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1. HISTORY AND APPLICATIONS OF MODELS FOR ANALYSING STRUCTURES

In medicine, psychology, marketing research and sociology one tries to find
determinants for human behaviour and reactions. Typical questions are: which
conditions enhance the development of a particular ability, what causes a
change in reaction patterns, what kind of background or anamnesis is favourable
to a special phenomenon? Observations from cross-sectional studies are used

to evaluate empiral evidence for such reflections. The observations then
concern systems of variables that are characteristics, achievements or atti-
tudes of persons. With models for analysing structures one intends to describe
and explain the relations between the observed variables. These types of
models have a Tong tradition {compare: Wright 1923, Spearman 1926, Simon 1957,
Blalock 1971, Goldberger and Duncan 1973, Goodman 1978), a longer tradition
than the theory of multivariate statistical analysis (compare: Anderson 1958).
Thus, the aims and first methods for analysing structures had been formulated

a long time before problems and answers in multivariate statistics became
weTl-known.

Path analysis as proposed by Wright (1921, 1934) represents one of the early
attempts to meet the need for methods to analyse structures. The purposes

that Wright stated at the time have remained the same, only the terminology
has changed and a more realistic assessment of what can be achieved with such
analyses, is possible nowadays. For a given system of variables one wants with
path analysis

(1) toclassify some of the relations between variable pairs as direct, others
as only indirect, ie. explainable through the remaining direct relations
in the system,

(2) to decide on whether the observed relations between the variables can be
well approximated by a simplifying structure, and

(3) to evaluate the relative importance of direct relations.

Translated into statistical terminology one can interpret these tasks as
follows:

(1) means to specify a multivariate model, more precisely a system of depen-
dencies and associations, in which conditional independencies are postula-
ted for some of the variable pairs,

(2) corresponds to evaluating and testing the goodness-of-fit of such models,
and

(3) amounts to defining and estimating standardized versions of measures for
partial associations and partial dependencies.
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In the 1920's, it was still believed that finding a well-fitting model ie. a
simplyfing structure in terms of only few direct relations is to establish
evidence for corresponding causal dependencies. This view is no longer tenable.
If a statistical model fits some observations well, then the empiral evidence
only does not (yet) contradict a causal interpretation that is compatible with
the statistical model and is derived from subject matter knowledge. Some of
the reasons are that

- a cross-sectional investigation lacks one of the ingredients most important
to studying cause-effect relations: the possibility for observing a change
in time, ie the effect of a hypothesized cause, and

- each relation classified as direct in one given system of variables can
turn into an indirect one, once a system with some additional variables is
analysed.

On the other hand one should be able to interpret the classification as an
indirect relation as evidence against a causal dependence. This can be done,
provided an indirect relation in the model is in fact equivalent to a conditio-
nal independence and the observable variables satisfy the assumptions of the
statistical model. The development of the graphical chain models (Lauritzen

and Wermuth 1984) represents one importantstep towards more adaequate analyses
in the above sense. In these models certain missing interactions are equivalent
to conditional independencies and a joint distributions is specified for dis-
crete and continuous random variables. Thus, qualitative characteristics are
modelled by discrete random variables and quantitative ones by continuous
random variables. In the case one has a system with variables of only one kind
the models specialise to well-known methods for analysing structures, e.g. to
path analysis, and to covariance selection (Dempster 1972) in the case of only
quantitative characteristics and to modified path analysis (Goodman 1973,
Wermuth and Lauritzen 1983) and to graphical loglinear models (Birch 1963,
Bishop, Fienberg and Holland 1975, Darroch, Lauritzen and Speed 1980) for
systems containing only qualitative characteristics.

Typical examples for situations, in which one wishes to investigate the structure
of a system of variables are provided e.g. by studies on achievement, stress
and anxiety (compare Hodapp 1982, Lazarus 1966). There, one distinguishes bet-
ween variables capturing reactions of a physical kind (1ike systolic and dia-
stolic blood pressure, puls rate) and of a psychical kind (1ike nervousness,
tiredness), furthermore between personality dependent variables (1like anxiety,
emotional stability and coping mechanisms) and variables charactising a given
situation (1ike stress at work, hiercharchical status and other working condi-
tions). Psychological theory permits to specify a complex system of dependencies
and associations. For instance, the personality dependent variables are consi-
dered to be response variables of the working conditions and determinants for
the reactive variables. For some of the jointly dependent variables like dia-
stolic and systolic blood pressure one cannot assign a direction to the rela-
tionship, i.e. one can only postulate an association. A corresponding statisti-
cal model then contains (joint) conditional distributions with discrete and
continuous variables, ie. distributions Tike the one used for graphical chain
models. In general, such models will neither be generalised linear models

( McCullagh and Nelder, 1983) nor be linear structural relation models (Joreskog
and Sérbom 1978) even though there is an overlap in special cases.

The conditional Gaussian (CG-) distributions considered by Lauritzen and Wer-
muth for the graphical chain models have a property, which is extremely impor-
tant for corresponding data analyses: they define fairly simple transformations
of the observations, which have to reflect conditional independencies of vari-
able pairs, if there are any. These transformations are the maximum-1ikelihood
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estimates of the so-called natural parameters in the saturated case, ie., in the
situation without restrictions on the natural parameters. Thus, for these
distributions one gets guide-lines for how to read off from the data indepen-
dencies that are compatible with the observations, ie the models tell how to
detect simplifying structures in the data.

In the remainder of this paper we illustrate with examples how conditional
independencies are reflected in data of CG-distributions. To this end we first
describe the graphical representations of the independence structures and of
our models (section 2), then discuss the implications of two selected struc-
tures for different constellations of quantitative and qualitatitve variables
(section 3) and finally (section 4) point of possible pitfalls.

2. GRAPHS FOR CONDITIONAL INDEPENDENCE STRUCTURES AND GRAPHICAL CHAIN MODELS:

In the graphs considered here a vertex drawn as a cross represents a variable
and Tines and arrows between vertices describe associationsand dependencies.

Boxes indicate the dependence chain (D,, ..., D;), ie a partitioning of the

vertex set. A chain eTement D, for t < T specifies a set of jointly dependent
variables, the regressands: « € D_ and a set of potential regressors:

B € Uj>t Dt' For joint regressandg the permitted relations are direct or in-

direct associations, ie.a pair of vertices az, 8§ € D, is either connected by a
Tine or not. As relation between a regressand o« € Di and a potential regressor
2 € D., with j > i a direct or indirect dependency is possible, ie. there is
e1ther an arrow pointing from B8 to o or not. Each missing direct relation
means that the variable pair is conditionally independent given the remaining
joint regressands and potential regressors, i.e. for a € D » B € D and j > i
we have:

o B ‘
X x o= o [Le | (U g D) > a,8)

In the next section we shall further discuss the two conditional independence
structures displayed in Figure 1.
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Figure 1: Two conditional independence structures
(a) an association structure with o | #{(v,3), o || vi(B,8)andr ||y | (a,8),

A

(b) a dependence structure with « |8 [(y,d) and & | v | &.

A conditional independence structure of the described type together with
distributional assumptions define a statistical model. We only consider
distributions of the conditional Gaussian type (see Lauritzen and Wermuth,
1984) and speak then of graphical chain models. In graphical representations
of these models the vertices have to indicate the type of variable, therefore
a vertex is drawn as a circle, if the variable is continuous and as a dot, if
the variable is discrete. Examples for such graphs are given in Figure 2.
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Figure 2: Examples for graphical chain models. An association structure

(a) a graphical log-linear model with (o 1 3llv)ls and mixed
dependence structures one with

(b) univariate conditional CG-distributions and one with

(c) joint conditional CG-distributions.

3. SUMMARIES OF DATA FOR GRAPHICAL CHAIN MODELS.

Independencies show up in different summaries, depending on whether the variab-
les in the considered system are only qualitative, only quantitative or how
many there are of both types. These differences can be well enough explained
by using a system with only four variables. To further simplify the represen-
tation we assume here that each qualitative variable has only two possible
categories.

3.1 ONLY QUALITATIVE DATA

Each graphical chain model for an association structure with only qualitative
variables is a member of the well-studied class of log-linear models (Birch
1963, Bishop, Fienberg and Holland 1974, Haberman 1974, Andersen 1978,
Plackett 1981). The natural parameters are here called log-linear interaction
terms.

Maximum 1ikelihood estimates for the saturated model can be computed with the
help of standard statistical software 1ike BMDP. It is wel-known (see Haberman
1978, Wermuth and Lauritzen 1983) that for 2Kk-tables these estimates can also
be obtained by applying Yates algorithm to the observed log counts. This algo-
rithm is illustrated here in Table 1.

Table 1: Illustration of Yates algorithm for a 2x2 table

*
gell values ___step result O; (2) offects
J (2) Y.

T 1 160 40 overall !

2 1 - 80 - 20 main of i Dy
1 2 - 40 - 10 main of j : B1
2 2 0 0 interaction F Yy

WIth @q =t oq Byt vyg 3 pay SDBy T Tgvyy T Iyvey = 0
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Goodman had first suggested (1971) to Took at standardized estimates of the
natural parameters of the saturated model for the purpose of judging the
goodness-of-fit of a model. Standardisation does not change the results in
2K-tables. The data speak for the conditional independence of a variable
pair, if all the estimated parameters pertainig to this pair are close to

zero. As an illustration we use the fictitions data in Table 2. It is diffi-

cult to see a simplifying structure in the counts, but the transformation

into estimated r-parameters reveals a perfect fit to an independence structure

of the type shown in Figure 1 a, ie.a perfect fit to the model represented

by

Table 2: An example for a 24-contingency table with perfect fit to the

hypothesis (1] 2| 3) | 4.

cell counts estimated parameters
ijkg nijkz type value
1111 216 A 3.94
2111 504 () .34
1211 24 2 (2) .20
2211 56 y(1s2) 0
1121 54 ,(3) .00
2121 126 3 (1,3) 0
1221 6 1 (2,3) 0
2221 14 3 (1,2,3) 0
1112 36 1 (&) .07
2112 4 W14 -.76
1212 144 1 (2,4) .90
2212 16 y(1,2:4) 0
1122 144 3 (3:4) .06
2122 16 3 (1,3,:4) 0
12202 576 1(2:3,4) 0
2222 64 3 (1,2,3,4) 0

It cannot be emphasized enough how important it is for good data analyses to
Took at such transformations and not only at corresponding yx2-statistics for
the goodness-of-fit: all kinds of dependencies, ie nonzero interaction parame-

ters can hide behind high-degree of freedom test-statistics that appear to

indicate a good fit of the model.

L/

24.2-5



ResuTts on the equivalence of graphical and recursive models (Wermuth and Lau-
ritzen 1983) explain why the above table of counts also gives a perfect fit
to a recursive model with three response variables to

1._._

N.\
3 o* |

Results by Kiiveri, Speed and Carlin (1984) or Lauritzen and Wermuth (1984)
tell that it also fits perfectly a model in one response and a conditional
independence condition on the regressors:

2
1 4 ////.

3

f

="

\

On the other hand it is, in general, not enough to check the fit of a depen-

dence structure like:
3
|
1 2
o(\::>

4

in the described transformation of the 24—tab1e: for 3| a | 2 one has to look
at a similar transformation of a second table, the one obtained from the
2"-table by marginalising over variable 1.

3.2 ONLY QUANTITATIVE DATA

Each graphical chain model for an association structure with only continuous
variables is a covariance selection model (Dempster 1972), applications of
which have for instance been described by Wermuth (1978), Hodapp and Wermuth
(1983). The natural parameters are here the concentrations, ie. the elements in
the inverse covariance matrix. Data speak for the conditional independence of
a variable pair (i,j) given the remaining variables, if an observed concen-
tration s1J, or the partial correlation coefficient given all other variables

K is zero: .. AN
= -5y (s1isddy1/2,

"ij. K
As an illustration we use the fictitions correlation matrix in Table 3. Again,
it is not easy to recognize a simplifying structure in the correlation matrix.
The transformation of the data into estimated concentrations of the standar-
dized variables, ie the elements in the inverse correlation matrix however,
exhibit a perfect fit to the model represented by

oO— 4 .

W N
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Table 3: An example for a 4x4 correlation matrix with perfect fit to the
hypothesis (1] 21 3) | 4.

1 1 .431 367 .612 ( 1.60 0 0 -.98
R 1 422708 L o1 1.98 0 - 1.40
| 1600 1.56  -.94 !
1 3.14
L ] ]

As for discrete variables, this correlation matrix has at the same time a
perfect fit to other types of graphical chain models. This is explained by
results on the equivalence of covariance selection models to systems of linear
recursive equations with independent errors (Wermuth 1980) and to other
recursive systems (Kiiveri, Speed and Carlin 1983). Thus the above association
structure is e.g. equivalent to:

1 2
Qw-]

2 O =0 4 1 0w

L1 3

3 o 0

In general, it is not enough to look at the inverse 4x4 matrix R to check the
fit of a dependence structure such as

3
Logl [ >

4

Instead this task can be accomplished by judging the fit of two seperate asso-
ciation structures, of

3
1 2 2
4 4

— e

ie. r and r have to be near zero.
12.34 34.2
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3.3 TWO QUANTITATIVE AND TWO QUALITATIVE VARIABLES

A graphical chain model for an association structure with both continuous

and discrete variables has been called a mixed interaction model (Lauritzen
and Wermuth, 1984). If we use a notation for the interaction parameters
analogous to the one common for log-Tinear models, denote the realisations

of the continuous variables by x and y and of the discrete variables by i and
J, then we can write the joint log-density in terms of the natural inter-
action parameters as follows:

Tog f(x,y, 1,j)
1, 13, 1(4) , 1(3,4)

= (n' + nj o N5 ] x
N RN G )
B %’ !« w}(g) + w;(a) + vlf?’4)] x?
- % [¥é 4 W§(3) . W§(4) W$E§,4)] y2
Co2 L1203, e W}:§(3,4)] 'y

Here, we have e.g. as two-factor interactions terms a pure discrete term:

)
A§§’4), a pure continuous term: w12, mixed Tinear terms: n1(3), n2(3). n1(4',
n2(4) and mixed quadratic terms, like W1(3), $2(3) Similarly, there are main

effect terms and higher-order mixed terms. To get the maximum-1ikelihood
estimates of the interactions in the saturated model, one needs to compute
for each combination i,j the

nij = count,
Xjj o= mean of x, (2)
y].j := mean of y,
Sij = covariance matrix for x and y.
We write the elements in the inverse covariance matrices as
o &y
-1 w 1] 1]
S.. ' o= | l (3)
A S
L K

Then, the following six 2x2 tables are the basis for obtaining the desired
estimates in each of the consecutive rows listed in (1)
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< XX vl Xy

st Yig o

= Yy - Xy
Yig S5 % %45 %63 0

XX

S35 (4)

s,
1

S,
1J
Tog n.. - 3 (log det S.. + (X:., Vis) Sii (Kuvs ¥ 01
ij ~ Z ij 132 7437 2 ij? Y9’ -

Again, one may use Yates algorithm to determine from each 2x2 table an
overall effect, the main effects and an interaction effect and again, the
data will support the conditional independence of a variable pair given all
remaining variables, if the estimates of all interaction terms pertaining to

this variable pair are close to zero.

To have a good fit to 1| 2 | (3,4), ie x|l y | (i,j) the concentrations s%Y
have to be near zero for all i,j. For 1]/ 73] (2,4), ie.x | il (y,j) no
interaction effect and no mg}n eﬁ;ect foiyi is permitted in eth of the three
tables with Xij Sij * Vij Sije sij and S35 and finally, for 31 4| (1,2), ie.
i1l J | (x,y) one has to Took at all six 2x2 tables of (4) and only main
effects are allowed in each of them.

In conditional independence structures there are Usually several pairwise
independencies, e.g. for (1 || 2 ]| 3) | 4 the terms for pairs interaction
(1,2), (1,3) and (2,3) vanish, i.e. (1) reduces to
Toa f(x,y,i,d)
[n1 1(4)] 2 2(4)]

+nj X + [n +r|j y
1 1 4); 2 1.2 2(4); 2
> ¥ +wj x5 Ly +daj ly
(3) (4) (3,4)
+ [x+ AT+ Aj + Ai,j ]
Consequently, data will fit this model
1
2 4
3

well, if the first four tables of (4) show neither a main effect for i nor an
interaction effect and if the concentrations s§¥ are close to zero for all
i,j. This turns out to be equivalent to asking_for uncorrelated x and y in

all classifications and for equal means, like Xij = Xj and equal variances,
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Tike sxx,u SXX,J

In the model with e.g. (1 || 3 ]| 4) | 2 all interaction terms with (1,3),
(1,4) and (3,4) are zero, ie. (1) reduces to

]09 f(X, Y 19 J)
= fn1JX + [ 2, n$(3) + n§(4)] y
—%['¥1]x2 -

[Wz + Yg(3) + W?(4)] y2

i J
(3) , 14

i

~of— =

[w12}xy + A+ A

.

Data will therefore be compatible with this model

1
3 2
4
if there is only an overall effect in the tables with ?}1 s:§A+§ii ??, s?? and

s?g and no interaction effect in the remaining tables listes in (4). Thus, the

same type of independence structure can lead to rather simple and fairly com-
plicated implications for the data, depending mainly on which of the variables
under investigation are gualitative and which are quantitative.

4, SOME WARNINGS

To deduce conditional independence just from looking at data can of course be
misleading. One should for example consider the possible effects of

- mere sampling fluctuations

- violated distributional assumptions

- reclassifications of categories.

If there is for instance a small but definitely nonzero conditional associa-
tion in the population, then it still will appear as a zero association in
many samples. Thus, if a conditional independence is judged to be implausible
from subject matter considerations, then an apparent zero interaction in some
data need not be taken as evidence for the conditional independence, hut is

more 1ikely to have occurred by mere chance, ie. because of sampling fluctua-
tions.

If we have the following correlation matrix

{_ 1 .62 .82
l

R = 1 .76
L 1
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then the partial correlation r12.3 and the concentration r12 are zero, since
"2 = T13 Mo3- This matrix may have been computed in a sample from a joint

normal distribution, then the data point at a conditional independence:
Tl 2] 3. If it results however from the following "observations"

X 10 28 28 18 6 0 8 38
Yy 0 26 32 26 16 10 16 42
z ;¢ 0 24 28 20 8 0 4 28
with even apparent pairwise Tinear relations:
X [ X ° z
r..=.86 = -
Xy o o Pyz™+93 o0 rzy"93 e o
[ ]
° ° *
r . 0 .. :
- Y z . Y

@

then a simple plot corresponding to the partial correlation coefficient, ie
the plot of residuals indicates instead a strong nonlinear conditional
dependence for the variables 1 and 2 given 3:

T T Y- ’%/ZZ

Similarly, if we have the following "observed" table of counts

J
i 1 2
1 50 50
2 50 50

it can point at the independence of the two variables, but it may also have
resulted from a particular sampling plan, ie. from taking equal numbers of
observations in all groups. Then, the numbers are of course not the summary of
a random sample for the two qualitative variables.

Another possibility is that the table does not correspond to the original
categories of one of the variables. If, for instance j = 1 is made up from
categories j* = 1 and 2 and j = 2 from the original levels j* = 3 and 4,

24.2-1/



then this reclassification can cover up an actual dependence, as is illu-
strated with the next table:

j*
i 1 2 3 4
1 40 10 10 40
2 10 40 40 10

Undoubtedly, one will be able to produce similar examples for possible
pitfalls in interpreting associations and between quantitative and qualita-
tive variables, once they have been better studied. This can be done with
graphical chain models: they combine original aims in analysing structures
with probabilistic concepts and distributional assumptions and tie them to
graphtheoretic results.
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SUMMARY

We give some historical background on models for analysirg structures, des-

cribe the graphical representation of conditional independence structures

and illustrate how differently these structures are reflected in data from

graphical chain models depending on how many and which of the variables in the
investigated system are qualitative, which are quantitative.
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