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Linear logistic or probit regression can be closely ap-
proximated by an unweighted least squares analysis of
the regression linear in the conditional probabilities pro-
vided that these probabilities for success and failure are
not too extreme. It is shown how this restriction on the
probabilities translates into a restriction on the range of
the coefficient of determination R* so that, as a conse-
quence, R is not suitable to judge the effectiveness of
linear regressions with binary responses even if an im-
portant relation is present.
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Much has been written in dispraise of the coefficient
of determination R* as an overall summary of the effec-
tiveness of a least squares equation. The dependence of
R* on the spread of the explanatory variables encoun-
tered makes it particularly unsuited for comparisons of
different studies, where a difference in spread is a fea-
ture of the design used, or of selection effects rather than
of the system under investigation. However, in any study
with many observations, in which the contributions of
the explanatory variables are highly significant and of
substantive interest, R* can be a useful reminder that the
additional contribution of some of the variables may, in
fact, only explain a small percentage of the variability
in the response.

We show that this type of interpretation is misleading
in linear regressions with binary responses since low val-
ues of R?, roughly .1, are inevitable even if an important
relation is present. Such linear regressions are quite widely
used in various fields and, under the major proviso that
the range of fitted probabilities is not extreme (e.g., be-
tween .2 and .8), are virtually indistinguishable from lo-
gistic and probit regressions; see Section 1.

Because the point-biserial coefficient (McNemar 1962)
and Pearson’s phi-coefficient are measures of linear re-
lationships, they too are severely restricted in their use-
fulness to judge the strength of an association in just those
situations where they appear to be appropriate at first
sight; see Section 3.
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for Binary Responses

1. THE SIZE OF R’ FOR BINARY RESPONSES

We consider first the case of a binary response A, with
levels i = 0, 1, where the unconditional probability of
success is denoted by 7, = Pr(A = 1), and a single ran-
dom explanatory variable X, with levels x, having mean
. and variance o2. The argument extends immediately
to multiple linear regression. We suppose that it is ad-
equate to fit by unweighted least squares the linear
regression in the conditional probabilities of success,

my=PrA=1|X=x)=EA|X=x)
=m + Blx — W), ey
where Ex(’ﬂ']lx) =TT = 1 — o and Varx(’TTllx) = zo'i.

The result will be a close approximation to the fitting of
a linear logistic regression or a linear probit model pro-
vided that, say, .2 = ), = .8 (Cox 1966; Cox and Snell
1989). This is illustrated by Figure 1, which compares
logistic, probit, and linear curves scaled to agree at 20%
and 80% points.

As in the usual linear random regression, the overall
variance of the response can be split up into two parts,
the expected conditional variance and the variance due
to the linear model since

Ex{var(A | X = x)} = Ex(mxmgx) = mm, — o
so that
R = 320'.%/(771770) = Varx(”1|x){771770}_1~ 2)

The value of R? is determined primarily by the variance
of X as that determines the variance of the conditional
success rate, that is, vary(sy), and the factor ()"
varies only slowly over the range contemplated, in fact,
between 4 at m;, = 7y, = .S and 6.25 at m;, = .8, my =
.2. If we confine  to the interval (.2, .8), R® is max-
imized by any two-point distribution taking values at the
end points. Such a distribution has vary(mx) = (.8 —
.2)*m,m, and hence leads to R* = .36.

In Figure 2 several distributions of |y are displayed,
each having mean 7, = .5 and satisfying, at least with
high probability, .2 = ), = .8. The most extreme case
in one direction is given by Figure 2a, in which the ex-
planatory variable X is binary and thus such that 7y has
two equally likely outcomes. Such a case occurs, for ex-
ample, for randomization between two treatment groups
with success rates myx-oy = .2, Tyx-1y = .8 and, as
noted previously, it implies R> = .36. An intermediate
case is given by Figure 2b, where the explanatory vari-
able X has a uniform distribution such that 7 is uni-
formly distributed over (.2, .8). This implies, with
vary(mx) = .6°/12 = .03 and (2), that R* = .12. A more
extreme case in the same direction is contained in Figure
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Figure 1. Logistic (solid), Probit (dashed), and Linear (dotted)
Lines Scaled to Agree at 20% and 80%. The agreement is excel-
lent if all conditional probabilities lie within the range of .2 to .8.

2c. There the distribution of X, and hence of m, is
normal and var(mx) = .15% to ensure that “most” of the
success rates are between .2 and .8, that is, within two
standard deviations of .5 = Ey(mx). In this case (2) gives
R? = .0225/.25 = .09.

Thus R*> = .36 is the largest value of the coefficient
of determination that can be achieved under circum-
stances where unweighted least squares fitting of the lin-
ear relation (1) in conditional success rates would be at
all sensible; see Figure 1.

2. THE SIZE OF R? FOR GROUPED
BINARY RESPONSES

Suppose, for a little extra generality, that Y, , is the
proportion of ones in k independent binary trials at a level
x of the random explanatory variable X.

This corresponds to data from experiments in which
equal numbers of individuals have the same value of the
explanatory variable. There are two possible ways of ap-
plying unweighted least squares then. One application
is to the individual binary responses, the other applica-
tion is to group proportions of successes, that is, for &
= 2, say, to the possible values 0, .5, or 1 of the re-
sponse. The regression lines would be identical in both
analyses, but the value of R* would be substantially larger
in the second case. To see this, note that m, = E(¥;x
| X = x), so that (1) is again assumed, but that

var(Yyx) = Ex[var(Y,x | X = x)] + varyE(Y, x| X = x)
= {771770 + :320}2((" - 1)}/k

because var(Y,x | X = x) = 7o/ k. Therefore, it fol-
lows, with 8’0 = var(m), that

R = kVarx(771|x){7T17To + Varx(771|x)(k - 1)}_l~ 3)

The dependence of R* on k, corresponding to the three
situations in Figure 2, is displayed in Figure 3. For in-
stance, with k& = 4, the multiple correlation coefficients,
respectively, are: R> = .69, R*> = .35, and R* = .28.

A similar effect of increasing R* by least squares fit-
ting to group means (i.e., proportions) instead of indi-
vidual responses is to be expected if the group sizes are
unequal. In this case the appropriate least squares anal-
ysis is that applying to the individual responses. This
amounts to weighting the group proportions by the group
sizes, while maximum likelihood is equivalent to a more
complex iteratively determined weighting scheme.

The low value of R* is not to be explained via the
inappropriateness of criteria based on sums of squares
and least squares fitting. Various generalizations of R
for nonnormal models, essentially based on likelihood,
have been suggested—for example, the notion of the ex-
planatory power of a hypothesis (Good 1960). The most
directly interpretable approach is to compare the fit of a
model under analysis with that of a baseline model, for
example, in the present context, a model with constant
probability of success for all individuals. If Z, and L, are
the corresponding maximized likelihoods based on 7 in-
dependent observations P = (ff/ﬁb)l/ " is the geometric
mean “improvement” per observation produced by fit-
ting the more elaborate model. For the normal-theory
linear model, R> = 1 — P2, so that this equation could
be regarded as a likelihood-based generalization. For the
two-point example above, treating the baseline model to
be one that assigns constant probability 1/2 to the binary
response, P = .8% .2?/.5 = 1.2126 so that the newly
defined R* is .032, that is, again small, essentially be-
cause the “improvement” in likelihood per observation
is not great.

3. IMPLIED RESTRICTIONS ON THE
DISTANCE IN THE MEANS OF THE
EXPLANATORY VARIABLE

The restriction of not too extreme conditional proba-
bilities for the linear model (1) to be appropriate not only
implies restrictions on the size of the coefficient of de-
termination but also on the distance in means of the ex-
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Figure 2. Possible Distributions of the Conditional Probability of Success 1y if the Explanatory Variable is (a) Binary, (b) Equally Dis-

tributed, (c) Normally Distributed with .2 < mx = .8 and =, = .5.
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Figure 3. Increase of R? as Depending on Group Size k Cor-
responding to the Three Examples of Figure 2. The explanatory
variable is (a) binary (solid), (b) equally distributed (dashed), and
(c) normally distributed (dotted line).

planatory variable X, given success A = 1 and failure A
= 0.

To see this we reverse the argument of Section 2, de-
noting the conditional means of X by w,;. The overall
mean of X and the covariance between the binary re-
sponse A and X can then be expressed as

pe = EAEX | A = i) = mopge + My
and
cov(A, X) = EJiEX | A = i)} — E(A)EX)
o1 (Maft — Mafo)-

Furthermore, the coefficient of determination (2) can be
written as

cov(A, X)’ (i = Mapo) o
2 _ _ I 2|0 0T )

var(A)o? o

because B8 = cov(4, X)/o? and var(A) = mym,. For a
binary explanatory variable this reduces, with 6; = Pr(A
=i, X =j)and §; = Pr(X = ), to

R = (0001, — 901010)2
Mo1800

&)

because in that case m,; = 6;/7; so that cov(4, X) =
0000, — 60,6,0. Equation (4), together with the result of
Section 2, implies that the distance in means |y — fyo|
will range from 1.20, at m, = m, = .5, to 1.50, at m,
= .8, my = .2.

Furthermore, the square roots of the right sides in
Equations (4) and (5) are just population equivalents of
McNemar’s point biserial coefficient and of Pearson’s
phi-coefficient, respectively. Thus, these coefficients
represent special ways of expressing the usual standard-
ized measure for linear association, the simple product-
moment correlation coefficient. However, they do not
vary between —1 and 1. Instead, in situations in which
unweighted least squares fitting of the linear association
between a binary response A and an explanatory variable
X is sensible, the largest value of the phi-coefficient is
.6 even if 7 = &, = .5 and a typical value of Mc-
Nemar’s coefficient is still considerably smaller.

A formally closely related but conceptually different
problem is discriminant analysis with two normal dis-
tributions having the same variance and an associated
conditional logistic regression. Remarkably (Fisher 1938)
the discriminant function can be estimated by a formal
linear regression with population groups as binary re-
sponse on the continuous variable even though the con-
ditional relation is linear logistic. In this situation large
values of R” can be achieved via populations whose means
are so far apart that a linear regression would be a poor
approximation indeed to the conditional binary logistic
relation.

4. EXAMPLE

In a study on patients from a pain clinic (Schmitt 1990)
an ordinal variable called “stage of chronic pain” of a
patient has been constructed and has been related to suc-
cess of stationary pain treatment. For 58 male patients
the results displayed in Table 1 were obtained. There is
a clear linear relation in the conditional probabilities: The
higher the stage of chronic pain, the lower is the prob-
ability of a successful treatment, but R?* = .124 for the

Table 1. Scores for Stage of Chronic Pain (x), Counts, and Estimated Probabilities of Success of Treatment
When Leaving the Clinic (A)
Probabilities of treatment success estimated by

Linear regression in bin.

Stage of Observed resg/loonsg)s \jia ey
chronic Total Number of relative Linear Linear

pain count successes frequencies logistic probit Least Maximum
X N, Nix Nyjx/ Ny regression® analysis® squares® likelihood”

6 8 7 .88 .75 .76 .75 .78

7 9 5 .56 .64 .64 .63 .64

8 15 6 .40 .50 .50 .50 .51

9 14 6 43 .36 .36 .37 37

10 10 3 .30 .24 .24 .24 23

11 2 0 .00 15 15 11 .01

NOTE: Sample size n = 58 patients.
An(Ap/Fro) = —4.52 + 57x.
o~ T(#)) = 2.82 — .35x.
i = 1.52 — .13x.
dax = 1.61 — 14x.
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regression with individual responses. With group pro-
portions R> = .813 for weights equal to group sizes.

[Received May 1990. Revised November 1990.]
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