
Biometrika (1992), 79, 3, pp. 441-61
Printed in Grtat Britain

Response models for mixed binary and quantitative variables

BY D. R. COX
Nuffield College, Oxford OX1 INF, U.K.

AND NANNY WERMUTH
Psychological Institute, University of Mainz, 6500 Mainz, Germany

SUMMARY

A number of special representations are considered for the joint distribution of
qualitative, mostly binary, and quantitative variables. In addition to the conditional
Gaussian models and to conditional Gaussian regression chain models some emphasis
is placed on models derived from an underlying multivariate normal distribution and on
models in which discrete probabilities are specified linearly in terms of unknown param-
eters. The possibilities for choosing between the models empirically are examined, as
well as the testing of independence and conditional independence and the estimation of
parameters. Often the testing of independence is exactly or nearly the same for a number
of different models.

Some key words: Conditional Gaussian model; Graphical chain model; Linear model; Logistic function;
Multivariate normal distribution; Probit model.

1. INTRODUCTION

The object of this paper is to compare a number of models for the joint distribution
of quantitative and binary response variables. One role of such models is as a route for
testing hypotheses of independence or conditional independence. We examine the extent
to which essentially the same test arises from different models. A further important point
is that for some models particular null hypotheses may be satisfied only under much
stronger versions of independence than those it is desired to test, so that the models are
unsuitable for the required purpose.

Two of the families of models under consideration are models based on conditional
Gaussian distributions, i.e. for conditional normality of the continuous components and
an arbitrary distribution for the discrete components, and on conditional Gaussian
regressions. These take some conditional regression relations from a conditional Gaussian
distribution and then separately assign distributions, possibly arbitrary, to the condition-
ing variables. The latter have been introduced as graphical chain models by Lauritzen
& Wermuth (1989). In addition we examine some aspects of models in which the
probabilities for the binary components are specified linearly and also of models in which
there is an initial multivariate normal distribution from which the binary components,
or more generally the ordinal components, are derived by forming discrete classes. Indeed
the connection between multivariate continuous distributions, in particular the multivari-
ate normal distribution, and binary and ordinal data has a long history and many facets.
Probit-style models (Finney, 1952) for binary variables generated from a normal distribu-
tion of underlying observed 'tolerances' form probably the most familiar example. Another
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442 D. R. Cox AND NANNY WERMUTH

instance is Pearson's (1901) tetrachoric correlation in which the relation between two
binary variables is summarized via a bivariate normal distribution fitted to the contingency
table formed from the discrete responses.

We shall study first in two, then in three, dimensions aspects of the following: the
general nature of the relationships between various models, the implications for estima-
tion, and the implications for testing null hypotheses of independence or conditional
independence.

2. BIVARIATE DISTRIBUTIONS

21 . Some distributional results
We consider first just two response variables, i.e. we focus on the joint distribution of

two random variables. It is convenient to separate the discussion into the study of a
continuous response conditional on a discrete explanatory variable and an analysis the
other way round. This is not a conventional study of dependence, where, even if the
explanatory variable is random, conditioning on the observed values of the explanatory
variable is used in inference.

Suppose first that (U, X) are bivariate normal with zero means, unit variances and
correlation p^. Let a dichotomous variable A be formed from U via a cut-off point a;
we write

A = \0 [U<a) i2'l)

Then derivatives of the moment generating function of a truncated normal distribution
(Tallis, 1961) or direct calculations show that

= (h(n)/(b(-n)
(2-2)

where </>(.) and O(.) are respectively the standard normal density and integral. Further

vtui01) = v a r (U\A = l)=l + au*(a) - { u ! ( a ) } ,
2 ( 2 " 3 )

and the third cumulants, or third moments about the mean, are

with a corresponding formula for K J-U(a), and from these the standardized third cumulants

rr.u(a) = K3
+.u(a)/{cr:u(a)}3/2 (2-4)

and y7,u(<x) are calculated directly.
Because X = pmU +«•*.„, where E(ex.u) = 0, cov (U, exu) = 0, var (eXM) = axx_u = 1 - p\u,

we have that

with corresponding formulae for y.~XM, o\^a obtained by replacing + by - everywhere.
Further

K3
+.*a = E{(X - fJLx\ay\A = \} = PLKIJO).
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Models for binary and quantitative variables 443

Note that if U is not observed there is no loss of generality in taking it in standardized
form. If Y has mean fiy and variance a^,, the above formulae for X correspond to the
moments of (Y - ny)/\/o-yy so that in this general case

Py.a = P*y+Pyu<7yyP>+u{a), Vy~y.a = Vyy{Pyu<r+uu((x) + ( 1 ~ Pyu)},

"tya- Oryy
2p3yuKt,u(a).

For studying dependencies of A on Y we start from the conditional distribution of U
given Y = y which is normal with mean Pyu(y- fiy)/<Jo-yy and variance (1—p^) so that

( 2 , ,

In many practical cases this will be virtually indistinguishable from a linear logistic
regression (Cox, 1966; Cox & Snell, 1989, p. 22), i.e. the simplest form of a conditional
Gaussian regression with discrete response, and provided the probabilities are not too
extreme, say 0-2 *s pr (A = i | Y = y) =£ 0-8, this implies near linearity of the log odds, i.e.

where the most suitable value of the constant d depends on the range over which the
approximation is required. To match the functions at the 20%, 50% and 80% points, we
take d = l-65.

By contrast, in the conditional Gaussian distribution the conditional distributions of
Y given A = 0,1 are normal. In the homogeneous case, the conditional variances are the
same at both levels of A, while the marginal probabilities pr (A = i) are positive but
otherwise arbitrary. The relationship pr (A = 11 Y = y) derived from this joint distribution
is linear logistic in the homogeneous and quadratic logistic in the nonhomogeneous case,
while the marginal distribution of Y is a mixture of normals. Any conditional Gaussian
regression looks like a conditional distribution derived from a joint conditional Gaussian
distribution: with a dichotomous response, A, it is a logistic regression and with a
continuous response, Y, it is a linear regression. A joint distribution defined by a sequence
of conditional Gaussian regressions and a marginal conditional Gaussian distribution of
the variables which are not responses is called a conditional Gaussian regression chain
model. With just two variables, A and Y, the conditional Gaussian regression chain
model with Y as response to A defines a joint conditional Gaussian distribution while,
in general, this is not the case for a conditional Gaussian regression chain model with
A as response to Y.

Both the conditional Gaussian regression chain model for A as response to Y and the
dichotomized normal model are special cases of one in which Y is marginally normal
and in which

TrX = pr{A = \\Y = y) = G{d^ + d\g)y), (2-8)

where G(x) is the logistic function L(x) = ex/(l + ex) for the conditional Gaussian
regression chain model, and G(x) is the standardized normal distribution function 3>(;c)
for the dichotomized normal. Clearly other choices of G are possible, conceivably
containing additional nuisance parameters to allow a data-based choice of G (Aranda-
Ordaz, 1981). Despite some obvious limitations, the choice G(x) = x, leading to a linear
model for probabilities, is useful in particular as an approximation to the logistic and
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444 D. R. Cox AND NA N N Y W E R M U T H

probit functions wherever, as noted above, the conditional probabilities are largely
confined to the range (0-2, 0-8). We therefore write

provided that the values so defined are in [0,1]. In some applications the assumption
that the probabilities are confined to a central range is entirely reasonable. An example
are probabilities of changing a field of study investigated by Week (1991) under a wide
range of different conditions in Germany; see § 3-2.

One advantage of the linear representation is the very direct interpretation of the
parameters and another is that marginalization over Y is immediate. Provided only that
E(Y) = fiy, we recover the stated marginal probability. Under the dichotomized normal
model, the corresponding probability is <&(-a), whereas under the conditional Gaussian
regression chain model the marginal probability is £y{L(0oA) + #(iA) Y)}, where the expecta-
tion is over the normal distribution of Y, N(fj.y, <jy). While this cannot be evaluated
exactly in closed form, a good approximation is obtained by writing L(x) — <$>(xc), where
c = 0-607. Then, on omitting the superscript A for convenience, we have

~ <S>(cdo+cdiy)ct>(y,ny,<Ty)dy,
J-oo

where <t>{y, ny, cry) is the density of N(fx,y, cr2). This integral can be evaluated in closed
form to give

J ^ + ^ ) L ( 6+d^ } (2-10)
( 2 l 0 )

The advantages of the simpler marginalization of (2-9) are particularly strong in a larger
number of dimensions.

A model in which, for example, the conditional distribution of Y given A = i is normal
and the marginal distribution of Y therefore nonnormal is distinct from a model in which
the marginal distribution is normal. Nevertheless the separation of the two normal
components in the first model must be appreciable if the distinction is to be detectable
with realistic amounts of data. This can be verified numerically or seen analytically by
noting that a mixture with probabilities (5+1^), (5-5^) of normal distributions of means
5 , -5 and unit variances has density

}, (2-11)

after some manipulation, thus showing that nonnormality enters only in the term of order
53. A similar argument shows that if the marginal distribution of Y is normal and the
relation between A and Y probit or logistic confined to the range (0-2, 0-8) and hence
effectively linear, then the conditional distribution of Y given A = i is very close to
normality. To see this analytically note that, with i* -2i- 1,
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Models for binary and quantitative variables 445

The limitation on the probabilities implies that yayo-y is small. If we write yay = e/ay and
incorporate the linear term into the exponential we have that with an error of order e3

the conditional distributions are normal with the same variance.

2-2. General statistical interpretation
A number of broad conclusions can be drawn from the above results, in particular

from the numerical results in Tables 1 and 2 which are based directly on the formulae
of § 2-1. By the symmetry of the problem it is enough to suppose that a 5*0.

Table 1. Variance ratios a^J ayyM of Ygiven (A = i)
in a dichotomized bivariate normal distribution; a, cut-

off point for dichotomized U; p^, correlation

1-99or

0
0-5
1-5
2-5

p^-0-2
1000
0-991
0-975
0-965

Pyu =0-5

1000
0-938
0-835
0-781

p y u=0-8

1000
0-639
0-533
0-429

Pyu ** 0-

1000
0-552
0193
0-093

Pyu =0-2
0-002

-0-002
0-001

-0-002
0001

-0-002
0000

-0-001

pru=0-5
0035

-0035
0-028

-0042

0015
-0036

0008
-0012

p^=0-8
0-245

-0-245
0-215

-0-252

0139
-0-172

0084
-0051

Pyu ** 0-

0-995
-0-995

1169
-0-800

1-444
-0-391

1-676
- 0 1 0 2

Table 2. Standardized skewnesses y^yM and yXya of Y
given (A = i) in a dichotomized bivariate normal distri-

bution; a, cut-off point; p^, correlation
Level

a of A

00 +

0-5 +

1-5 +

2-5 +

If emphasis is on the conditional distribution of the continuous component Y given
the discrete component A, then, under the model based on a bivariate normal distribution,
unequal variances combined with skewness will be encountered in the two groups if a
and p^ are not equal to zero. These effects are likely to be important and empirically
detectable only if the correlation between Y and U is fairly high, and, for the inequality
of variances, if the dichotomy of U is into quite unequal groups. By contrast in the
conditional Gaussian distribution model, the conditional distributions of Y given A are
normal and in its homogeneous form have equal variances.

In the dichotomized normal model the conditional distribution of A given Y has probit
form: clear departure from that would be evidence against an underlying bivariate normal
distribution. The joint distribution of (A, Y) has four independent parameters which can
be taken in various forms; (fiy, o-yy, p^, a.) is one natural choice. The parameters can be
estimated in several ways; see § 2-3.

Broadly similar results apply when U is divided into three groups. If the trichotomy
is symmetrical, the variance of Y within groups will be the same in the outer groups and
different, in general, for the central group. Furthermore, the conditional distributions of
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446 D. R. Cox AND NAN N Y W E R M U T H

A given Y will have probit form in the outer groups but not for the central group. As
the number of groups increases we quite rapidly approach recovery of the information
about correlation that would be available were the underlying continuous variables to
the observed (Cox, 1958).

2-3. Estimation

The estimation of parameters from a conditional Gaussian distribution model and
from a conditional Gaussian regression chain model with discrete response follows
standard maximum likelihood methods. For n independent observations
( I'I . y\)> • • • ,(in,yn) from the dichotomized bivariate distribution, where ir = 1 if Ur > a
and ir = 0 if Ur^a, the log likelihood is best written as the sum of the marginal log
likelihood from {yx,..., yn) and the log conditional likelihood for A given Y = y writing
pr (A = 11 Y = y) in the form O( 0O + 0i.y), where

Thus, fi=y, &yy = 'l{yJ,-y)2/n from marginal normality and they are asymptotically
uncorrelated with 60, 0\ derived via a probit analysis (Maritz, 1953) of ( / , , . . . , /„) on
(yi,---,yn)-

An older and computationally simpler method proceeds by first noting that because
pr (U> a) = pr(A = 1) = O( —a) we can estimate a by a = <t>~\i), where i is the overall
proportion of l's. Further

E(Y\A=\)-E(Y\A = 0) = Pyua\y<f>(a){^(a)<t>(-a)}-1, (2-13)

so that in a self-explanatory notation we can write

where ayy = 1(yr-y)2/n. This is Pearson's (1903) biserial correlation coefficient. The
dependence of p ^ on i near i = | , i.e. median dichotomy, is very slow; as i varies from
0-5 to 0-3 the /"-dependent factor in (2-14) changes only from 0-624 = V(TT/8) to 0-604.
Then, for some purposes it is sensible to replace (2-14) by

Comparison of the asymptotic variances of p^ and p>1M shows that the asymptotic
efficiency of p^ relative to p ^ is 1-00 if p =0, a result related to a general result about
testing independence to be discussed in § 2-4. The efficiency is, however, appreciably
less than one when p>\, say (Tate, 1955). For this result one needs the asymptotic
variance of p ^ (Soper, 1915), calculated most directly by finding the asymptotic covariance
matrix of 2 Ir, 1 Yr, £ IrYr, 1 (Yr— Y)2 in terms of which pm can be expressed. Note
that to the required accuracy 1(Yr- Y)2 can be replaced by 1 (YT - /MV)2. The asymptotic
variance of p^ is obtained from the Fisher information matrix (Tate, 1955; Prince &
Tate, 1966).

Fitting of the model linear in probabilities (2-9) is most conveniently done by unweigh-
ted least squares applied to the (0,1) responses, comparing the residual mean square to
i(l — /) for an approximate test of adequacy. It would also be possible to fit this model
by maximum likelihood. Approximate calculations in Appendix 1 imply that, provided
the fitted probabilities lie in the range (0-2,0-8), the point estimates will be nearly the
same and the reduction in variance is small, at most 5% and usually much less than this.
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Models for binary and quantitative variables 447

An example in which least squares and maximum likelihood estimation show these
properties is given with the following data, collected by Dr N. Schmitt in connection
with a medical dissertation at the pain clinic in Mainz. Success of treatment is predicted
from a score for stage of chronic pain for n = 58 male patients treated for three weeks
in the pain clinic. Table 3 shows predicted probabilities of successful treatment under a
logit, a probit and a linear-in-probabilities regression. The only notable difference is that,
in fitting a linear model by maximum likelihood, relatively greater weight is attached to
the two individuals at the extreme level of chronic pain y = 11.

Table 3. Different estimates for regression of treatment success on stage of chronic pain, y

Probabilities of treatment success, estimated by

Stage
y

6
7
8
9

10
11

Total
count

"y

8
9

15
14
10
2

Number
of

successes
nly

7
5
6
6
3
0

observed
relative
frequen-

cies
n\ylny

0-88
0-56
0-40
0-43
0-30
000

linear
logistic

regression
(a)

0-75
0-64
0-50
0-36
0-24
015

linear
probit

regression
(b)

0-76
0-64
0-50
0-36
0-24
015

linear
binary

IS

(c)

0-75
0-63
0-50
0-37
0-24
011

regression in
responses via

ML

(d)

0-78
0-64
0-51
0-37
0-23
001

(a) log (*„„/£o|,) = 4-52

(c) ^- (1-52 . -0 .13) .

(d) j8ML = (1-61, -0-14),

(b)

2-4. Tests of independence
In § 2-3 the emphasis is on estimation, for example of the correlation coefficient in an

underlying bivariate normal distribution. Sometimes, however, there is special interest
in testing the null hypothesis of independence between discrete and continuous com-
ponents. Here there is a certain robustness to formulation which arises also in purely
continuous and purely discrete cases.

For example, the optimal test for independence in a bivariate normal distribution of
(X, Y) can be regarded as a test of the correlation coefficient, treating both variables
symmetrically, or as a test of linear regression either of V on X or of X on Y, which in
turn can be regarded as arising in a number of ways. Very similar remarks apply to the
purely binary case where Fisher's exact test for 2 x 2 table can be derived from several
viewpoints, and analogous results are available for r x s tables (Birch, 1963).

Faced with a random sample from a mixed binary and continuous distribution, one
directly appealing test of independence is based on the difference between the means of
the continuous variable Y at the two levels of the binary variable A, standardized similarly
to the Student t statistic to produce under the null hypothesis a statistic with approximately
a standard normal distribution. Note that the unequal variances examined in § 2-1 arise
only when p]^ + 0. The resulting test is exactly or asymptotically optimal under the
following sets of assumptions.
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448 D. R. Cox AND NANNY WERMUTH

(i) For each A = i, Y is normal with mean /*., (i = 0,1) and constant variance, the null
hypothesis of independence being equivalent to /u, = fx0. Here the / test of a difference
is directly appropriate.

(ii) To cover several possible types of departure from independence, suppose that the
joint distribution of (A, Y) is specified by a marginal density/^ = g(y; 8) for Y and a
conditional distribution for A given Y = y of the form

TrX = pr(A=i\Y = y) = {h(a,MY{l-h(a,py)y-i, (2-16)

where g, /i are known functions, and a, /3, 0 are unknown parameters with independent
parameter spaces. The null hypothesis of independence is )3 = 0. A crucial point is that
y appears linearly in (2-16) multiplying the parameter /?, so that probit and logistic
regressions are among the many special cases. On evaluating the /3-component of the
derivative of the log likelihood function at the null hypothesis, we obtain

=r z
Lr:I)-l

y / h { a 0 ) _

Now under the null hypothesis, the maximum likelihood estimate of h(a,0) is the
proportion of observations with ir = 1 so that (2-17) can be replaced by the difference of
the two sample means, leading after standardization to the Student t statistic as having
the usual asymptotic properties of the score test; see for example Cox & Hinkley (1974,
pp. 315, 324). Note that, if y in (2-16) is replaced by suitable nonlinear functions of y,
robust tests of location can be generated.

(iii) Finally, note that, under the null hypothesis /3 = 0, very generally (>>,,..., yn, 2, ir)
or some reduction thereof is sufficient for (a, 6). If then a test is based on 1 iryr, the
sample total in the A = 1 group, an 'exact' test can be obtained from the permutation
distribution of the sample total and will typically be close to the Student t test.

Thus as in the purely continuous or purely binary cases, essentially the same test of
independence can be derived from various viewpoints.

2-5. Bivariate response plus explanatory variable

Now suppose that, in addition to the bivariate response variable (A, Y), there is on
each individual a vector z of explanatory variables which are either not random or, if
random, are treated as fixed at their observed values for the purpose of analysis. In the
spirit of the previous discussion, some relatively simple models for interpretation of such
data are as follows, with z denoting the mean of z over the data.

(i) We have that Y given Z is normal with mean fiy + /S^(z-z), variance ayyz and,
conditionally on Y = y and z, A is governed by a probit law:

PT(A=i\Y = y,z) = nyL1, + ylfy)
I(y-^) + yTa(,py\z-z)}. (2-18)

This is a direct generalization of the model discussed above and can be derived via an
underlying bivariate normal distribution of (U, Y) with U dichotomized to form A.

(ii) The probit relation (2-18) can be replaced by a logistic relation. This specifies a
homogeneous conditional Gaussian regression chain model if Z has marginally a normal
distribution.
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Models for binary and quantitative variables 449

(iii) We have that A is governed by a probit law conditionally on z,

pT(A = l\z) = <P{yl'I
) + yT

al'\z-z)}, (2-19)

and, given A = i and z, Y is conditionally normal with constant variance o-yyM and mean

j ( z - * ) . (2-20)

(iv) The probit relation (2-19) can be replaced by a logistic relation. Normality of Y
can then take on at least two forms: (a) if in this case Z is conditionally normal given
A = i and has constant variance at both levels of A this specifies a homogeneous
conditional Gaussian distribution for A, Y, Z; (b) if, however, Y is marginally normal
then a homogeneous conditional Gaussian regression chain model with discrete response
results which is different from the one under (ii).

The above models have strong assumptions not only of linearity but, at least as
importantly, of parallelism of regression lines. Nonparallelism, at least in extreme cases,
can have major substantive implications. Therefore checks of parallelism are necessary
in applications.

For instance in (2-20) we may allow /3^ a to depend on levels of A, for example by
inserting i(z-z) as an additional explanatory variable, possibly constraining the non-
parallelism to certain components of z. This gives generalized linear models (McCullagh
& Nelder, 1989). If in addition the variance of Y o-yyXa is allowed to depend on the level
of A, then this specifies not a generalized linear model, but, in the case of marginally
normal Y, that is, case (b) under (iv), a nonhomogeneous graphical chain model.

2-6. Comparison of models
The results of §§ 2-2 and 2-4 suggest that empirical choice between the various models

studied here is likely to be feasible only when substantial correlation is present between
the binary and continuous components.The difficulties are likely to be compounded when
'fixed' explanatory variables are present.

A key distinction is between the conditional Gaussian distribution in which for each
A = i the continuous variable Y has a 'simple' form and those models in which the
marginal distribution of Y is of 'simple' form. Typically, simplicity in the marginal
distribution of Y corresponds to fairly complicated conditional distributions and vice
versa; see Table 4. However, whenever the linear-in-probability model is a suitable
approximation to the conditional dependence of A on Y, then marginal normality of Y
corresponds to approximately normal conditional distributions of Y given A = i by (2-12),
while conditional normal distributions of Y given A = i correspond to an approximately
normal marginal distribution of Y by (2-11). If in this latter case the conditional
distribution of A given Y = y is of probit form, it corresponds to an underlying bivariate
normal distribution; if instead the conditional distribution of A given Y = y is of logistic
form, the specifications correspond to those of a homogeneous conditional Gaussian
regression chain model, and, as noted before, these two models are likely to be close.

Dr G. K. Reeves, in work as yet unpublished, has confirmed these qualitative con-
clusions by imbedding the conditional Gaussian distribution and the conditional Gaussian
regression chain models in a single family containing an additional parameter taking
values 0 and 1 for the two families in question and showing that the profile likelihood
for that parameter is typically very flat.
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450 D. R. Cox AND NANNY WERMUTH

Table 4. Distributional properties of models for A, Y

Specification of model

(i) (U, V)bivariate
normal, A results
from partitioning U

(ii) Homogeneous
CG-regression chain
model with Y as
response*

(iii) Homogeneous
CG-regression chain
model with A as
response

(iv) Y normal,
0-2 *zirA\y =£0-8
depends linearly on y

(v) y | ( A = i) normal
0-2=s TT%* 0-8
depends linearly on v

A given V = y

Probit
regression

Logistic
regression
with y™ =
(Mi-*<•<>)/o'2

Logistic
regression
with arbitrary
Jay

Linear-in-
probabilities
regression

Linear-in-
probabilities
regression

Y

Normal

Mixture of
normals

Normal

Normal

Approximately
normal (2-11)

Y given A = i

Special skewed
distributions of
unequal variances
(Tables 1, 2)

Normal

Approximately
like (i) (2-10)

Approximately
normal (2-12)

Normal

A

Arbitrary

Arbitrary

Arbitrary

Requires
o-2 =£77-;

Requires
0-2 =£7^

=£0-8

* Equivalant to a CG, conditional Gaussian, distribution for A, Y.

3. TRIVARIATE DISTRIBUTIONS

3-1. Preliminaries
We now consider three response variables, at least one discrete, usually binary. There

are many ways of specifying the joint distribution and to some extent the most suitable
formulation for a particular application depends on the questions to be asked, for example
the kinds of conditional independencies under investigation. There are further questions
as to the extent that different models can in practice be distinguished empirically and,
corresponding to the discussion of § 2-4, the extent to which tests of independence derived
from different models are essentially the same.

3-2. Three binary response variables
It is necessary to begin by reviewing methods for economical representation of three

binary variables

rrykC = pr(A = i, B =j, C = k) (i,j, k = 0, 1).

Some can be derived by specializing the saturated model

(3-D

is awhere i* = 2 i - l , etc. and so takes values (-1,1) as i takes values (0,1);
normalizing constant and H(x) is a suitable function. The choices H(x) = ex, H(x) = x,
H(x) = <t>(x) are the most common, the first having advantages for the expressions of
conditional independencies, the second allowing the simple calculation of marginal
distributions, and the last being closely related to tetrachoric correlations, having the
longest history. The corresponding parameters are denoted by (/) for log linear, are
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Models for binary and quantitative variables 451

written without superscript in the linear case, and get the superscript (p) for joint probit
in the last case.

The representations above arise when the joint distribution of the variables A, B, C
is a natural starting point, treating the three variables on an equal footing. If, however,
there is an univariate recursive system with A being a response to B, C, and B being a
response to C, a different representation suggests itself. In this case we write

where, as before, j * = 2j — 1, k* = 2k-\ and G(x) is a suitable function. The choices
G(x) = L(x), G(x) = x and G(x) = 3>(x) correspond most directly to those of H(x)
discussed for (3-1). The corresponding parameters are denoted by (/) for logit regression,
are written without a superscript in the linear regression case and have superscript (p)
for probit regression, in the last case.

If G(x) = L{x), the equations in (3-2) are logit regressions with discrete explanatory
variables. The parameters in such a regression relate in a simple way to the parameters
in a log linear model for the corresponding joint probabilities, since from G(x) = L(x)
we get e.g.

log (ir1|£7TSC) = l0« <*° - l o8 <? •
Conditional independencies correspond to vanishing logit regression coefficients, for
instance A±B\ C is expressed by 0= yi'^.bc = y^ldbc) or BLC is expressed by 0= y^ .
The question of when the same independence structure results from restrictions on systems
of recursive logit regressions like (3-2) or more complex ones and from restrictions on
a corresponding log linear model has been answered by Wermuth & Lauritzen (1983).

If G(x) = <&{x) then the equations in (3-2) are probit regressions with discrete explana-
tory variables. The parameters in these probit regressions do not relate in a simple way
to the parameters in probits for the corresponding joint probabilities except in the case
of median dichotomized bivariate normal variates. Note that for a trivariate normal
distribution the joint probit model of (3-1) and the corresponding system of recursive
probit regressions (3-2) are not equivalent even in the case of median-dichotomizing all
three variables. Similarly, the parameters of the linear-in-probabilities regressions, that
is G(x) = x, do not in general connect simply to the parameters of a linear model for
the corresponding joint probabilities; see (A2-14). However, they mimic relations connect-
ing total with partial regression coefficients. For instance, we can write in the case of
ya(bc).bc = 0:

£A|c(w1|f) = EB\CEA\BC(IT%C) = y<LC + yack\

where

7a.c = ya.bc + yab.c7b.c, yac = yacb + yab.cybc-

Further conditional probabilities such as irB$~ can of course be calculated but involve
ratios of combinations of the original parameters. See Appendix 2 for more detailed
discussion.

A data set in which recursive linear-in-probabilities regressions give an appropriate
description is taken from Week (1991, p. 182) for n = 2026 German students. The three
binary variables (l = yes, 0 = no) are: A, change of field study; B, poor integration in
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452 D. R. Cox AND NANNY WERMUTH

high school classes; C, change of primary school. The counts n,jk are

("in, "on, «ioi, "ooi, "no, *oio, "ioo, "ooo) = (15, 33, 84, 278,40,113,246, 1217).

The saturated model of the type (3-2) with G(x) = x, as in (A2-12), is

\ j * + 0-029k* + 0-Q003j*k*,

Uk*, wf = 0-202.

It is well reproduced assuming BlC that is B independent of C, and no interaction
effect of B and C on A, that is by taking v*k

BC = nA\"k
c irf TT^ and least squares estimates

This gives as highest risk to change the field of study v-A,\?f~ =0-32 and as lowest
^ 1 | 5 c O17

3-3. Two continuous and one binary variable
In studying two continuous variables X, Y and one binary variable A, there are four

types of independence which may be of interest, exemplified by X±Y\ A, A±X\ Y, XlY,
ALX. We shall consider five families of models.

(i) We have a homogeneous conditional Gaussian distribution model in which the
distribution of A is arbitrary and in which the conditional distribution of (X, Y) given
A = i is bivariate normal with vector mean /A, = (/**(')» f^y(i)) and covariance matrix 2.

(ii) Secondly we have a homogeneous conditional Gaussian regression chain model
with A as response in which the marginal distribution of (X, Y) is bivariate normal with
vector mean fi = (fj,x, fiy) and covariance matrix 1, and in which given X = x, Y = y, A
has linear logistic regression

(iii) Thirdly we have a dichotomized normal model in which (U, X, Y) are trivariate
normal and in which A is formed by dichotomizing U thus producing a model differing
from (ii) only in replacing (3-3) by

vXY = *{yi& + y£y{x-px) + y(igx(y-viy)}. (3-4)

(iv) Fourthly we have a homogeneous conditional Gaussian regression chain model
with (A, A") as joint responses to Y in which Y is marginally normal, and in which A
given Y — y has linear logistic form

and in which X given both of A = i, Y = y has a normal distribution with parallel
regression lines on y at the two levels of A is denoted by

E(X\A=i,Y = y) = px(O + Pxya(y-Hy(i)) = Bx,ay(i) + fixy.ay. (3-6)

Thus while Y is marginally normal, X is not unless fix{l) = fix(0), but it is close to
normality if the standardized difference in means is small, as in (211).
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Models for binary and quantitative variables 453

(v) Finally we have a linear representation of probabilities in which, over an inevitably
restricted range,

T%Y = TT? + yax.y(x-nx)i* + yay.x(y-Hy)i*, (3-7)

and in which (X, Y) is bivariate normal. Marginalization in this model gives

say, where /3yx is the linear regression coefficient of Y on X. Note that y^ is determined
by a relation of the same form as used in marginalizing least squares regression coefficients.

Choice between these models is partly an empirical matter, although (ii) and (iii) are
known to be distinguishable only from very large amounts of data, and model (v), which
is subject to the restriction that the right-hand side lies in (0,1), is essentially the same
as models (ii) and (iii) if X and Y are such that with high probability v-A\*y

Y is in the
range (0-2,0-8). Marginal nonnormality of both or one of Y or X points toward (i) or
(iv). Also, if we wish to test a particular conditional independence, certain models will
be virtually excluded, because under some models particular hypotheses may arise only
in a way that demand independencies additional to the one to be tested, implying that
such a model is unsuitable for the required purpose.

The hypothesis XLY\A is tested from (i) and (iv) via the vanishing of the regression
coefficient, say of Y on X, within the two groups of observations with respectively
A = 0,1, so that a standard normal theory test is available. On the other hand, under the
models (ii), (iii), (v), that is those having A as univariate response, XL Y\A if and only
if either Xl(A, Y) or YJL(A, X), and testing either of these would amount to examining
a hypothesis much more stringent than the hypothesis of interest initially.

The hypothesis A±X\ Y can be tested from (ii), (iii), (v) via the vanishing of the y^y

in the binary regression of A on X, Y. Comparison of the tests under the different models
is no longer straightforward, in part because the null hypotheses being tested which allow
dependence of A on the second variable Y are not the same under the different models.
If we take as the model

iTA\?y
Y = G(v + yxx + yyy), (3-8)

where we have simplified the notation slightly as compared with (3-2), a component of
the log likelihood from independent observations (ij, x,, y}) (j = 1 , . . . , n) is

# = I [ij log G(tM+ yxx,+ yyyi) + (l - i}) log {1 - G(/i + yxXj + yyyj))l

and the score statistic for testing yx = 0 is based on UxQ = (d&/dyx) evaluated at yx =
and at /* = /20, yy = yy0, the maximum likelihood estimates of (/*, yy) at yx = 0. In fact

where GJ0= G(/xo+ W ; ) and Wj0= W{(Lo+yyOyj) with

When G(x) = L(x), the unit logistic function, W{x) = l, whereas, when G(x) = <J)(x),
l=e W(x)/W{0)<l-22 over the range in which 0 1 ^ ^ " ' ( x ) ^ 0 - 9 with 1-22 replaced by
1-10 in the narrower range 0-2^^"'(x)*?0-8. For the linear form G(x) = x the weight
function varies more strongly with 1-22 and 1-10 replaced by 2-18 and 1-56 respectively.
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454 D. R. Cox AND NANNY WERMUTH

The expected information matrix for (/n, yx, yy) evaluated at (/20,0, yy0) is, on differen-
tiating i? twice with respect to the parameters and taking expectations, equal to

(3-9)
I %y2j J

where Vj0= V(/xo+ yyoyj) with V(x) = G'(x)W(x) and the null hypothesis variance of
Vx0 is the reciprocal of the (2,2) element in the inverse of (3-9). In these calculations
the {xj, yj) are regarded as fixed, as would be appropriate in analyzing a given set of
observations. For some theoretical purposes, however, we may take expectations over
the marginal bivariate normal distribution of (X, Y). If in the fitting we measure Xj and
yj as deviations from their sample means, /A becomes orthogonal to (yx, yy) and the 2x2
information matrix for the latter is

In the not very interesting case where yy — 0, it follows immediately that the test based
on Ux0 is asymptotically independent of the form of the function G(.). More generally,
even if strong regression of A on y is present, the tests based on two different G(.)'s
that give essentially the same fit to the dependence on y are unlikely to differ appreciably.
For in (3-9), the GJ0 will not differ much and the weights WJ0 vary in a limited way
as noted above. If, however, tests use forms of G(.) that differ notably in their fit to the
dependence of A on y, then of course the tests are different, especially if X and Y are
strongly correlated. The reason is that the use of an inappropriate function for 'adjusting
for' the dependence on y could induce bias in the test of yx = 0, quite apart from questions
of efficiency.

Under the homogeneous conditional Gaussian distribution model (i), A±X \ Y requires
that the regression lines of X on Y for A = 0, 1 coincide.

The hypothesis XIY is directly tested in (ii), (iii) and (v) via a test of independence
in the postulated bivariate normal distribution of (X, Y), whereas, under (i) and (iv),
the hypothesis is satisfied only if (A, X)l Y or (A, Y)±X.

Finally A±X is directly tested in (i) via the equality of the means of X at A = 0, 1.
The linear form (v) is marginalized by taking expectations conditionally on X = x to
give (2-9), so that the required independence ALX is directly tested from the regression
of A on X or of X on A giving tests which, as discussed in § 2-4, are asymptotically
equivalent to that from (i).

The same test can also be derived from the probit model (iii). Because of the close
numerical equivalence of probit and logistic forms, the same test will also be effective
under the logistic model in (iv) and in (ii) although in the latter case only as a result of
a mathematical approximation; compare (2-10). Thus whenever a hypothesis can be
tested via a number of different models, the resulting test is usually approximately the
same regardless of the model, confirming the more detailed analysis of § 2-4 for two
variables.

In summary, therefore, the various models give at least roughly equivalent tests for
the various independence hypotheses, provided the model considered does not make the
hypothesis in question collapse into a stronger form of independence; see Table 5.
Typically, such problems will not occur if only hypotheses are to be tested which
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Models for binary and quantitative variables 455

Table 5. Null hypotheses under different distributional assumptions for A, X, Y

Specification of model
(§3-3) A±X\Y

x.ayW = Px.ay
in (3-6)

Hypothesis
XLY\A A±Y XlY

(3-3)

y

in (3-6)

Only if either
XL(A, Y) or
Y±(A,X)

Only if either
(A,X)±Y or
(A, Y)±X

Approximately
like (iii)

= 0 in (3-4) Same as (ii) •v(p) =
I ay

Same as (ii)

(i) Homogeneous
CG-regression chain
model with (X, Y)
as response to A*

(ii) Homogeneous
CG-regression chain
model with A as
response to (X, Y)

(iii) Trivariate normal for
(X, Y, U) with U
dichotomized to
form A

(iv) Homogeneous
CG-regression chain
model with (X, A) as
response to Yt

* Equivalent to a CG, conditional Gaussian, distribution for A, X, Y.
t Marginal independence A l X in this model and in a corresponding model having logistic dependence of
A on Y replaced by a probit dependence requires (A, Y)±X or A_L(X, Y), while A1Y\X requires

Same as (i) Same as (i) -/' ' = <) in (3-5) Same as (i)

correspond to the ordering, the conditioning of variables, implied by the dependence
chain used to specify the model, i.e. whenever the dependence chain and where the
independencies to be tested result from substantive considerations (Wermuth & Lauritzen,
1990).

3-4. Two binary and one continuous variable
We now carry out a broadly parallel analysis to §§ 3-2, 3-3 when there are two binary

variables A, B and one continuous variable, X. The independency relations of interest
are exemplified by A LB \ X, ALX\ B, A J. Band ALX. We consider five families of models.

(i) We have a homogeneous conditional Gaussian distribution model in which the
distribution of (A, B) is arbitrary, with probabilities v^0, and in which X given A = i",
B =j is normally distributed with mean ^ and variance cr2.

(ii) We have a homogeneous conditional Gaussian regression chain model with (A, B)
as responses to X, with X having a marginal normal distribution of mean ft and variance
cr2, and A, B having a joint log linear model given X written conveniently in the form

(3-10)Wax '•*

(iii) We have a homogeneous conditional Gaussian regression chain model with A as
a response to (B, X), that is with X given B=j normal with mean fixj and variance o^xb

and with A given X = x, B=j logistic
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(iv) A number of models can be formed from underlying multivariate normal distribu-
tions, one by replacing L{x) in (3 11) by O"'(JC), this corresponding to bivariate normal
distributions for (U,X) given B=j, and another corresponding to a trivariate normal
distribution for (U, V, X), the first two variables being dichotomized to form (A, B).

(v) Finally, there are representations linear in the probabilities which can be written as

(3-12)

or as (3-11) with L and superscript (/) deleted. They have advantages of simple marginaliz-
ation and direct interpretation but the disadvantages of inevitably constrained parameters
and give only indirect representations of some conditional independencies.

Discussion of the tests of various kinds of independency parallels that of §3-3.
Programmed algorithms for estimation in conditional Gaussian distributions are due to
Edwards (1990).

Thus, for example, A±B\X is tested quite directly in the conditional Gaussian
regression chain models (ii) and (iii), for example in (iii) by testing yjLu*,) = r^Wo* = 0
in the linear logistic regression of A on X, B and XB associated with (311), and in (ii)
the same test is appropriate, because (3-10) implies a relation of the type (311) for the
conditional distribution of A given X and B. On the other hand, under the conditional
Gaussian distribution model (i), A±B\X requires both that the normal means /xy have
an additive structure ^0 = /x + ^Ai* + £Bj* and that the marginal odds ratio takes a special
value

(vuB7r&B)/{irf0
Birn) =exp (4&&/V)

(Wermuth, 1989). A likelihood ratio test can be set up for this hypothesis, but the precise
relation between it and the tests associated with models (i) and (iii) is unclear. An
exception is the case in which the linear-in-probability regressions approximate both of
irA\x and TT*\X well. Then the results of (2-11), (2-12) imply that the models are virtually
indistinguishable under the hypothesis A±B\X, no matter whether the distributional
assumptions (i), (ii) or (iii) hold.

For ALXIB, the conditional Gaussian distribution model (i) is immediately applicable
via a test of no interaction in the two-way analysis of the cell means. Under a conditional
Gaussian regression chain model with discrete responses, ALX \ B requires £AX = £ABX -
0 for (3-10) and y(

a'/Lo*) = yLub).<« = 0 for (3-11) and the two tests are equivalent since,
as mentioned before, (3-10) implies a relation of the type (311).

3-5. Concluding remarks
Most of the models discussed above treat the three involved variables asymmetrically.

This can lead to particularly simple and appealing interpretations if single variables are
responses and it is especially important when it can be given a substantive interpretation.
Nevertheless all the models are to be regarded as specifying the joint distribution of
three random variables involved. A particular conditional hypothesis, which can be
directly specified and tested as independence of a response from one of the explanatory
variables, may not be satisfied in some joint distribution unless a stronger independence
holds. One example is X±Y\A which is a common hypothesis in a linear regression of
X or Y on the remaining variables, but which cannot hold if A arises as a dichotomized
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Models for binary and quantitative variables 457

variable from U, where X, Y, U have a joint normal distribution. A similar but not
completely analogous case is ALB \ Y, which is a common hypothesis in a probit regression
of A or B on the remaining variables, but an unstable hypothesis in a conditional Gaussian
distribution of Y, A, B, that is, even though the hypothesis can be satisfied by some
expected counts, the sample size has to be very large to distinguish it from one of the
stronger hypotheses A±(B, Y) or B±(A, Y).

If in addition there is for each individual a vector z of explanatory variables which
can be treated as if fixed, the addition to the models of a term for linear dependence on
z is in most cases as discussed in § 2-5.

An important qualitative conclusion is that there is a variety of models for representing
this kind of data and that to a considerable extent tests of conditional independence do
not depend strongly on model choice. This allows some flexibility of choice in selecting
models that are convenient for substantive interpretation and for probability calculations.

Broadly similar results apply to situations with more than three variables, but concep-
tually new problems may also arise if distributions of four or more variables are studied.
For instance, some models will contain so-called nondecomposable independence
hypotheses, i.e. independencies which cannot be conveniently specified by zero restrictions
on individual parameters of recursive systems such as (3-2), but which involve associated
joint responses instead. As a consequence not only the interpretation can be more difficult,
but the available estimation procedures for sequences of univariate recursive regressions
have to be extended to obtain estimates. Noniterative approximations may be utilized in
some situations (Cox & Wermuth, 1990, 1991), but typically iterative algorithms are
required to obtain maximum likelihood estimates under such more complex models.
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APPENDIX 1

Least squares analysis of linear representations of probabilities

Let V , , . . . , Yn be independent binary random variables with

E(Yj) = pr(Yj = l) = nj, var (Yj) = TT,(1 - TT,) = v(l + Sj),

where P = ave {TTJ{\ -ITJ)} and 2 5/ = 0. Consider a linear representation of the probabilities,
ITJ = Xj//3, where x} is a 1 x p and p is a p x 1 vector of parameters. If Y is the n x 1 vector of the
yh then £( Y) = xfi, where x is n xp and assumed to be of full rank.

We suppose that the {TTJ are confined to a central range such as (0-2,0-8), so that the constraints
0=£ 77)« 1 can be ignored. Also the {Sj} are then small.

The ordinary least squares estimates flLS = (xTx)~lxTY have covariance matrix

cov (/5LS)= v{xTxYx{l + (xT4x)(xTx)-')}, (AM)

where A = diag ( 5 , , . . . , Sn). Direct calculation shows that the expected value of the residual mean
square is

i>[l-(n-p)-lU{(xTAx)(xTx)-'}l (Al-2)

so that some adjustment is in principle desirable in attaching standard errors to the components
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The log likelihood function is

UP) = 1 , iyj log (xjp) + (\ -yj) log (1 -XjP)}

and, on differentiating twice with respect to p and taking expectations, it follows that the Fisher
information matrix for p is

f- 'xT diag {(1 + fi,)-1}* = i>-lxTx{I - (xTx)-'(xTAx) + (xTx)-\xTA2x) + O(A3)}. (Al -3)

Thus the asymptotic covariance matrix of pML, the maximum likelihood estimate, is on inversion

Comparison with ( A l l ) shows that the inflation of variance by using £LS rather than /3ML is of
order A2. This could have been anticipated from the identity between maximum likelihood
estimation and weighted least squares with appropriately iterated weights and the known insensitiv-
ity of weighted least squares to perturbations in the weights.

As a rather extreme case consider the model with

E(Yj) = p0 + pl (j=nl+\n2+\,...,ni + n2),

with in fact /30 = i . /3, = O-3, so that maximal changes of variance are encountered. Then

var (0o.Ls)/var (0O.ML) = (n, +2-2025n,n2 + n2)/(n, + n2f< 1-051.

It thus seems likely that the loss of efficiency is typically less than, and often much less than, 5%.
These arguments can be extended to any simple exponential family problem involving indepen-

dent observations in which the mean parameter is specified by a linear model.

APPENDIX 2

Models linear in probabilities

In this appendix we develop further some aspects of models linear in probabilities as set out
in § 3. The advantages of such models are that parameters are directly interpreted via differences
or contrasts of probabilities, that simple marginalization is available by addition of probabilities
and that fitting by ordinary least squares is often highly efficient. The disadvantages are that
independence is a multiplicative rather than an additive concept and that constraints on the
parameters are unavoidable unless the probabilities are restricted to a central range.

We discuss separately the linear models based on the joint distribution (31) and the linear
models formulated recursively (3-2).

First note that it is possible to augment (31) by terms depending on one or more quantitative
variables as in (3-12) and indeed we can include terms in {X - fj.x)

2 if desired. Taking expectations
over X in (312) leads back to the model for tt^B.

The relative clumsiness of the linear representation for TT*B in dealing with independence and
conditional distributions is shown by formulae like

IT?=Ki+ &«••), < = Id+ &/*),
(A2-1)

}•
Thus, A and B are independent if and only if £AB = gAgB so that independence can be assessed

via the nonlinear combination

VAB = tAB-$Ah- (A2-2)

This is equivalent to gAB =0 if and only if at least one of A, B is equally likely to take values
zero, one. Introduction of the categories i*, etc. taking values (1, -1) instead of i" taking values
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(0,1) is not essential but does symmetrize the formulae. Note that, if /* is the random variable
corresponding to A, then £(/*) = £A, var(/*) = l-£\.

Similarly for three variables A, B, C starting from

< B C = K1 + &i* + to* + &** + W V + &c'*** + &c/*** + tABd*j*k*), (A2-3)

conditional independence A±B|C involves two conditions
ABC, BC _ ABC, BC ABC, BC _ ABC , BC

T i l l / ' T i l — T n 0 /TTio , T 1 O l / T o i — 7T1OO / T 0 | ,

leading to

VACVBC = VAB(1-£;2C), *;ABC-€A€B{;C = £AVBC + £BVAC + £;CVAB- (A2-4)

Under complete independence AlBlC we have that

VAB = VAC = VBC = 0, €ABC = $A$dc, (A2-5)

suggesting that it may sometimes be convenient to define

VABC = ZABC ~ ZAZBZC- (A2-6)

Note that when the marginal probabilities are equal or close to \ as when binary variables are
produced by median dichotomizing of continuous variables, then £A = fB = fc = 0 a nd equations
(A2-4)-(A2-6) simplify appreciably.

Conditional distributions can be written down in forms exemplified by

T % T = T ^ / U O + €EJ* + tck* + {Bcj*k*)}, *A% = T ^ B C / { K 1 + tck*)). (A2-7)

A second set of useful linear representations can be obtained when the variables are ordered
to have A as response to (B, C) and B as response to C, that is in such a way that it is sensible
to build up the joint distribution from the marginal distribution of C, the conditional distribution
of B given C and the conditional distribution of A given B and C. We write, in a notation chosen
to stress the relation with least squares regression formulae,

i r£=Kl+ &**), TB |^=l(l + yfc.J* + r6c;*k*). (A2-8)

Thus the marginal distribution of B has

** = 1(1 + W * + y*£cj*) = 5(1 + 6J*),

where £B = "fb.c + JbAc- Note also that cov (/*, K*) = ->v(l - £c) so that the regression coefficient
of J* on K* is •)>(,<.. This can be found, for example, from the joint distribution of B and C
obtained by multiplying the two equations (A2-8) using k*2= 1, that is

T/*C = }{1 + (yb.c + ybc)j* + ick* + ybJ*k*} = i(l + fa* + {ck* + tBCj*k+), (A2-9)

where

tB = yb.c + y*tc, tBC = ybc, (A2-10)

establishing a connection with the direct specification via the joint distribution. Also

Next write

4 ' C = i{l + ya.bci* + yab,,bc)i*)* + yacMbc)i*k* + y^bc).bci*j*k*}. (A2-12)

On taking expectations over the levels of B given C, using (A2-11), we have that

V%=^{i + (ya.br+yab.cibc)yb.c+ya(bc).bCybc)i* + (yacHbc)+yabMb<r)ybc+ya(bc).bcyb.r)i*k*}

= i(i + w * + y«i-fc*), (A2-13)

say, and again the relations linking the coefficients in (A2-13) with those in (A2-8), (A2-9) and
(A212) are ordinary regression ones.
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Finally, the joint distribution of A, B, C is obtained by multiplying (A2-9) and (A2-12) to form
(A2-3) with

?A = ~Ya.bc ~*~ £B~Vab.elbe) "*" %C~Yacb(bc) "*~ ̂ BC~f a{bc).bc t

a(bc).bc
(A2-14)

= yac.b(bc)+ 4c~Ya.bc ~ £ €

i.c(ic) + %BCya.bc ,

with the £'s on the right-hand side having already been denned. These simplify considerably if
there is no three-factor interaction, leading, for instance, to

ya.be = & - yab.c£B - yaabic, (A2-15)

and if, in addition, the marginal probabilities are all equal to i we have

(A2-16)

If, however, conditional relations are required in which the order with A as response to B, C
and B as response to C is not preserved, then in the present parameterization the linear structure
is lost and we return to the form (A21).
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