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The mul t ivar iate regression of  a px 1 vector  I  of  random var iables on a qx1
vector X of explanatory variables is considered. It is assumed that linear transfor-

mations of the components of I can be the basis for useful interpretation whereas
the components of ,Y have strong individual identity. When p>- 4 a transformation
is found to a new q x 1 vector of responses l'* such that in the multiple regression
of, say, I'f on d only the coefficient of ,Y, is nonzero, i.e. such that yr* is condi-
tionally independent of Xr, ..., fo, given X,. Some associated inferential procedures
are sketched. An illustratlve example is described in which the resulting transforma-
tion has aided interpretation. :a 1992 Academic Press, Inc.

1. INrnonucrroN

Many of the standard methods of multivariate analysis derived from the
multivariate normal distribution are essentially invariant under nonsingular
l inear transformations. A typical example is canonical correlation (or
canonical regression) analysis. Here the relation between a pxl vector
response variable I and another qxl vector X, either of responses or of
explanatory variables, is studied by finding linear combinations of the
components of I and of X that are maximally related, the resulting
analysis being essentially invariant under separate linear transformations of
I and of X.
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CALCULATION OF DERIVED VARIABLES

This invariance is sometimes, but by no means always, appealing on
subject-matter grounds. For example, l inear combinations of log height
and log weight may form derived variables that are entirely satisfactory for
the interpretation of the effect of the "size" of individuals on various medical
outcomes and the summarization of blood pressure may be best carried out
via a combination of diastolic and systolic blood pressures (or their
logarithms), which are themselves somewhat arbitrari ly chosen summaries
of the blood pressure cyclical variation. On the other hand. variables such
as anger and anxiety express distinct concepts and while a l inear
combination of them may well arise in a multiple regression equation as an
expression of their relative importance in contributing to a third variable,
the formation of a new derived response variable as an arbitrary l inear
combination of anger and anxiety is much iess appealing. These remarks
could be paralleled in many fields.

In the present paper we consider probiems in which arbitrary l inear
combinations of a p x I variable I are allowable but in which it is desired
to preserve the distinctive individual component structure of a q x 1
variable X. It is convenient to begin by treating X as random, although in
some applications conditioning on the observed vaiues wil l be called for,
this having virtually no effect on the following arguments.

There are a number of ways in which the problem can be formalized.
The simplest and the one on which we shall concentrate is as follows.
Suppose that  p)4.  We seek a l inear  t ransformat ion f rom Y:(Yr , . . . .  I " ) t
t o  new va r i ab les  y * :  (  f f  .  . . . .  Y ; l t : , 4  I such  tha t  i n  t he  mu l t i p l e  reg rcss ion
of X| on X only the coefficient of X, is nonzero (s : 1, ..., q); that is. )/,* is
conditionally independent of all the Xt (t+s) given X,. That is, in a sense
)'J is that derived response variable especiaily t ied to X.. In Section 2 we
discuss the relatively simpie situation in which p: q, extending the discus-
sion to the case p > q in Section 3. The construction is possible if and oniy
if f,. is of full rank. Section 4 outl ines the inferentiai problems associated
with the procedure and Section 5 described a specific application.

2. Eeuer DrurxsroNlrrry

Suppose first for simplicity that p: c1, i.e., that the dimensionalit ies of the
two vectors are the same. For simplicity assume both vectors have zero
mean and par t i t ion the jo int  corar iance matr ix  f  in  terms of

f . . : c o v ( X ) :  E ( X X r ) , . f  , , : c o v ( Y ,  X ) :  E ( Y X ^ r ) :  t ' t .

2 , , :  E ( Y Y r ) .
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164 cox AND wERMUTH

Now cov(Y*, X): A I,, and the matrix of regression coefficients of ) '* on
X is thus

8 . , * , :  A t ; . t  * , t  
-  A B y , .

where -8r,, is the matrix of regression coeflicients of I on X. We require this
to be diagonal and if new variables are scaled to have unit regression
coefficients on the explanatory variables B, *.. must be the q x q identity
matrix, so that

A  :  B r_ t  :  ( r " , r ; 1 ) ,  :  I , ,Z  . * r .

Thus the new variable is given by

Y *  :  z  , , 2  * 1 Y .  ( 1 )

Note that cov( I*, X)-- E(Y*X-t):f.,,, i .e., the new variables are such
that they have the same covariance matrix with X as does X with itself.
Another interpretation is via the equation Y: B,-Y*.

The new variable )'* exists and is uniquely defined provided that Jr- is
nonsingular. .A necessary and sufficient condition for this is that no linear
combination of the components of I be uncorrelated with all the
components of X. Singularity will occur for some simple patterns, as for
example when all cross-correlations are equal. In the singular case certain
components of I* may nevertheless be determined.

There are other criteria that might be used to express the notion that
each component of the transformed vector is attached to a unique compo-
nent of X. For example, one might require that the sth component of the
new vector have zero marginal correlation with all components of X except
the sth. We shall not explore this further.

The special case q:2 throws some light on the above formulae. If we
normalize all variables to unit standard deviation, i.e., replace covarlance
matrices by correlation matrices, we need the conditiol p,rr,p,.r,r-
p,1,-2p.,21.1 l0 for nonsingularity. Subject to this and ignoring a constant of
proportionality we can take

Y f  : ( P , r t ' . -  P ' , ' 2 P , 1 r )  Y r - ( P ' r r , -  9 ' r , r P ' , , , , )  Y r ,

Y l :  - ( p . r r ' 2 -  P ' r ' 2P '2 . , , , )  I r  *  ( p ' , . r ,  -  P . * , , rP , r , - r )  Yz .

Note that, for example, If depends only on I, if and only if the partial
correlation of I, with Xrgiven X, vanishes, as is clear on general grounds.
Note also that if X, and X, are uncorrelated the derived variables take a
simple form, namely

Y f  :  - P , r , r Y r +  p ' , , , Y r .
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3. UNrquer DrilrrNsroNaLrry

Suppose now that p > q. It can be shown that there is no unique linear
combination If, say, with the required property of dependence only on Xr.
A sensible approach is to first reduce )z to the q x 1 vector of canonical
variables that contain the regression on X, for this we use the theory of
canonical correlation or regression. Then the results of Section 2 can be
applied to the new variables. The resulting procedure wil l choose from the
multiplicity of solutions that I* with maximal regression on X. Indeed a
nonsingular transformation can be made to the canonical variabies sup-
plemented by a set of p - q random variables independent of the canonical
variables and moreover independent of X. Under normal theory it follows
lrom the factorization of the l ikelihood and the resulting sufficiencv that
inference about the dependence of I on X should involve )'only' i ia the
canonical variables.

Now the q canonical variables formed from I for capturing the regres-
sion on X are cr, Y, ..., cj Y, where the c', are eigenvectors of ,; 1t., 

. Ja.rr,,
(Rao [2, Sect.8f]), the eigenvalues being the corresponding squared
canonical correlations. It is not necessary to impose anv particular
normalization on the cr, although it is convenient for exposition to require
that cl2,,,c,: 1; it is known that cff ,,, c^ :0 (i * k). We now transform
f r o m  ) z t o  t h e  q x  l  v e c t o r  Z : C r Y ,  w h e r e  C i s  t h e p x q m a t r i x  ( c , . . . c ) .

Then the covariance matrix of Z is the identity and

cov(Z,  X) :  E(Z{  ) :  Crr , , - .

If now we apply the results of the previous section to the regression of Z
on X we obtain a new variable siven bv

r* : ;1,1c' ; , .y tz
: t . , ,(crt. , . . ,) tc'Y: (2)

i t  is  easi ly  ver i f ied that  when p:q (2)  reduces to (1) ,  then I*  does not
depend on the particular normalization ol C, and that, as before,

cov(  ) ' * .  X)  :  J . , , .

We are very grateful to the referee for deriving by a different route
involving the Loewner of matrices the solution

f *  : r , , { r , ,  : , , r t , ,  }  t  t , , t , , t  Y .

To see that (2) and (3) are in fact identical, note that by the properries

165

( 3 )



166 cox AND wERMUTH

of canonical variables (Rao [2, Sect. Sf 1.2 and 1.5]) there exists a
nonsingular matrix F such that

Crz , - ,F : rn ,  t ; t t , ,F :C r , t ,  F r t , y t ; r t ,F : f ] ,

where fn is the diagonal matrix of canonical correlations. Thus, on using
these three results in turn, we have that the right-hand side of (2) is equal
to

t , , ( f  , tF  
1 )  tC r : z * , (F f ; t )  r ; 1F ' r t , rEn t

:  r , ,FF- t12 *rz ; r tz , , )  
t (Ft )  t  Fr  z , rz , r t

which reduces to the right-hand side of (3). The form (3) has the major
advantage of avoiding the eigen analysis involved in (2); on the other hand,
in applications, we have found it wise always to compute the canonical
correlations as some check that the smallest of them is large enough to
make I* reasonably well defined.

It can be shown by calculating the covariance matrix of I* that if the
explanatory variables are uncorrelated, then the derived variables also are
uncorrelated.

When the number of explanatory variables exceeds the number of
responses, p < q, it will be necessary to select p or fewer variables or
combinations from the q before applying the method.

4. INTTRENcE

The above results are for probabil ity distributions. For application to
data we shall assume multivariate normality, at least of X given X, and
therefore replace all population covariance matrices by the corresponding
matrices of mean sums of squares and products. We regard the method as
primarily a way of suggesting relatively simple derived variables and
therefore to be used rather flexibly; thus elaborate discussion of formal
inference procedures would be out of place. Nevertheless some simple
results are available.

When p : Q, we can obtain a confidence cone for the coefficients of, say,
the first component of )/*. Let it be hypothesized that arY is conditionally
independent of Xr,...,X, given X,. This can be tested in the multiple
regression of  arY on Xby a standard Ftest  wi th degrees of  f reedom (p-1,
t1 - p - 1), where n is the number of observations. A confidence cone can
be formed from the subset of a not rejected in such a significance test.

The hypothesis that I,*, say, does not depend on a particular set of com-
ponents of { say the last / components )2, t+t,...,Y, can be tested by
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checking that the multivariate regression of Yt,..., Y, , on X contains no
contribution from Xr,..., X, using any of the standard multivariate anaiysis
of variance test statistics, e.g. the determinantal ratio (Rao [2, Sect.8c.3]).
If l : l , i .e., only one component is hypothesized to be missing from the
derived response, a standard F test is available.

The hope in using the present method will often be that one can find
quite simple l inear combinations of the components of the original ) 'that
can replace the I* and that have a specific subject-matter interpretation.
Simplicity here may mean that the coefficients defining I have a simpie
interpretation or that each component I,* involves only a l imited number
of the components of the original }.

In some, but by no means all, cases the iatter argument can be used as
an alternative to the introduction of the canonical variables of Section 3.
For  example,  suppose that  p:3,  q:2,  and that  on substant ive grounds i t
is  suspected that  I ,  is  condi t ional ly  independent  of  ) / ,  g iven (Y3,X1,X2),
that Y, is conditionally independent of X, given (Yt, Xr), and that Ir is
conditionally independent of X, given (Yr, X.).Suppose further that these
relations are consistent with the data. Then an alternative to the use of
canonical correlation as a method of reducing the dimension of l '  from
three to two is to restrict If to be a combination of I, and I, and at the
same time If to be a combination of I, and )'r. It can then be verified
that the appropriate combinations are, in the standard notation for condi-
tional covariances,

Y f  : Y r - Y t 6 y ' , x .  x , i o r . x . . x 1 ,  
( 3 )

Yl  :  Yz-  Yt6 y.x , .  r . l6  t r * , .  r r .

This relates the present analysis to the study of graphical models of condi-
tional independency (Lauritzen and Wermuth [1]). We shall not erplore
this further here; in the example to be discussed in Section 5 this approach
leads to essentially the same answer as reported there obtained by the
method of Section 3.

5 .  A r  Exevp l r

Table I summarizes key aspects of observations obtained on 40 patients
who have not received a preoperative treatment. There are three variables
measured directiy before an operation, the log concentrations of the three
fatty acids palmitic acid, Yr, linoleic acid, Y., and oleic acid, Yr, and for
the present purpose these form the response variabie, L There are two
explanatory variables forming the vector { blood sugar measured the
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168 COX AND WERMUTH

TABLE I

Observed Marginal Correlations, Means, and Standard Deviations for 40 Patients

Variable Y I Y2 x2xlr l

Log palmit ic  acid ( I ,  )
Log l inole ic acid ( I r )

Log ole ic acid ( I . )

Blood sugar (X,  )
Sex (J(. )

1
0.90
0.95

- 0.25
0.28

I
0.92
0.27
0.43

I
-432

0.23
I

-  0.03

Mean
Standard deviation

4.91
0.3726

4.26
0.4745

4.88 80.93
4.4073 9.1661

0.05
1.02

morning before the operation, X,, and sex, X2, the latter coded as I for
females and - 1 for maies. Log concentrations are used partly because the
concentrations themselves are positive variables with large coefficients of
variation around 50oh and hence with very skew distributions and partly
because linear concentrations of logs with simple numerical coefficients
may be hoped to have a simple interpretation.

We apply the resul ts  of  Sect ion3 wi th p:3,  q:2.  The two nonzero
canonical correlations between Y and X are 0.60 and 0.38, neither being
near zero. This points to an appreciable relation between the derived
responses )'f and )'l and the corresponding explanatory variables X,
and X..

The transformation matrix obtained from (2) is

11.5

8 .1

and suggests taking as simple forms of derived variable Yf :Yr- ) ', and
Y!: Yt- I,. This implies that the ratio of palmitic to l inoleic acid is
primarily connected to blood sugar as is the ratio of l inoleic to oileic acid
to sex.

Table II gives the correlation matrix of Y{, yl, Xt, Xz. In this
particular example the derived variables turn out to be nearly uncorrelated
and this, together with the negligible correlation between X, and Xr, yields
a very simple structure in which (Yf , Xr) are completely independent of
(Y! ,Xr) .A l ike l ihood rat io  test  of  consis tency wi th th is  s t ructure y ie lds
chi-squared of 0.59 with 4 degrees of freedom.

Thus the 9 nonnegligible correlations of the original variables have been
reduced to a simple structure with just two appreciable correlations. This

- 1 6 1 5 \" '"1
-e7 /

( r rot
\ - 30
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TABLE II

Observed Marginal Correlations for the Derived Responses
and the Explanatory Variables of Table I
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Variable I 1 x1 x2v +

v ! :  v . ,  Y -
v * _  v  vt  )  -  t  ) -  r  l

xr
v )

1

0.09 I
0.32 0.01
0.09 0.57

1
- 0.03

is a simplification special to this problem consequent on the essentially
independent explanatory variables.

In general our procedure with p:3, q:2 imposes two conditional inde-
pendencies, namely that )/f is conditionally independent of X, given X,
and that ) ' j  is conditionally independent of X, given Xr, leading usually
to a nondecomposable independency structure (Wermuth and Cox, [3]) in
the multivariate regression of ) '* .on X requiring iterative fitt ing for
maximum l ike l ihood est imat ion.

The analysis was repeated on a different set of 40 patients for whom the
same variables but quite different correlations were observed. The method
based on (2) yielded essentialiy the same derived variables.

The computations were done using MATLAB.

6. Drscussrox

While the method has been reasonably successful on the above exampie,
it may often prove ineffective, even when the broad formulation in terms of
l inear combinations of f that preserve the individual structure of X is quite
appealing. The method wil l work best when the 4 canonical correlations
are all reasonably large and there is no strong coll inearity between the
columns of X. In other cases only some of the components of the trans-
formed vector may be reasonably well defined. For such reasons, it
essential, as indeed with other relatively advanced methods, to have checks
that the method is in some sense reasonably effective.

It should be verif ied that the derived variables do have appreciable
regression on their target .r-components, and if one or more of the canoni-
cal correlations is small, say iess than 0. 1 0.2. it is unlikely that all the
components of the derived response wil l be effective.
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