indicated that he has experimented with a number 
of versions of our suggestion to divide data into subsets 
as a basis for comparing different estimation techniques. 
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Although he claims to  have found such techniques to be 
deficient, we would be most interested in seeing the 
results. In terms of a predictive error criterion such as 
SPE, or the predictive mean square error advocated by 
Smith, it would seem that comparison of the predictive 
capabilities of various methods from one subset to 
another mould provide a reasonable empirical basis for 
selecting a particular method in a given situation. 

3. CONCLUSION 

We fe,el that a number of interesting aid useful points 
have emerged from the various discussions of our paper, 

and believe that the combined effect will be to stimulate 
further research, both theoretical and experimental. We 
view the problem of what to do ~vith real data as being 
of paramount importance and we hope that some of the 
suggestions made in the concluding section of our paper 
will be followed up. This is not meant to preclude inde- 
pendent approaches, for there is certainly ample room 
for development and exploration of new ideas on many 
facets of the problem. The potential for large gains 
clearly exists. We need to develop tools for better ex-
ploiting this potential. 
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