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Summary

A simple approximation for the bivariate normal distribution function is described, together with
a second-order refinement. For |p| < 0-9, the worst error is about 10% arising when both arguments
of the distribution function are equal, but over most of the range the agreement is much closer. An
extension to trivariate normal integrals has similar good properties.
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Numerical evaluation of the bivariate normal distribution function is required for a
number of probabilistic and statistical purposes and there is no general closed form
expression. The computer algorithm of Donnelly (1973) and its extension to more
dimensions by Schervish (1984) are available for accurate numerical evaluation and have
been extensively used in the present study. The National Bureau of Standards tables
(1959) are comprehensive and easily used, especially for ‘simple’ values of the correlation
coefficient. Owen (1956) discusses the numerical analytical aspects, provides the
theoretical basis of Donnelly’s algorithms and gives a concise form of table. It is still
helpful, however, to have an explicit formula for at least three reasons: to aid further
analytical development, to be employed in rapid ‘pocket calculator’-based evaluation,
especially for preliminary calculations, and for computerized use when a large number of
evaluations are required and speed of computation is important. The present note gives
such a formula.

Let (X, Y) have a bivariate normal distribution of zero means, unit variances and
correlation coefficient p.

We write

L(a, b;p)=P(X>a,Y>b).

Probabilities in other quadrants are easily determined given L(a, b; p) and the univariate
standardized normal distribution function ®(x). Now

L(a, b;p)=P(X >a)P(Y>b | X >a)

where the second form follows because Y given X = x is normally distributed with mean
px and variance 1 — p°.

X>a} 1)
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Provided that the function whose expectation is taken in (1) is nearly linear over the
range of appreciable probability, as is a plausible approximation if a, b, p >0, we may as
a first approximation replace X in (1) by

p(a) = E(X | X >a) = ¢(a)/ ®(—a), o))
where ¢(x) = ®'(x) is the standardized normal density. Thus
DN = b PH(@) — b
L(a, b; p) = ®( a)CI){\/(1 —pz)}
= ®(—a)®{&(a, b; p)}, 3)

say.
Now for a random variable Z of fairly small dispersion and for a function g(Z) of not
too nonquadratic a form

E{g(Z)} = g(uz) +30%8"(uz),
where u, and 0% are the mean and variance of Z. By applying this to (1) a refinement to
(3) is produced, namely
L(a, b; p) = ®(—a)[®{&(a, b; p)} —3p*(1 — p*)T'E(a, b; p)${&(a, b; p)}o*(a)], (4)
where
o0%(a) =var (X | X >a) =1+ pu(a) — u*(a). )

Now L(a, b; p), is symmetric in a, b, but the approximations (3) and (4) are not. That is,
a different pair of approximations results from interchanging a and b. Further, because,
for example,
P(X>a,Y>b)=P(X>a)—P(X>a, Y<b)
=P(Y>b)—P(X<a, Y>Db)
=1-P(X<a)-P(Y<b)+P(X<a, Y<VD), (6)
six more approximations like (3) are obtained in pairs by applying the argument leading
to (3) to the final term in (6) and expressing the univariate probabilities in terms of ®(.).
There are, for a # b, thus eight approximations equal in pairs, each with a second-order
version.
Numerical comparisions support the following proposal. For p > 0:

(i) provided at least one of a and b is positive, use (3), taking a to be the greater of
the two arguments;
(ii) if both a, b are negative, compute an approximation to

L(—a, -b;p)=P(X <a, Y<b)
via (3) arranging —a to be the larger of —a, —b and thence, if required, compute
L(a, b; p)=1~- ®(—a) — ®(—b) + L(—a, —b; p).
If p <0, the results for p >0 can be applied if we write, with Y' =Y,
L(a, b;p)=P(X >a,Y' <-b)=®(—a)~— L(a, —b; —p).

Table 1 compares exact values computed via Schervish’s (1984) procedure with the
approximation (3) and the more refined version (4). The worst results are obtained for
a =b when p is large. At p =0-9 the error of (3) is roughly 10%, substantially reduced by
the more refined version (4). Over much of the range, the agreement is much closer.
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Table 1.

Exact bivariate normal integral L(a, b; p) compared with approximation (3) and improved
approximation (4). Probabilities X10°

(a, b)
Situation 0,00 0,-%) ©.-1) ¢ G0 G- LY LY @10

p=0-2, exact 2820 3740 4400 1207 1825 2376 381 669 986

3) 2823 3748 4408 1206 1827 2380 379 668 987

“4) 2821 3740 4400 1207 1825 2376 381 669 986
p=0-8 exact 3976 4692 4944 2186 2778 3022 976 1351 1531
3) 4282 4855 4584 2327 2888 3057 1020 1404 1553

4) 3802 4653 4942 2168 2747 3014 982 1339 1524
p=09, exact 4282 4884 4993 2453 2969 3077 1155 1497 1580
3) 4751 4987 5000 2736 3057 3085 1275 1551 1585

“4) 4096 4900 4997 2326 2953 3079 1116 1478 1579

(a, b)

Situation G» Gy GH @2 @) @y GH G2 G
p =0-2, exact 86 178 304 14 34 67 2 4 11
3) 86 178 304 14 34 67 1 4 1

“4) 86 178 304 14 34 67 2 4 1

p =0-8, exact 349 530 631 98 165 209 22 41 55
3) 357 548 641 98 170 212 21 41 56

4) 354 527 628 100 165 208 22 41 55
p =0-9, exact 439 615 663 134 203 225 32 53 61
3) 476 639 667 142 211 226 33 55 62

“4) 435 605 663 135 200 225 33 53 61*

* There may be a rounding error of 1 in the last digit.

Only positive values of a are included because of the recommendation (ii) above. Further
for each value of a it is necessary to give only three values of b because values of b
smaller than the last one tabulated leave the integral unchanged to the accuracy used.

Use of the ‘wrong’ approximation may produce bad results; for instance at p =0-8,
a =2, b =—2 interchange of a and b in (3) leads to a first approximation of 0-0005 instead
of 0-0228, which is the recommended approximation and is correct to the digits quoted.

Essentially the reason for this and the basis for the ‘rules’ set out above is that the
relative accuracy of our approximation 0-436 to P(Y>-—2|X >2)=0-430 is much
greater than 0-0056 is to P(X >2| Y > —2) = 0-023. This can be explained numerically by
computing P(Y>—-2| X =x) and P(X >2|Y =y) for a range of respectively x and y of
appreciable conditional probability given respectively X >2 and Y > —2. The latter
conditional probability but not the former, varies substantially and very nonlinearly, so
that (3), based on a linearization of the function whose expectation is taken, performs
badly in the latter case.

The relations between the other approximations hinge on such results as that

P(Y>b|X>a)=1-P(Y<b| X >a),
these being approximated respectively by

() 1-e(aze)

and that
P(Y>b|X>a)=P(Y<-b|X <-a),
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the right-hand side being approximated by

(—b —-pE(X| X <—a)
o <)
V(1 -p?
which is again equal to the first approximation. This is because E(X | X < —a)=
-E(X | X >a).
For large values of p and for arguments near a = b, an approximation of Polya (1946,
e.g. eqns (6.7), (6.8)) gives good results, in particular the approximation

onp=1ol@ ) M) o

At p =0-8, a = 0 this gives 0-3983, instead of the exact value 0-3976, but at p =0-2, a=0
it gives the poor approximation 0-240, compared with 0-2820. While at p =0-8, a =0,
Polya’s approximation is rather better than our (4), the overall performance of (7) is
much inferior; in particular (7) can lead to negative values.

It is possible to replace the univariate integrals by the approximations discussed by Lin
(1990, e.g. eqn (5)), in particular by

O(—2z) = {1 + exp (:_Z—n_zz)}‘l (z>0).

We have not done this in Table 1 although its use would have replaced (3) by an
expression in terms of elementary functions. There is on the whole some loss of precision,
minor except in regions of low correlation and low probability.

The approximations in this paper can be generalized in at least two ways. First, if the
region of integration instead of being (x >a,y >b) is {x>a, bi(x) >y >by(x)} the
approximation (3) is replaced by

Q(_a)[cb{ pu(i}(; fol{)g)(a)}} _ Q{pu(i}(zf];{)g)(a)}}]'

Secondly we can argue in three dimensions that if (X, Y, Z) are trivariate normal with
zero means, unit variances and correlation coefficients p,., p.., p,, then

L(a,b,c;p)=P(X>a,Y>b,Z>c)

- ook[Lg 2 T e )

. _ b - pyx.u(a) c— pzx.u(a) .
= L Ve o)

and then (3) can be applied to the second factor. Here p,, , is the partial correlation
coefficient between Y and Z given X.

A very extensive numerical check of (9) has not been attempted, but Table 2
summarizes comparisons for (i) an equicorrelated trivariate normal distribution with
common correlation p = 0-8, (ii) a distribution with p,, = 0-4, p,, = p,, = 0-8. In all cases
we took a = b =c, for a reason similar to that underlying Table 1. Provided at least one
argument is positive the agreement is remarkably good, being poorest near the origin. If
the correlations are smaller the agreement improves. Thus in case (i) with p =0-2, the
exact and approximate values at a = b = ¢ = 0 are respectively 0-1731, 0-1726.

We give one illustration of the use of the bivariate approximation. Let T;, T, be two
test statistics having under a null hypothesis a standardized bivariate normal distribution

®)

X>a]

)
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Table 3
Examination of quadratic regression. Diastolic and systolic blood pressures. Anxiety and anger

, Sig. level
rny  na(2-3r1) On O U, 11)
Blood pressures 0-741 0-261 0-508 —0-382  0-508 0-846
Anger and anxiety scores 0-354 0-574 -0-086 —0-789 —0-789 0-128

of correlation coefficient p. These can be combined into a single test statistic in various
ways, for example, via the quadratic form

@} %) (7).

having a chi-squared distribution with two degrees of freedom. If, however, there are two
qualitatively different types of departure and sensitivity is required against departures of
either one of the the types on its own it may be sensible to use U, = max (7}, T,), or, in a
two-sided version, U, = max (|T;|, |T5|) as test statistics. Then, under the null hypothesis

P(Uyzu)=P(Ty,=uor T,=u)
=P(Ti=zu)+ P(L=u)-P(Ty=u, ,=u)
=2®(—u) — L(u, u; p), (10)
and similarly
P(Uy,=u)=2®(—u) — 2L(u, u; p) + 2L(u, —u; p). (11)

A special case (Cox & Small, 1978), involves testing the linearity of relationships in a
bivariate distribution of two continuous variables X, and X, via (Q,;, Q,), where Q,, is
the standard ¢ statistic for the significance of the regression of X, on X3 adjusting for
linear regression on X,;; Q,, interchanges the roles of X; and X,. The asymptotic
correlation between Q;, and Q,; is p1»(2 — 3p%,), where p,, is the correlation between X,
and X, and hence can be estimated consistently.

Data on (i) diastolic and systolic blood pressures and (ii) anxiety and anger scores of 98
males (Hodapp, Neuser & Weyer, 1988) gave the results summarized in Table 3, which
serve as a largely formal illustration.

In none of the cases is there clear evidence of non-linearity, the larger departure being
for the anger and anxiety scores. A scatter plot shows a suggestion of non-linearity at high
scores of anger. The calculation of the significance level (11) adjusting for selection of the
larger of |Q;,| and |Q,| confirms that there is a reasonable consistency with the null
hypothesis.
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Résumé
On décrit une approximation simple pour la fonction de distribution normale en deux dimensions ainsi qu’un
raffinement de second ordre. Dans le cas ou la correlation p est telle que |p|<0-9, la plus grande erreur,

d’environs 10%, se produit lorsque les deux arguments de la fonction de distribution sont égaux. Une
généralisation a trois dimensions a des propriétés analogues.
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