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Linear Dependencies Represented

by Chain Graphs

D. R. Cox and Nanny Wermuth

Abstract. Various special linear structures connected with covariance
matrices are reviewed and graphical methods for their representation
introduced, involving in particular two different kinds of edge between
the nodes representing the component variables. The distinction between
decomposable and nondecomposable structures is emphasized. Empirical
examples are described for the main possibilities with four component

variables.
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1. INTRODUCTION

This paper has three broad objectives. The first is to
illustrate the rich variety of special forms of association
and dependence that can arise even with as few as
three or four variables. The second is to show the
" value of graphical representation in clarifying these
dependencies; for this we introduce graphs with two
different kinds of edge and some further features which
are also new. The third objective is to show the impor-
tance in interpretation of the distinction between de-
composable and nondecomposable models.

A series of examples will be used in illustration,
partly to show that many of the special structures do
indeed arise in applications and partly to show in out-
line the implications for interpretation, although refer-
ence to the subject matter literature is necessary for
a full account. Most of the examples arise from recent
investigations at University of Mainz. For purposes of
exposition we have chosen examples with at most four
variables; that is, we have simplified by omitting men-
tion of variables which analysis had shown to have no
bearing on the points at issue.

We confine the discussion to those problems with
essentially linear structure in which the interrelation-
ships are adequately captured by the covariance matrix
of the variables. Of course in applications, checks for
nonlinearities and outliers are required, and these have
been done for all examples whenever we had access to
the raw data.
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Psychologisches Institut, Johannes Gutenberg-Uni-
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The need to discuss special structures arises partly
because the relations of marginal independence and
conditional independence expressed thereby are often
of substantive interest and partly because in a satu-
rated model with p component variables, that is, one
in which the covariance matrix is unrestricted other
than to being positive definite, there are 1/2p(p — 1)
correlations, and reduction of dimensionality may be
desirable to avoid a superabundance of parameters.

There are strong connections with, in particular, the
long history of work in path analysis in genetics, in
simultaneous equations in econometrics and linear
structural models in psychometrics and with the body
of recent work applying graph-theoretic ideas to the
study of systems of conditional independencies arising
especially in the study of expert systems.

In Section 2 we review some general properties of
linear regression systems as related to the covariance
matrix of the variables and stress the distinction be-
tween multivariate regression and block regression and
between decomposable and nondecomposable struc-
tures. In Section 3 we introduce the main conventions
useful in a graph-theoretic representation of the inde-
pendency relations that may hold; in Section 4 we
discuss relations with previous work, and in Section 5
we give a series of empirical examples for four vari-
ables. The paper concludes in Section 6 with some general
discussion. The emphasis throughout is on the struc-
ture and interpretation of the various models rather
than on the procedures for fitting.

2. SOME PROPERTIES OF COVARIANCE MATRICES

It is convenient to set out some properties of systems
of linear least squares regressions derivable from a
covariance matrix. These are full regression equations

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to

Statistical Scienc

e. ®
Www.jstor.org



LINEAR DEPENDENCIES 205

in a multivariate normal distribution. There is through-
out the usual interplay between relatively weak second-
order properties of least squares regression and the
strong properties derivable from an assumption of mul-
tivariate normality, such as that zero correlation or
zero partial correlation implies independence or condi-
tional independence.

We consider first the p X 1 vector Y = (Yy, ..., Y,)”
with mean E(Y) = u. We denote the positive definite
covariance matrix by cov(Y) = X, and its inverse, the
concentration matrix, therefore by L™'; the diagonal
elements of ¥ are the variances (o;), those of L' are
the precisions (6. The off-diagonal elements of L are
the covariances (g;), those of T ! are the concentrations
(6%). A marginal correlation p; is expressible via ele-
ments of the covariance matrix, in a way similar to
that in which a partial correlation, p;;, given all of the
remaining variables k& = {1, ..., p}\{i,}, is expressible
via elements of the concentration matrix:

-1/2 .. e —1/2
py = oy(guoy) , pyx = —a(a"d”) .

This implies in particular that in the usual notation
(Dawid, 1979a) for independence,

Yi A Yj, if and only if g = 0,
Y; Il Y;| Y ifandonlyifc? =0,

where as above & = {1, ..., p\{i, j}.

To study regression models, we partition Y into Y,
and Y,, p, X 1 and p, X 1, respectively, p. + p» = p,
and call the two parts response and explanatory vari-
ables. Let the covariance matrix and the concentration
matrix be conformally partitioned:

aa ab
os-C- E-C F)

. Bb .

then the covariance matrix X, of the explanatory vari-
ables and correspondingly their concentration matrix
L, = Lt = £ — (E95T(T*9~'E* do not contain pa-
rameters needed to specify a standard regression model
of Y, on Y,. Instead, their observed counterparts are
taken as fixed or indeed sometimes are fixed by sam-
pling design.

* We now distinguish between a multivariate regres-
sion and a block regression. To simplify the notation
we shall without essential loss of generality take often
E(Y) = 0. We describe the distinct parameters in the
two types of regression models, that is, the two ways
of parametrizing the conditional distribution of Y,
given Y,. For a multivariate regression of Y, on Yj,
that is, for Y, = I, Y, + &, with E(e,) = 0, E(e,Y?) = 0,
the regression equation parameters Il,; and the resid-
ual variance var(e,) can be written in a matrix as
(05 Tap), where

Ha]b = Zabzb_bl’

2 -1 T
( ) Var(ga) = Zaa.b = Zaa - Zabeb Zab'

In a saturated multivariate regression (2) each compo-
nent of Y, is regressed separately on the full set of
components Y.

On the other hand in a saturated block regression
each component of Y, is regressed not only on Y,
but also on all remaining components of Y,. Then the
regression equation parameters are instead propor-
tional to the elements of the matrix (X%, £*°) (Wermuth,
1992). The reason is that the expected value of a compo-
nent Y; of Y, given all remaining variables of Y can be
obtained by taking expectations in

(3) ZMYa + Zabe = Wq

where E(w,) = 0, var(w,) = X* and dividing the ith
equation by the concentration o*. Equation (3) is de-
rived from a block triangular decomposition of the
concentration matrix, L ! = ATT~1A, where

aa, —1ab
amfo @B,

0 Iy

T_l = (2 (l)ab.a> s
0 2

as the first p, equations of (I'"1A)Y — E(Y)) = w. The
residuals w have zero mean and covariance matrix 71,

For a block regression, the resulting coefficient of
variable Y;in the ith equation is minus a partial regres-
sion coefficient given all remaining variables of Y, that
is, given all remaining response and explanatory vari-
ables. On the other hand, in a multivariate regression
the coefficient of Y; in the ith equation is a partial
regression coefficient given all remaining variables of
Y,, that is, given all remaining explanatory variables.
To express this distinction more formally, we write a
partial regression coefficient B, for {1,...,p}=
a U b={{jj},d, g} in terms of elements of the condi-
tional covariance matrix of (Y;, Y; given Y; and of
elements of the concentration matrix of (Y;, Y}), having
marginalized over Y,, as

(4)

= Jud 0%

ij.d sd O.ii.g'
Note that in the case of a block regression g is empty
and d is the set of all remaining variables of Y, that
is, d = (a U b)\{i, j}, while in the case of a multivariate
regression d = b\{j}, and g = a\{{}. Note further that

To judge the relative strength of the dependence of a
response on several explanatory variables, it is some-
times useful to compare the standardized regression
coefficients, that is, 84 = Bj.0h0: .

One of the major distinctions between multivariate
regression and block regression lies in the meaning of
the relation between two components Y; and Y;, both
within Y,, and in the meaning of the relation of a
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component Y; from Y, to a component Y; from Y,. To
describe this in detail it is useful to recall how a partial
regression coefficient relates to a partial correlation

coefficient
_ Giid _ frad
Bia = pzj.d4{_ = pij.d4?—~i"g‘~
Ojid ag*

Thus, in a block regression, that is, where d =
(@aUb)\{, j}, the relation between Y; from Y, and Y; is
measured essentially by the partial correlation given
all remaining variables of Y, no matter whether Y; is
from Y, or it is from Y,. By contrast in a multivariate
regression, that is, where d = b\{j}, the measure of the
relation of Y; from Y, to Y; from Y, is proportional to
the partial correlation given the variables in Y, other
than Yj; the correlation between Y; and Y; both within
Y, is given all variables in Y,. Thus, a larger set of
variables is considered simultaneously in block regres-
sion if compared with the corresponding multivariate
regression. Written in matrix notation their parame-
ters are related by

© ILy==() 72" Ds
M == () T 2 = (Sas)

Some of the special models we shall consider corre-
spond to specifying some elements of regression equa-
tions to be zero, that is, to structures that appear
simplified if compared with the saturated model. The
choice between block regression and multivariate re-
gression is then largely determined by the research
questions and by a decision as to which of the two
parametrizations permits a simpler description of the
relations. For instance; in each of Examples 1, 2 and
7 of the empirical examples of Section 5 we can think
of two variables as joint responses, Y, = (Y, X)?, and
of two variables as explanatory, Y, = (V, W)’. A sim-
plifying description is possible with block regression
but not with multivariate regression in Example 1, while
a simpler structure results with multivariate regres-
sion than with block regression in Examples 2 and 7.

If not only the conditional distribution of Y, given
Y, is of interest, but the marginal relations among
component variables within Y, as well, we are led to a
simple type of regression chain model: we specify the
joint density via

N

-1

fab = fappfos

and make a choice for f,, among a multivariate and a
block regression. :

A specification of the joint distribution of Y,, Y: by
a saturated multivariate regression chain model has
(£, o) as parameters for the conditional distribu-
tion of Y, given Y, and L;, for the marginal distribution
of Y,. With a saturated block regression chain model
the parameters are the regression coefficients obtained

as described above from (£*, %) and the concentration
matrix % = L.,

Considering, for instance, a multivariate regression
chain model instead of a multivariate regression model
can lead to a simpler structure. This is the case in
Example 7 but not in Example 2 of Section 5 since the
explanatory variables can be taken to be marginally
uncorrelated in the former but not in the latter.

In the next more complex regression chain model
the joint density of three (vector) variables Y,, Y, and
Y, is specified via

fabc = fa[bcfb]cfcy

that is, via a regression of Y, on Y, and Y., a regression
of Y, on Y, and the marginal distribution of Y,. This
would be an adequate approach if the components of
Y, are the response variables of primary interest hav-
ing Y, and Y, as potential explanatory variables, if Y,
plays the role of an intermediate variable containing
potentially explanatory components for Y, and possi-
ble responses to Y, and, finally, if Y. consists of explan-
atory variables whose joint distribution is to be analyzed.
A particularly important family of regression chains
are the univariate recursive regressions in which, for
a given ordering of the components of ¥ = (Y;,...,
Y,)", we define the model via the regression of Y. on
Yii,..., Y, forr=1,...,¢ g < p—1. An indepen-
dence hypothesis is said to be decomposable if it speci-
fies one or more of the regression coefficients in such
a system to be zero. Early descriptions of univariate
recursive regressions have been given by Wright (1921,
1923) with an emphasis on applications in genetics and
by Tinbergen (1937) for the study of business cycles.
By contrast a nondecomposable independence hy-
pothesis consists of a set of 2 independence relations
for k distinct variable pairs that cannot, in its entirety,
be reexpressed in terms of vanishing coefficients in the
above form: that is, no ordering of the variables would
produce a decomposable independence hypothesis with
the same implications from the same distributional

- assumption. The following arguments apply provided

that there are no so-called forbidden states, that is,
states of zero probability (Dawid, 1979a).

For instance, for a trivariate normal distribution of
Y, Z, X the hypothesis Y Il X|Z and X 1l Z|Y
corresponds to zero concentrations for pairs (Y, X) and
(X, Z) and it implies X || (Y, Z). This hypothesis can
be reexpressed by Y 1| X |Z and X || Z correspond-
ing to By.. = B: = 0 in a univariate recursive system
for (Y, X, Z)". Thus the hypothesis is decomposable
even though initially not expressed in that form. On
the other hand, no ordering of the variables would
permit us to specify the hypothesis Y || X and
Z || U as zero restrictions in a univariate recursive
regression system. Thus the hypothesis is nondecom-
posable. Further examples for nondecomposable hy-
potheses are discussed in Section 5.
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They arise in applications with four or more vari-
ables, as we shall see below, but suffer from a number
of disadvantages both in terms of the difficulty of
fitting, but more importantly, in terms of indirectness
of interpretation. The need for such models was noted
by Haavelmo (1943) who pointed out substantive re-
search questions about relations which form a system
of equations to be fulfilled simultaneously, but which
are not a system of univariate recursive regressions.
His subject matter example is as follows: consumption
in an economy per year depends on total income, invest-
ment per year depends on consumption and total in-
come is the sum of consumption and investment. A
slightly simplified version of Haavelmo’s argument for
the simultaneous treatment of equations is given in
Section 4. As a consequence of his results, the class of
linear structural equations was developed to study
simultaneous relations. It is mainly discussed in econo-
metrics (Goldberger, 1964), in psychometrics (Jore-
skog, 1973) and in sociology (Duncan, 1969); it includes
univariate recursive regression systems and multivari-
ate regressions as a subclass but, in general, a zero
coefficient in a structural equation does not correspond
to an independence relation. More generally the graphi-
cal representations to be introduced in Section 3 are
equivalent to those used in path analysis and in discus-
sions of structural equations only in rather special
cases. We deal with this important point further in
Section 4.

A representation in terms of univariate recursive
regressions combines several advantages. First, and
most importantly, it describes a stepwise process by
which the observations could have been generated and
in this sense may prove the basis for developing poten-
tial causal explanations. Second, each parameter in
the system has a well-understood meaning since it is a
regression coefficient: that is, it gives for unstandard-
ized variables the amount by which the response is
expected to change if the explanatory variable is in-
creased by one unit and all other variables in the
equation are kept constant. As a consequence, it is
also known how to interpret each additional zero re-
striction: in the case of jointly normal variables, each
added restriction introduces a further conditional inde-
pendence, and it is known how parameters are modified
if variables are left out of a system (Wermuth, 1989).
Third, general results are available for interpreting
structures, that is, for reading all implied independen-
cies directly off a corresponding graph (Pearl, 1988;
Lauritzen et al., 1990) and for deciding from the graphs
of two distinct models whether they are equivalent
(Frydenberg, 1990a). Fourth, an algorithm exists (Pearl
and Verma, 1991; Verma and Pearl, 1992) which de-
cides for arbitrary probability distributions and an
almost arbitrary list of conditional independence state-
ments whether the list defines a univariate recursive
system; if it does, a corresponding directed acyclic

graph is drawn. Fifth, the analysis of the whole associa-
tion structure can be achieved with the help of a se-
quence of separate univariate linear regression analyses
(Wold, 1954).

The word causal is used in a number of different
senses in the literature; for a review see Cox (1992).
Glymour et al. (1987) and Pearl (1988) have developed
valuable procedures for finding relatively simple struc-
tures of conditional independencies which they define
to be causal. We prefer to restrict the word to situa-
tions where there is some understanding of an underly-
ing process. From this perspective it is unrealistic to
think that causality could be established from a single
empirical study or even from a number of studies of
similar form. We aim, however, by introducing appro-
priate subject matter considerations into the empirical
analysis, to produce descriptions and summaries of the
data which point toward possible explanations and
which in some cases of univariate recursive systems
could be consistent with a causal explanation.

3. SOME GRAPHICAL REPRESENTATIONS

With only three component variables, the number of
possible special independency models is fairly small
but with four and more components there is a quite
rich and potentially confusing variety of special cases
to be considered. Graphical representation helps clarify
the various possibilities, and it is convenient to intro-
duce the key ideas and conventions in terms of three
variables.

A systematic account of graphical methods by Whit-
taker (1990) emphasizes undirected graphs, that is,
systems in which all variables are treated on an equal
footing. Here we use largely directed graphs to empha-
size relations of response and dependence; it is fruitful
also to allow two different kinds of edge between the
nodes of a graph and to introduce some additional
special features.

First we introduce, where appropriate, a distinction
between the response variables of primary interest,
one or more levels of intermediate response variables,
and explanatory variables, all in general with several
component variables. The distinction between variable
types is usually introduced on a priori subject matter
considerations, for example via the temporal ordering
of the variables. Sometimes, however, there are several
such provisional interpretations and some may be sug-
gested by the data under analysis. The distinction
between variable types is expressed in the graphs via
(c) below.

The following conventions have been used in con-
structing the graphs in this paper and are illustrated in
their simplest form in Figures 1-3 for three variables:

(a) each continuous variable is denoted by a node, a
circle;
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Fic 1. Six distributionally equivalent ways of specifying a satu-
rated model for three variables. (a) Joint distribution of Y, X, V
with three substantial concentrations: (b) joint distribution of
Y, X, V with three substantial covariances; (¢} multivariate regres-
sion chain model with regressions of Y on V and of X on V and
with correlated errors; (d) block regression chain model with
regressions of Yon X, V and of X on Y, V; (e) univariate regression
of Yon X, V and joint distribution of X, V; (f) univariate recursive
regression system with Y as response to X, V; X as intermediate
response to V. For instance, graph (e) with double lines round
the right-hand box would represent the standard linear model for
regression of Y on fixed explanatory variables X, V.

(b) there is at most one connecting line between each
pair of nodes, an edge;

(c) variables are graphed in boxes so that variables
in one box are considered conditionally on all boxes to
the right (in line with the notation P(A | B) for the
probability of A given B) so that the response variables
of primary interest are in the left-hand box and its
explanatory variables are in boxes to the right;

(d) if full lines are used as edges, each variable is
considered conditionally on other variables in the same
box (as well as those to the right), whereas if dashed
lines are used variables are considered ignoring other
response variables in the same box, that is, marginally
with respect to response variables in the same box;

(e) the absence of an edge means that the corre-
sponding variable pair is conditionally independent,
the conditioning set being as specified in (d);

(f) variables in the same box are to be regarded

o=
o<
Ox

v v W

@ (®) © (d)

Fic. 2. Four distributionally equivalent ways of specifying
Y 1l X|V; (a) covariance selection model for Y, X, V having
parameters pyux # 0, puy # 0, and pyeo = 0; (b) univariate re-
cursive regression model with Bz # 0, Byzv =0, Bz # 0; {c)
block regression chain model with Y, V as joint responses to X
and with independent parameters pyp.x # 0, Byev = 0, fozy # O;
(d) two independent regressions of Y on V and of X on V with
ﬂyu * 0, ﬂxu * 0; Pyxv = 0.

P e | -] e - vl
VbI \\m VU ) x

@ (®) © ()

Fic. 3. Four distributionally equivalent ways of specifying
Y || X; (a) linear structure in covariances with py, # 0, pxy * 0,
Pyx = 0; (b) univariate recursive regression model with Buzy * 0,
Boyx # 0, Byx = 0; (c) multivariate regression chain model with
Pyz 0, Box # 0, By = 0; (d) multiple regression of V on two
independent regressors Y, X, with B,z # 0, fuzy # 0, pyz = 0.

in a symmetrical way, for instance as both response
variables, and connected by undirected edges (lines
without arrowheads, for correlations), whereas rela-
tions between variables in different boxes are shown
by directed edges (arrows, for regression coefficients)
such that an arrow points from the explanatory vari-
able to the response;

(g) graphs drawn with boxes represent substantive
research hypotheses (Wermuth and Lauritzen, 1990)
in which the presence of an edge means that the corre-
sponding partial correlation is large enough to be of
substantive importance. This corresponds to the notion
that the model being represented is the simplest appro-
priate one in the sense that relations considered to be
unimportant are not part of the model; graphs obtained
by removing the boxes represent statistical models in
which a connecting edge places no such constraint on the
correlation, that is, it could also be a zero correlation;

(h) a row of unstacked boxes implies an ordered
sequence of (joint) responses and (joint) intermediate
responses, each together with their explanatory vari-
ables. Boxes are stacked if no order is to be implied,
in order to indicate independence of several (joint)
variables conditionally on all boxes to the right;

(i) if the right-hand box has two lines around it, then
the relations among variables in this box are regarded
as fixed at their observed levels; this is to indicate a
regression model instead of a regression chain model,
the latter containing parameters also for those compo-
nents which are exclusively explanatory.

In the present paper we use only graphs with edges
of one type, that is, either all full lines or all dashed
lines. It would be possible to have mixture of the two
types of edge in the same graph, for example provided
that all the edges within one block are of the same
type and all the edges directed at a particular block
are of the same type.

In a sense the distinction between full and dashed
edges serves a double purpose. The distinction between
full and dashed arrows from one box to another deter-
mines the different conditioning sets used in the vari-
ous regression equations under consideration. The
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distinction between full and dashed lines within a box
specifies whether it is the concentration or the covari-
ance matrix of the residuals that is the focus of interest.
In this sense the nature of the edges corresponds to
the parameters of interest.

The joint distribution of all variables is in the present
context specified by the vector of means and the covari-
ance or the concentration matrix. However any such
given matrix may correspond to a number of models
with quite different interpretations in the light of the
distinction between types of variable as response, inter-
mediate response or explanatory variable. A complete
graph, that is, one in which all edges are present,
represents a saturated model, that is, in the present
context a model without any specified independence
relations.

To stress the distinction between the multivariate
regression and block regression contained in Figure 1,
we write the corresponding equations explicitly. The
multivariate regression equations implied by Figure 1c
are

E(Yl V=vuv)—u = ﬂyv(v - ,u,,),
EX|V=0)— = Fulv —u),
with
COV(Ey 1 E2) = Pynv(TypoTans)
By contrast the block regression equations implied by
Figure 1d are

EY|X=x,V=v)—yu
= ﬂyx.v(x _,ux) + ﬂyv.x(v - ,Uu),
E(X | Y=y,V= v) — U

= ﬂxy‘v(y - :uy) + ﬂxv.y(v - ,Uu),
with
1/2 1/2
ﬂyx.u = pyx-v(ayy‘v / axx.v) aﬂxy.v = pyxlu(axx.u / Uyy.v) y

cov (sy.xvy sx‘yv) = —Dyxv (ayy.xvaxx.yv) 3

where the conditional variance of the variable given
all remaining variables is the reciprocal value of a
precision, for example, g,,., = 1/0*. Relations be-
tween the sets of parameters in the two types of regres-
sions are given by Equations (6) and (7).

4. RELATIONS WITH PREVIOUS WORK

We illustrate the distinction between the graphical
chain models of the present paper and structural equa-
tion models via two examples. Suppose first that X
and Y are standardized to mean zero and variance one
and denote their correlation coefficient by p. Then

Y=pX+e¢, X=pY+e,

where (¢,, £,) are residuals from linear regression equa-

tions. That is, the coefficients p in these equations
have an interpretation as regression coefficients. Direct
calculation shows that

cov(ey &) = covlY — pX, X — pY) = —p(1 — p?),

which is nonzero unless p = 0. That is, the two regres-
sion equations imply correlated residuals except for
degenerate cases.

On the other hand, if we were to adopt

Y—pX=8y', X—pY=c¢

as structural equations with uncorrelated residuals,
then another direct calculation shows that the regres-
sion of Y on X is

— E(YX)x _ var(e,) + var(e;) .
EX? var(e,) + p?var(e.) P

E(Y|X = x)

which is not px, again unless p = 0. That is, the coeffi-
cients in these structural equations do not have an
interpretation as regression coefficients, as was noted by
Haavelmo (1943).

To make the related point that missing edges in the
graphical representation of linear structural equations
(Van de Geer, 1971) do not in general have the indepen-
dency interpretation of chain graphs, consider the fol-
lowing two structural equations

Y+ pyX + pV=o¢gy,
nyY + X+ puW=c¢,

illustrated in Figure 4. For correlated errors (eg,, &),
a count of parameters shows that this represents a
saturated model; that is, it allows an arbitrary covari-
ance matrix for (Y, X,V,W)’. That is, in particular, the
missing edges between V and X, and between W and
Y do not imply independencies, conditional or uncondi-
tional, For some further discussion of possibilities for
interpreting the parameters in this model see Wermuth
(1992) and Goldberger (1992). For linear structural
equations in general, the interpretation of equation pa-

F16. 4. Graphical representation of two structural equations in
which the missing edges for (V, X) and (W, Y) do not correspond
to independencies and do not restrict the covariance matrix for
(Y, X, W, VY.
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rameters, be they present or missing, has to be derived
from scratch for each model considered.

However, an interpretation in terms of independenc-
ies is available also for structural equations, whenever
such a model is distributionally equivalent to one of
the chain graph models, that is, if the same joint
distribution holds for the two types of models, possibly
specified in two distinct ways, and the parameter vec-
tors of the two models are in one-to-one correspon-
dence.

Three classes or families of models can be identified
to have this property. These are models that have a
representation by a chain graph which is:

[1] a covariance graph, that is, a single box graph in
which all present edges are undirected dashed
lines, as in Figures 1b and 3a;

[2] amultivariate regression graph, that is, a two-box
graph in which all present edges are dashed, being
lines within and arrows between boxes, as in
Figures lc and 3c and in which the right-hand
box has two lines around it, the distribution of
its components being fixed.

[3] a univariate recursive regression graph, that is,
a graph of ¢ + 1 boxes, ¢ of them with a single
response variable and the right-hand box with
p — q additional explanatory variables, as in Fig-
ures 1f, 2b and 3b. In addition the right-hand
box has two lines around it to indicate that only
the conditional distribution of Y3,...,Y, given
the remaining variables is the model of interest.

The conventions (a) to (i) for constructing chain
graphs imply for univariate recursive regression graphs
that arrows have the same interpretation no matter
whether they are all dashed or whether they are all
full arrows. That is whenever there are no proper joint
responses in a model then dashed and full edge arrows
are interpreted in the same way.

To distinguish better between dashed and full-edge
graphs when their interpretation differs we suggest
speaking further of:

[4] aconcentration graph, that is, a single box graph

in which all edges are undirected full lines, as in
. Figures la and 2a;

[5] ablock regression graph, that is, a two-box graph
in which all present edges are full, being lines
within and arrows between boxes, as in Figures
1d and 2c¢ and in which the right-hand box has
two lines around it.

Then, a multivariate regression chain graph can be
viewed as a combination of a (sequence of) graphis)
[2] with [1] and a block regression chain graph as a
combination of a (sequence of) graph(s) [5] with [4].
More general chain graphs with both types of edges

result as further combinations of these four building
blocks.

Univariate recursive regression graphs are essen-
tially identical to the directed acyclic graphs used in
work on expert systems (Pearl, 1988). One of the latter
results from one of the former by replacing the com-
plete undirected graph of the explanatory variables by
an acyclic orientation, that is, by a univariate recursive
regression graph in arbitrary order of the nodes and
by discarding all boxes.

To investigate distributional equivalence it is helpful
to use the notion of a skeleton graph introduced by
Verma and Pearl (1992). A skeleton graph is obtained
from our Figures by removing boxes and arrows and
ignoring the type of edge. For instance, the skeleton
graphs in Figures 2a to 2d are all the same. If the
skeletons differ then the corresponding models cannot
be equivalent. But if the skeletons are the same, then
the graphs may still imply different independencies, as
in Figures 2 and 3.

Distributional equivalence to a model of univariate
recursive regressions is closely tied to our notion of a
nondecomposable independence hypothesis. We speak
of a decomposable model if it is distributionally equiva-
lent to a model of univariate recursive regressions
and of a nondecomposable model otherwise. Thus, all
saturated chain models for linear relations considered
in this paper are decomposable, since they all specify
the same joint distribution (Figure 1). A nonsaturated
model is decomposable if and only if it contains not
even one nondecomposable independence hypothesis.
In complex cases, such a model may contain large
sections that are decomposable and in analysis and
interpretation account can be taken of that.

This notion of a decomposable model coincides with
the notion of a decomposable graph when this graph
has undirected full edges, that is, when it is a concentra-
tion graph. For variables with a joint normal distri-
bution a concentration graph specifies a covariance
selection model (Dempster, 1972). Such a model is de-
composable if and only if the concentration graph is
triangulated, that is, if it does not contain a chordless
n-cycle for n = 4 (Wermuth, 1980; Speed and Kiiveri,
1986). A sequence of nodes (ay, . . ., a,) is said to form
a chordless n-cycle in a chain graph if only consecutive
nodes and the endpoints of the sequence are connected
by edges and a chordless cycle in a sequence of four
or more variables characterizes a nondecomposable in-
dependence hypothesis in concentrations. An example
is Form (i) for (Y, X, V, W) discussed in Section 5. A
special well-studied example of a decomposable covari-
ance selection model is represented by a chordless
n-chain in concentrations, that is, sequence of nodes
{ai, ...,a,) for which only consecutive nodes of the
sequence are connected by edges. This is a Markov
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it

F16.5. Block regression chain model (a) and covariance selection
model (b) both specifying the nondecomposable hypothesis (i):
YU WX, VVand X || V[(Y, W)

@ )

chain model. An example is Form (vi) for (Y, X, V, W)
discussed in Section 5.

Figures 1-3 show that not only full-edge but also
dashed-edge chain graph models can be decomposable,
that is, distributionally equivalent to a model of univar-
iate recursive regressions. We characterize situations
in which this is not possible for four variables in the
next section.

5. SOME EMPIRICAL EXAMPLES

We now introduce eight special kinds of indepen-
dence hypothesis for four variables, together with their
associated graphs, and illustrate most of them via
empirical examples. All involve two or more indepen-
dency conditions. The special structures we shall con-
sider are as follows, the first three and the last two
being nondecomposable:

) Y 1L W|(X,V)and X 1L V|(Y, W),

(see Figures 5a and 5b) called the chordless four-cycle
in concentrations and which correspond to the van-
ishing of two elements in the concentration matrix,
and hence to a special case of the covariance selection
models (Dempster, 1972). It can also be viewed as a
chordless four-cycle in a block regression chain model
with joint responses Y, X and joint explanatory vari-
ables V, W. Next we consider

(i) Y1 W|VandX 1L V| W,

called a chordless four-cycle in a multivariate regres-
sion chain model (see Figure 6a) and which contains
regressions of Y and X on V and W, being a special
case of the seemingly unrelated regréssions of Zellner
(1962);

ov Y Q--m-o-es ov
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5
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Fic. 6. Multivariate regression chain model (a) specifying the
nondecomposable hypothesis (i) Y Il W |V and X 1l V|W
and o linear in covariances structure (b} specifying the
nondecomposable hypothesis (iii;: Y 1l Wand X 1| V.
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Fie. 7. Univariate recursive regressions (a) specifying (iv):
Y1 W|(X,V)and X || V| W and independent multiple re-
gressions with independent explanatory variables (b} specifying
VYU X|(V,Wand V1 W

(iii) Yl WandX 1LV,

called the chordless four-cycle in correlations (see Fig-
ure 6b), a special case of covariance matrices with
linear structure (Anderson, 1973).

These may be contrasted with a decomposable model
based on a recursive sequence of univariate regressions
with Y as response to X,V,W, with X as response to
V,W and with V as response to W and having restric-
tions on the same two variable pairs (see Figure 7a)

(iv) YU W|X,V)andX 1L V|W.

Four further cases, the first two decomposable, the
last two not, are

(v) YL X|(V,WandV 1L W,

two independent regressions of ¥ and X on two inde-
pendent regressors V and W (see Figure 7b);

(vi) YU (V,W)|XandX 1L W|V,

called a chordless four-chain in concentrations or a
Markov chain (see Figures 8a and 8b), that is, a
chordless four-chain in a system of univariate recursive
regressions again with Y as response to X,V,W, with
X as response to V,W and with V as response to W
and having response Y and explanatory variable W as
chain endpoints;

(vii) Y1l WandX 1l Vand V1L W,

-called a chordless four-chain in covariances (see Figures

9a and 9b) or a chordless four-chain in a multivariate
regression chain model with Y, X as joint responses
and having explanatory variables V,W as chain end-
points;

O
S)X
o<

@ ®)

Fi1c. 8. Univariate recursive regressions (a) and covariance selec-
tion model both specifying the decomposable hypothesis (vi):
YU WV, W[ Xaend X || W|V.
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Fic. 9. Multivariate regression chain model (a) and a linear in
covariances structure (b) both specifying the nondecomposable
hypothesis (vii: Y ||l Wand X Il Vand V || W.
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(viii) YU W|X,Vand X Il V|(Y,W)
andV 1l W;

called a chordless four-chain in a block regression chain
model with Y, X as joint responses and having explana-
tory variables V,W as chain endpoints. The correspond-
ing chain graph has the same shape as the graph in
Figure 9a, but dashed lines and arrows are replaced
by full lines and arrows.

For our present purpose we give for each empirical
example correlations and standardized concentrations
showing these as the lower and upper triangle, respec-
tively, such as in Table 1. This allows direct detection
of linear marginal independencies between pairs of vari-
ables, as shown by very small marginal correlations,
that is, standardized covariances, and linear condi-
tional independencies between pairs of variables given
all remaining variables, as shown by very small partial
correlations, that is, standardized concentrations.

For a formal analysis, consistency of data with a
particular structure would be examined via a likelihood
ratio test or its equivalent, typically comparing a maxi-
mum likelihood fit of the constrained model with that
of a saturated model. For the present purposes, how-
ever, it is enough to rely on informal comparisons of
marginal correlations, partial correlations or standard-
ized regression coefficients, although such dimen-
sionless measures are not in general appropriate for
comparing different studies.

Example 1 [Table 1, Figure 5, Form (i)]. Emotions
as dispositions or traits of a person and emotions as
states, that is, as evoked by particular situations, are
notions central to research on stress and on strategies

to cope with stressful events. Questionnaires with
which the state-trait versions of the emotions anxiety
and anger are measured have been developed by Spiel-
berger et al. (1970, 1983). We obtained data for 684
female college students from C. Spielberger on the
variables Y, state anxiety; X, state anger; V, trait
anxiety and W, trait anger; summaries are displayed
in Table 1.

The upper corner of Table 1 shows close agreement
with the Form (i): Y Il W] (X,V)and X |l V |(Y,W),
see also Figures 5a and 5b. This nondecomposable
model has the simple interpretation that prediction of
either state variable is not further improved by adding
the other trait variable to the remaining two explana-
tory variables but it does not directly suggest a step-
wise process by which the data might have been
generated.

Example 2 [Table 2, Figure 6a, Form (ii)]. From a
study of the status and reactions of patients awaiting
a particular kind of operation (Slangen, Kleeman and
Krohne, 1992) we obtained as basic information for 44
female patients: Y, the ratio of systolic to diastolic
blood pressure; X, the diastolic blood pressure; both
measured in logarithmic scale; V, body mass, that is,
weight relative to height, and W, age. Table 2 shows
substantial correlations except for a small marginal
correlation of pair (Y,7W) and a small partial correlation
of pair (X,V). These are not to be directly interpreted
if —as appears reasonable—each of the blood pressure
variables is regarded as a potential response to body
mass and age. Instead, the standardized regression
coefficients in a saturated multivariate regression of
Y, X on V,W display possible independencies of in-
terest. They show close agreement with Form (ii):
YU W|Vand X |l V| W, see also Figure 6a, with
standardized regression coefficients

Brow  Pyww) _ (0.486 0.040
fow  Bww)  \0.037  —0.275

and from Table 2 correlated errors since fy..., = —0.566.

- This nondecomposable model gives as interpretation

that diastolic blood pressure increases just with age

' TaBLE 1
Observed marginal correlations (lower half) and observed partial correlations given two remaining variables (upper half) means
and standard deviations for n = 684 students

Y X |4 w
Variable State anx State ang Trait anx Trait ang

Y: = State anxiety 1 0.45 0.47 —0.04
X: = State anger ) 0.61 1 0.03 0.32
V: = Trait anxiety 0.62 0.47 1 0.32
W: = Trait anger 0.39 0.50 0.49 1

Mean 18.87 15.23 21.20 23.42
Standard deviation 6.10 6.70 5.68 6.57

Data for Example 1 to Form (i: Y Il W |(X,V)and X || V | (Y,W) and to Figures 5a and 5b.



LINEAR DEPENDENCIES 213

TABLE 2
Observed marginal correlations (lower half), observed partial correlations given all remaining variables (upper half), means and
- standard deviations for n = 44 patients

Y X 14 w
Variable Lratio bp Lsyst. bp Body mass Age
Y: = Log (syst/diast) bp 1 —0.566 —0.241 0.300
X: = Log diastolic bp —0.544 1 —0.107 0.491
V: = Body mass —0.253 0.336 1 0.572
W: = Age —0.131 0.510 0.608 1
Mean 0.453 4.29 0.379 29.52
Standard deviation 0.091 0.13 0.060 10.59

Data for Example 2 to Form (ii: Y |l W | Vand X (| V| W and to Figure 6a.

after controlling for an increase in body mass and that
the ratio of systolic to diastolic blood pressure is higher
the lower the body mass for persons of the same age.
But again, the model does not directly suggest a step-
wise process by which the data could have been gener-
ated.

Example 3 [Table 3, Figure 6b, Form (iii)]. In a study
of strategies to cope with stressful events Kohlmann
(1990) collected data for 72 students replying to a
German and an American questionnaire. They are both
intended to capture two similar strategies: Y, cognitive
avoidance and V, blunting are thought of as strategies
to reduce emotional arousal and X, vigilance and W,
monitoring as strategies to reduce insecurity. The data
in Table 3 agree well with Form (iii); Y || W and
X || V, see also Figure 6b, but not with (i) because in
this case the marginal correlations but not the partial
correlations are small.

It is plausible to see strong positive correlations
between both pairs of similar strategies, a moderate
negative correlation between each set of competing
strategies measured one way and no correlation be-
tween a strategy measured with one questionnaire and
the competing strategy measured with the other ques-
tionnaire. However, this structure again cannot be
reexpressed with zero regression coeflicients in any
system of recursive univariate regressions; that is, it
does not have a direct explanation as a process by
which the data could have been generated.

Pairs of forms from the above special cases (i) to (iv)
are mutually exclusive whenever the correlations of all
variable pairs other than the two constrained pairs
(Y, W) and (X, V) are substantial although with limited
data it is of course possible that several different simpli-
fied structures are consistent with the data. An excep-
tion where two different sets of the above conditions
may hold simultaneously is provided by (i) and (iii);
that is, a chordless four-cycle in concentrations and in
correlations can occur together if a very special struc-
ture is present, that is if the marginal correlations in
the population satisfy orthogonalities such as

Pyw =0, pu = 0,
(8) PyvPuw + PysPxw = 0,
Pyobyz + PowPrw = 0.

The next set of data is an example of this special case.

Example 4 [Table 4, Figures 5b and 6b, Forms (i)
and (iii)]. In a study of effects of working conditions on
the manifestation of hypertension, Weyer and Hodapp
(1979) report the correlations among the four potential
influencing variables displayed in Table 4 for 106
healthy employees. The variables, which are measured
with questionnaires, are Y, nervousness; X, stress at
work; V, satisfaction with work and W, hierarchical
status at work. The observations agree well with both

)Y U WX, V)and X || V| (Y, W) (see also Figure

5b) and with (iii): Y JI W and X _|| V (see also Figure
6b). There is no immediate interpretation; however, one

TABLE 3
Observed marginal correlations (lower half) and observed partial correlations given two remaining variables (upper half),
means and standard deviations for n = 72 students

Y X 14 w
Variable Cogn. avoid. Vigilance Blunting Monitoring

Y: = Cognitive Avoidance - 1 —0.30 0.49 0.21
X: = Vigilance —0.20 1 0.21 0.51
V: = Blunting 0.46 0.00 1 —0.25
W: = Monitoring . 0.01 0.47 —0.15 1
Mean 17.49 12.57 3.71 10.40
Standard deviation 6.77 6.39 2.12 3.07

Data for Example 3 to Form (iii): Y | W and X I V and to Figure 6b.
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TABLE 4
Observed marginal correlations (lower half) and observed partial correlations given two remaining variables (upper half)
for n = 106 healthy employees

Y X 14 W
Variable Nervous Stress Satisf. Hier. Stat.
Y: = Nervousnous 1 0.33 0.26 0.00
X: = Stress at work 0.34 1 0.06 0.30
V: = Satisfaction with work 0.27 0.04 1 —0.35
W: = Hierarchical status 0.01 0.29 —0.34 1

Data for Example 4 to Forms (i) and (iii) and to Figures 5b and 6b simultaneously.

explanation for this special structure is that a different
combination of the questionnaire items of X, V would
lead to variables X", V* such that the much simpler
structure (X*, Y) |l (V*, W) holds (Cox and Wermuth,
1992a). For the special structure (8) both the canonical
correlations and the transformation matrix to obtain
X", V" can be expressed in closed form.

Example 5 [Table 5, Figure Th, Form (v)]. For an
analysis of aggregate economic data von der Lippe (1977)
computed growth rates for 24 postwar years in Ger-
many for Y, employment; X, capital gains; V, private
consumption and W, exports. The correlation structure
suggests that knowing the change in capital gain does
not help in predicting the change in employment for
given change levels of the demand side, that is, consump-
tion and export (Wermuth, 1979); in addition, changes
in consumption were not correlated with changes in
exports. This implies two independent responses to two
independent explanatory variables or close agreement
to Form (v): Y 1l X |[(V,W) and V 1| W; see also
Figure 7b.

Example 6 [Table 6, Figure 8 Form (vi)]. In a condi-
tioning experiment with 48 subjects (Zeiner and Schell,
1971), one purpose was to examine discrimination be-
tween a noxious and an innocuous stimulus in two
periods of a conditioning experiment with Y, a long-
interval discriminatory response (6-10 seconds); X, a
short-interval discriminatory response (1-5 seconds) in
the light of earlier responses: V, the strongest response
in the first interval and W, the response to an innocu-
ous stimulus before the experiment itself; all responses
are measured as skin resistance. The correlations dis-
played in Table 6 suggest (Hodapp and Wermuth, 1983,
p- 384) a Markov structure (vi) in which Y _[| (V,W) | X
and X || WV, see also Figures 8a and 8b, and thus
in which the long-interval discriminatory response de-
pends directly only on the short-interval discriminatory
response; this short-interval response is directly depen-
dent on the strongest response in the short interval
and the latter is well predicted by just the response to
an innocuous stimulus before the experiment.

Example T [Table 1, Figure 9, Form (vii)]. From an

TABLE 5
Observed marginal correlations (lower half) and observed partial correlations given two remaining variables (upper half)
of growth rates for n = 24 postwar years in Germany

Y X |4 w
Variable Employment Capital gain Consumption Export
Y: = Employment 1 =011 0.68 0.55
X: = Capital gain 0.47 1 0.50 0.43
V: = Consumption 0.67 0.55 1 —0.51
W: = Export . 0.44 0.39 0.04 1

Data.for Example 5 to Form (v): Y || X | (V, W) and V _|| W and to Figure 7b.

TABLE 6
Observed marginal correlations (lower half) and observed partial correlations given two remaining variables (upper half)
for n = 48 subjects

Y X |4 w
Variable . Long Short Strong Innoc
Y: = Long int. discriminatory response 1 0.70 —0.04 ) —0.12
X: = Short int. discriminatory response 0.72 1 0.29 0.14
V: = Strongest short interval response 0.30 0.54 1 0.62
W: = Response to innocuous stimulus 0.19 0.43 0.71 1

Data for Example 6 to Form (vi): Y || (V,W) | X and X || V| W and to Figures 8a and 8b.
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TaBLE 7
Observed marginal correlations (lower half) and observed partial correlations given two remaining variables (upper half),
means and standard deviations for n = 39 diabetic patients

Y X 1% %%

Variable GHb Knowledge Duration Fatalism
Y: = Glucose control, GHb 1 —0.431 —0.407 —0.262
X: = Knowledge, illness —0.344 1 —0.111 —0.517
V: = Duration, illness —0.404 0.042 1 —0.028
W: = Fatalism, illness —0.071 —0.460 0.060 1
Mean 10.02 33.18 147.05 20.13
Standard deviation 2.07 7.86 92.00 5.75

Data for Example 7 to Form (vii): Y [| V,; Y || W, and X || V and to Figures 9a and 9b.

investigation of determinants of blood glucose control
(Kohlmann et al., 1991), we have data for 39 diabetic
patients, who had at most 10 years of formal schooling.
The variables considered are Y, a particular metabolic
parameter, the glycosylated hemoglobin GHb; X, a
score for particular knowledge about the illness, V, the
duration of illness in months, and W, a questionnaire
score measuring the patients external attribution to
“chance” of the occurence of events related to the ill-
ness; an attitude called external fatalism. The correla-
tions in Table 7 suggest a structure of the Form (vii),
that is, with Y 1l W, X |l V, and V |l W, see also
Figures 9a and 9b. One interpretation is that duration
of illness and external fatalism are independent explan-
atory variables in two seemingly independent regres-
sions, where metabolic adjustment is better (low values
of GHb) the longer the duration of the illness, knowl-
edge about the illness is lower the higher the external
fatalism of a person, and after conditioning on duration
and fatalism the metabolic adjustment is still better
the higher the knowledge (fyz...c = —0.431).

6. DISCUSSION

There are a number of general issues arising from
the special cases discussed in the previous section,
especially the extension to more than four component
variables and to models with other than only linear
dependencies; for the latter see Cox and Wermuth
{1993). :

Graphs with, in our notation, full edges have an
elegant connection with the theory of Markov random
fields which allows general properties to be deduced.
See Lauritzen (1989) for a survey of these topics and
Isham (1981) for a review of Markov random fields in
a broader context. Graphs with dashed edges, or possi-
bly graphs with mixtures of dashed and full edges, do
not have the same general features, and it is an open
question as to what exactly can be said about them in
generality. .

There are four types of nondecomposable indepen-
dence hypotheses illustrated in Section 4 for four vari-
ables, namely:

{(a) Nondecomposable hypotheses in block regression
chain models [Form (i), Example 1, Table 1, Figure 5a
and Form (viii)]. In a block regression chain model the
components, even in the simplest case, are divided
into responses Y, = (Y, X) and explanatory variables
Y, = (V, W) with a full directed arrow unless the corre-
sponding regression coefficient in (3) is zero and a full
undirected line for the explanatory variables unless
they are marginally uncorrelated. For four variables a
nondecomposable independence hypothesis in a block
regression chain model is characterized by a chordless
four-chain in the full edge chain graph, with the two
ends of the sequence being explanatory variables, that
is, for (V, Y, X, W) in our examples. Figure 5a with
Form (i) gives an example of the four-cycle which con-
tains the described four-chain, while Form (viii) leads
to an example of the chordless four-chain;

(b) Nondecomposable hypotheses in concentrations
[Form (i), Example 1, Table 1, Figure 5b]. Models of
zero concentrations, that is, the covariance selection
models of Dempster (1972), differ from block regression
models —from (a)—in treating all variables on an equal
footing, that is, having them in the same box where all
edges are full undirected lines unless the corresponding
variables are partially uncorrelated given the re-
maining component variables. For four variables a
nondecomposable hypotheses in concentrations is

" characterized by a chordless four-cycle in the associ-

ated undirected graph of full edges, that is, in tHe
concentration graph. Figure 5b with Form (i) gives an
example of a chordless four-cycle in concentrations for
(V,Y, X, W).

{c) Nondecomposable hypotheses in multivariate re-
gression chain models [Form (ii), Example 2, Table 2,
Figure 6a and Form (vii), Example 7, Table 1, Figure
9a]. In multivariate regression chain models the compo-
nents are— as for (a) —even in the simplest case divided
into responses Y, = (Y, X) and explanatory variables
Y, = (V, W) with a dashed directed arrow unless the
corresponding regression coefficient in (2) is zero, a
dashed undirected line for the responses unless they are
partially uncorrelated given the explanatory variables,
and a dashed undirected line for the explanatory vari-
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ables unless they are marginally uncorrelated. For four
variables a nondecomposable independence hypothesis
in a multivariate regression chain model is character-
ized by a chordless four-chain in the dashed edge chain
graph with the two ends of the sequence being explana-
tory variables, that is, for (V, Y, X, W) in our examples.
Figure 6a with Form (ii) gives an example of the four-
cycle which contains the described four-chain, while
Figure 9a with Form (vii) gives an example of the
four-chain. Both are seemingly unrelated regressions
(Zellner, 1962) together with a specification for the
distribution of the explanatory variables.

(d) Nondecomposable hypotheses in covariances
[Form (ili), Example 3, Table 3, Figure 6b and Form
(vii), Example 7, Table 1, Figure 9b). Models of zero
covariances, that is, models for hypotheses linear in
covariances (Anderson, 1973), have—as in (b)—a single
block of variables. All edges are dashed undirected
lines unless the corresponding variables are marginally
uncorrelated. For four variables a nondecomposable
independence hypothesis in covariances is character-
ized by a chordless four-chain in the associated undi-
rected graph of dashed edges, that is, in the covariance
graph. Figure 6b with Form (iii) gives an example of
the four-cycle which contains a chordless four-chain,
while Figure 9b with Form (vii) gives an example of
the four-chain.

Models which contain even a single nondecompos-
able independence hypothesis cannot be distribu-
tionally equivalent to a model of univariate recursive
regressions. Our examples illustrate that such nonde-
composable structures arise in a number of different
contexts. There is need to identify them and to find
explanations of how they could have been generated.
Criteria for establishing nondecomposability for more
than four variables are not yet published for general
dashed-edge chain graphs, while for full-edge chain
graphs such criteria were given by Lauritzen and Wer-
muth (1989) and for undirected dashed line graphs by
Pearl and Wermuth (1993).

We have in this paper concentrated on the kinds
of special structure that can arise, especially on their
specification and interpretation, rather than on the de-
tails of fitting and assessing model adequacy. Under
normal-theory assumptions maximum-likelihood fitting
and testing for nondecomposable models will call for
iterative procedures. A rather general asymptotically
efficient noniterative procedure based on embedding
the model to be fitted in a saturated model is available
(Cox and Wermuth, 1990) either for direct use or as
a starting point for iteration (Jensen, Johansen and
Lauritzen, 1991). Several issues are important for itera-
tive algorithms. Is there a global maximum or are there
several local maxima? Which conditions guarantee the
existence of maximum-likelihood estimates? What are

the convergence properties of an algorithm? Again,
more is known for models represented by full-edged
graphs (Speed and Kiiveri, 1986; Frydenberg and Ed-
wards, 1989; Frydenberg and Lauritzen, 1989; Ed-
wards, 1992) than for models with dashed edge graphs.
Some of the latter may be fitted with algorithms suit-
able for linear structural equations; for a discussion of
different alternatives see Lee, Poon and Bentler (1992).

For mixtures of discrete and continuous variables,
models corresponding to chain graphs with full edges
have been intensively studied (Lauritzen and Wer-
muth, 1989; Lauritzen, 1989; Frydenberg, 1990b; Wer-
muth and Lauritzen, 1990; Cox and Wermuth, 1992b;
Wermuth, 1993), but for models corresponding to chain
graphs with dashed edges or possibly mixtures of
dashed and full edges the extensions to discrete and
mixtures of discrete and continuous variables remain
to be developed.

The issue of model choice in the analysis of data has
too many ramifications to be discussed satisfactorily
in the present paper; some different suitable strategies
for analyses with a moderate number of variables are
discussed in Wermuth and Cox (1992). In general, if
there is sufficient substantive knowledge to give a firm
indication both of the nature of the variables and of the
independencies expected, then model choice consists
largely of testing the adequacy of the proposed model,
in particular in examining the supposedly zero correla-
tions, concentrations and regression coefficients. The
less the guidance from subject matter considerations,
the more tentative will be the conclusions about model
structure, but the broad principles of variable selection
in empirical regression discussed, for example, by Cox
(1968) and Cox and Snell (1974), will apply. In particu-
lar, where a number of different models of roughly
equal complexity give satisfactory fits to the data, all
should be incorporated in the conclusions, unless a
choice can be made on subject matter grounds.

There are many aspects of the study of multiple
dependencies and associations not addressed in the

" present paper. In particular the role of latent or hidden

variables in clarifying the interpretation of relatively
complex structures has not been dealt with, nor has
the related matter of the effect of errors of observations
in possibly distorting dependencies. Finally, we reem-
phasize the point made in Section 3 that a key argu-
ment for aiming for univariate recursive regressions
consistent with subject matter knowledge is that they
suggest a stepwise process by which the data might
have been generated.
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Comment: Assessing the Science Behind
Graphical Modelling Techniques

A. P. Dempster

These papers, labelled here CW (Cox and Wermuth)
and SDLC (Spiegelhalter, Dawid, Lauritzen and Cow-
ell), are welcome reviews of extensive collaborations.
CW are the more limited of the pair in their aims,
making a few points convincingly, most notably (1)
that covariance-based regression models are conceptu-
ally distinct from the simultaneous causal models of
econometrics, even when both varieties are expressed
through identical linear equations, and (2) that models
with covariance matrices corresponding to restricted

A. P. Dempster is Professor of Statistics, Harvard
University, Statistics Department, Science Center, 1
Oxford Street, Cambridge, Massachusetts 02138.

graphical structures often give good fits to empirical
matrices. The SDLC paper by contrast is a tour de
force that aims to leave no relevant topic unmentioned.

Both sets of authors intend their formal models and
computations to speak to issues of scientific knowledge
and science-based decision making, and in particular
both are concerned about the informal scientific under-
standing that motivates their formal models. CW are
reluctant to use the term “causal,” viewing it as too
ambiguous, but the authors substitute nonspecific lan-
guage such as “appropriate subject matter considera-
tions.” SDLC, in contrast, discuss “influence” and
“relevance” that take “account of one’s understanding
of causal structure.” The difference appears to be that
CW wish to hold to the idea that informal prior knowl-
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edge of the phenomena is limited to descriptive as-
pects, while SDLC accept that understanding of causal
processes is part of normal scientific thinking. My own
view is closer to the latter: I do not see that informal
causal understanding can or should be suppressed
(Dempster, 1990). On the other hand, the formal statis-
tical models of these papers need not to be interpreted
causally, because the essential role of probability models
is to produce inferences and predictions derived from
uncertainty relations. Probabilistic causation strikes me
as an oxymoron, since probability quantifies progres-
sions of internal uncertain knowledge while causation
identifies external mechanics of change. The graphical
model restrictions proposed in both papers depend for
support and credibility on the quality of the underlying
science, including causal interpretations, and on how
aptly the formal models capture that science, but the
uses of the models are mainly inferential and decision
oriented.

CW choose to make their arrows point away from
explanatory variables and toward response variables,
whereas SDLC make their arrows point away from the
disease node about which predictions are desired and
toward the predictive variables. It is interesting that
the medically driven “algorithmic approach” to the

- problem of telephone diagnosis of blue babies reported
in Franklin et al. (1991) also reverses the statistically
driven SDLC choice. My sense is that the CW and
Franklin et al. strategies represent mainline scientific
thinking, and that SDLC may weaken their claim to
be able to represent genuine medical expertise by buck-
ing the tide. It is normal for a clinician to absorb
seriatim relatively simple pieces of information about
a patient and to attempt to reason from these data to
disease states. Disease states are relatively complex
and sometimes amorphous constructs, but when they
are well defined and separated, as in the blue baby
example, it is relatively easy to mentally cycle through
looking for a match of each disease to a list of symp-
toms. The cleverness of the Franklin et al. (1991) algo-
rithm appears to derive from the skill of the senior
coauthor in putting together a logical sequence of tests
for matches involving subsets of the predictors, in such
a way as to tease out, with a low error rate, which of
26 disease categories is the true one. Why do SDLC not
attempt to directly probabilize the clinical expertise
displayed in Franklin et al. (1991)?

The tree structure displayed in Franklin et al. (1991)
is an event tree including decision nodes, of a kind
commonly found in elementary decision analysis texts.
By contrast, the expertise required in the modelling
phase of the direct acyclic graph (DAG) approach of
SDLC, with its conditioning on disease states, and its
request for discernments of Markov structures, seems
far from the practical expertise of clinicians. The tech-
nology seems rigid as implemented because the DAG

structure is required to be the same whatever the
disease. In principle, SDLC and Franklin et al. (1991)
are attempting the same task of constructing a set
of logical constraints on multivariate outcomes, and
SDLC should have the advantage because they have
the more powerful tools of probabilistic logic, whereas
Franklin et al. (1991) use simpler and unrealistic deter-
ministic logic with failures of diagnoses transparently
labelled on the graph. Nevertheless the brief numerical
comparisons in subsection 5.3 of SDLC indicate that in
the current state of the art the deterministic approach
does better. It is also troubling that in Table 6 the
CHILD model with assessed conditional independen-
cies is minimally better, if at all, than the naive model
that is sometimes called idiot’s Bayes. Is their technol-
ogy the right medicine?

Both papers surprised me by a near absence of dis-
cussion of what is known about sample selection, in
contrast with their softer heuristic assessments of rela-
tions or nonrelations among variables, whether derived
from subject matter considerations or causal insights.
In their examples, both papers ultimately assume that
samples exist from which multivariate models can le-
gitimately be estimated. Obviously statistical relations
among variables are strongly influenced by processes
that select the units making up a sample. These pro-
cesses operate in a social realm operationally separated
from the biological processes of disease, whence the
selection mechanisms can be considered causally inde-
pendent of the biological mechanisms. SDLC do men-
tion at one point the effect of an original medical
judgment on the flow of referrals in examples given,
but such considerations appear to play no role in dis-
cussions of what conditional independence assump-
tions to adopt, at least in a first pass. Can this be
justified? I think not. Technical papers in applied sta-
tistics by tradition and habit move quickly to formal
assumptions and in doing so hide large areas of subjec-
tive choices of (unit, variable) pairs for consideration
and analysis. By implication these choices are tradi-
tionally viewed as made for good reasons, usually by
the statistician’s client or substantive collaborator and
hence are removed from the statistical analysis. Conse-
quences are that statisticians tend to express distorted
views of the mix of subjective and objective elements
in the mosaics to which their analyses contribute and
pay little heed to the creative experiences of carrying
analyses back to their elemental sources in accrued
informal scientific knowledge. My critical attitude
about the scientific limitations of many statistical mod-
els and analyses rests on a perception that their ties
to overall contexts are too often too loosely tied down.

The pessimistic cast of the foregoing remarks applies
to the present state of applied statistics, not the future.
The understanding of complex multivariate relations
and of associated computational strategies, as detailed
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especially by SDLC, bodes well for ongoing develop-
ment. Although critics will point to the dangers, there
is also great promise in-the strategy of constructing
stochastic models that adequately represent uncertain-
ties about the states of hidden aspects of complex
phenomena, and hence they are bases for credible
probabilistic inferences. Since SDLC are more pointed
to complexity than are CW, most of my subsequent
remarks are directed to their enterprise. These experi-
enced colleagues scarcely need my advice to push on
to more ambitious and intensive modelling efforts, con-
structing formal models of population incidence, of
disease signs and their rates of progression, and of
prospects for intervention and cure, before proceeding
to combine such submodels into larger systems capable
of supporting informed and sound decisions. As part
of this process, many specific concerns may arise and
lead to profitable debates, some of which I will attempt
to stimulate.

A major topic of concern is “eliciting subjective judg-
ments.” Expert judgment enters model construction
at the successive stages of choosing variables, choosing
graphical structures and choosing numerical probabili-
ties. The soundness of each stage merits questioning,
not least as they relate to social responsibilities and
public purposes, but most critical attention is focused
on the last stage of probability assessment that often
draws on teams of experts selected and coached for
the purpose, generally by those responsible for the
preceding stages of choice. A fascinating case study
of elicitation is to be found in the major “NUREG-1150"
study of five large nuclear power plants (U.S. Nuclear
Regulatory Commission, 1990). Extensive external re-
views in this case forced a delay of more than a year
while elicitations were redone to improve the quality
of the panels and the credibility of their judgments.
The point to stress is that subjectivity does not imply
freedom to choose the first numbers that come to mind,
nor to choose handily available local staff as experts.
Analyses depend on subjective evidence to bridge gaps
and supplement inadequate empirical data bases, but
such evidence is not of a wholly different character
from empirical evidence, as many discussions of sys-
tems and technologies for elicitation might suggest.
Numbers provided by an expert are acceptable only if
there is credible evidence that they are distillations of
the expert’s accumulated knowledge and experience.
When final inferences have sensitive dependence on
expertise, the information and analyses on which ex-
pert judgments depend need to be clearly set forth so
they can be challenged, debated and revised, much as
statistical data analysis and models are subject to
criticism and model revisions. My sense is that much
remains to be done by way of developing and testing
quality control standards for evidential inputs from
experts. There is no subjective nirvana, just as there

is no objective nirvana, but real expertise exists and
substantial payoffs can be expected from using it well.

An obvious way to decrease the influence of elicited
expertise on diagnosis, or on risk assessment in gen-
eral, is to increase the weight of documented empirical
studies, including quality-checked data bases. Again
it is instructive to compare and contrast the NUREG-
1150 engineering example, where the sample size is 5
from a world-wide population of order 1,000, and where
the physical description of each plant, though daunt-
ingly complex, is more easily accessible and decompos-
able into independent subsystems than is the human
body. My sense is that in the engineering analysis
vastly more data sets on components, such as data on
reliabilities of various types of critical elements, were
assembled than is typical of medical expert systems.
In place of data on physical components, medical sta-
tistics tends to rely on collections of studies and associ-
ated meta-analyses. These give clues to variation
among different patient populations, and so may help
inform expert prior assessments that depend on pa-
tient flows through treatment systems. A remaining
difficulty with population thinking is that any specific
patient under diagnosis automatically belongs to many
cross classified subpopulations, depending on age, sex,
ethnic identity, social class and so forth. Available
data comes from margins and complex mixtures of
these populations. There is large scope to jointly model
networks and mixtures to facilitate combination of
data from multiply interrelated varieties of popula-
tions.

SDLC correctly adopt a general approach to treating
the complexity of an individual patient as demanding
stochastic modelling of interacting biological systems
such as heart and lungs. The currently fashionable
alternative approach to complexity through determin-
istic chaos theory may be promising when one subsys-
tem operates under controlled circumstances, but is
scarcely capable of faithfully representing the complex
social and biological processes routinely encountered
by risk assessors (cf. Casdagli, 1992). I am uncomfort-
able, however, with the basic principle of simplicity
used by both CW and SDLC that performs radical
surgery on the proliferating parameter sets of highly
multivariate statistical models. DAG models are math-
ematically transparent, have relatively few parameters
and suggest elegant and fast computational strategies.
Less felicitously, however, the models are expressed
through variables that are rarely better than crude
proxies for hidden variables that actually express un-
derlying causal mechanisms, whence the substantive
understanding that could justify DAGs if the hidden
variables were observable is less than compelling and
may be misleading when used to justify DAG assump-
tions for simple (e.g., dichotomous) variables. I believe
that wholesale parameter reduction as widely practiced



250 D. R. COX AND N. WERMUTH / D. J. SPIEGELHALTER ET AL.

in contemporary statistics is not the only way to
achieve simplicity. The main lesson that I took away
from Wermuth's doctoral research (cf. Dempster,
Schatzoff and Wermuth, 1977) is that smooth systems
of declining parameter values are usually a more effi-
cient way to simplify statistical complexity than sharp
cutoffs that set most parameter values to zero. Compu-
tational strategies of choice then become radically
different. Classical estimation techniques that are ade-
quate with relatively few parameters must be replaced
with Bayesian or similar methods that reflect prior
assessments of patterns of smooth decline. Donoho et
al. (1992) illustrate a notable non-Bayesian approach.
My own preference is for Bayesian models with many
more hidden variables and many more dependence pa-
rameters than SDLC allow, to have a reasonable possi-
bility of capturing actual mechanisms. I believe that
rapidly developing computing power and algorithms
that sample posteriors should be used to implement
and test more complex Bayesian models.

Beyond the elicitation of priors and beyond the prob-
lem of simplifying the complex structures of highly
multivariate and selectively filtered populations en-
countered in real practice, there remains a gray area
that SDLC address briefly in two sentences as situa-
tions where “the number of assessments made is in-
sufficient to specify a joint distribution uniquely.” The
use of maximum entropy or other arbitrary prior gener-
ation principles typically leads to exactly the unrealis-
tic procedures that the smoothing of large parameter
sets is designed to avoid. SDLC fail to mention the
belief function approach (Shafer, 1976) that Dempster

and Kong (1988) show fits naturally into network mod-
elling built on decompositions of evidence into indepen-
dent sources similar in spirit to the “graphical modelling”
approach of SDLC. It is my view as a coinventor of
the BEL theory that it is a near cousin of the Bayesian
strategy that descends directly from classical subjec-
tive probability and is not a foreign interloper from
distant tribes of semicoherent formal systems. Unlike
the naive upper and lower probability models that have
been studied by Good, Walley and others, the BEL
system constructs models from judgmentally indepen-
dent assessments on knowledge spaces and combines
the components by a simple precise rule that reduces
to the Bayesian rule for combining likelihood and prior
in the special Bayesian case. The chief hindrance to
developing and testing BEL models for probabilistic
expert systems has been computational difficulties.
Shafer, Kong and others showed in the mid-1980s how
to decompose BEL computations coincidentally with the
parallel demonstrations of Lauritzen and Spiegelhalter
(1988) that SDLC feature. But these clever algorithms
only stave off computational complexity temporarily.
The future of both Bayesian and BEL approaches de-
pends on the revolution that has been gathering speed
for the past five years on Monte Carlo posterior sam-
pling.
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Comment: Conditional Independence

and Causal Inference

Clark Glymour and Peter Spirtes

Fourteen years ago, in an essay on conditional inde-
pendence as a unifying theme in statistics, Philip
Dawid wrote that “Causal inference is one of the most
important, most subtle, and most neglected of all the
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problems of Statistics” (Dawid, 1979a). Only shortly
later, several statisticians (Wermuth and Lauritzen,
1983; Kiiveri and Speed, 1982) introduced frameworks
that connect conditional independence, directed acyclic
graphs (hereafter DAGs) and causal hypotheses. In
these models the vertices of a DAG G represent vari-
ables, and a directed edge X = Y expresses the proposi-
tion that some change in variable X will produce a
change in Y even if all other variables represented
in G are prevented from changing. The power and
generality of DAG models derive from their dual role
in representing both causal or structural claims and
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also patterns of independence and conditional inde-
pendence constraints on distributions. The paper by
Spiegelhalter, Dawid, Lauritzen and Cowell (SDLC)
provides a valuable review of the current state of the
art in using and constructing statistical and causal
hypotheses represented by DAGs. The paper by Cox
and Wermuth (CW) lays out interesting problems con-
cerning how to generalize DAG models. Our remarks
concern four issues raised —explicitly or implicitly — by
these papers:

1. Do other graphical objects with a plausible causal
or structural interpretation represent sets of con-
ditional independence relations that cannot be
represented by DAGs? We will briefly describe
generalizations of DA G models representing mar-
ginals of distributions with latent variables and
generalizations representing feedback; graphical
chain models do not represent such processes.

2. Are classifications or diagnoses using Bayesian
networks or DAG models more reliable than
those made by other existing classification tech-
niques? We believe the question is unsettled.

3. Besides classification, what other uses do DAG
models have? We think the essential use of such
models is in predicting the effects of interven-
tions —experiments, policies, etc.—that change
the joint distribution of variables in a population,
and this use connects these models with analyses
by Rubin (1974, 1977) and others of the invari-
ance of conditional probabilities under interven-
tions and with a wealth of issues in experimental
design.

4. What is the state of the art of automatic tech-
niques for constructing DAG models? We will
briefly note properties of several procedures that
appear to be more generally applicable than the
automated search illustrated in the SDLC review.

1. DIRECTED ACYCLIC GRAPHS
AND GENERALIZATIONS

After introducing a variety of graphical structures
to represent patterns of conditional independence rela-
tions not represented by any DAG —“nondecompos-
able” sets of conditional independence relations —and
illustrating these patterns in empirical examples, CW
say: “Our examples illustrate that such nondecompos-
able structures arise in different contexts. There is
need to identify them and to find explanations of how
they could have been generated.” This question, as we
understand it, asks what sorts of causal processes
might lead to nondecomposable patterns of conditional
independence relations; that the issue is posed near
the end of their paper suggests that when nondecom-
posable patterns are found, the various graphical repre-
sentations CW consider have no clear interpretation

as causal hypotheses. To address their question, we
first briefly consider the connection between causal
structure and conditional independence in DAG mod-
els, then in graphical chain models and finally in alter-
native generalizations of DAG models.

In various frameworks, each DAG can be paired
with any member of families of probability distribu-
tions over variables represented by vertices in the
graph. The frameworks differ in their selection of re-
strictions on graph/distribution pairs, (G, P). Common
restrictions include: (1) the Markov condition (Kiiveri
and Speed, 1982): for admissible (G, P) X is indepen-
dent of its nondescendants in G given its parents in
G; (2) the “recursive diagram” or “directed independence
graph” condition (Wermuth and Lauritzen, 1983): for
admissible (G, P) and a given ordering of variables,
X — Yisin G if and only if Y is after X in the ordering,
and Y is dependent on X conditional on the set U of
all vertices (excluding X) that precede Y in the order-
ing; (8) the Minimality condition (Pearl, 1988): for
(@, P) satisfying the Markov condition, if H is a proper
subgraph of G then (H, P) does not satisfy the Markov
condition; (4) positivity of distributions; (5) the DAG
isomorph or Faithfulness condition (Pearl, 1988): for
admissable (G, P), vertices X, Y are independent con-
ditional on set U of vertices only if the Markov condi-
tion applied to G entails that conditional independence.
The restrictions on graph/distribution pairs are related.
Directed independence graphs + positivity is equiva-
lent to Markov + Minimality + positivity. Markov +
Faithfulness + positivity entails the other conditions
but is strictly stronger than Markov + the other condi-
tions.

The Markov condition, the directed independence
graph condition and the Minimality condition are di-
rectly motivated by intuitions about causality reflected
in statistical practice throughout the century and in
philosophy of science for almost half a century. [A few
examples: a special case of the Markov condition is
essential to Fisher’s (1951) arguments in The Design

. of Experiments and throughout subsequent work on

experimental design; the Markov condition is the guid-
ing idea of latent variable models, as Bartholomew’s
(1987) recent review notes (without mentioning di-
rected graphs explicitly); the Markov and Faithfulness
conditions are tacitly assumed in the arguments about
model selection developed by Simon (1954) and by
Blalock (1961) early in the 1960s. In philosophy of
science, aspects of the directed independence graph
condition, for example, were given in a condition for
“probabilistic causality” proposed by Suppes (1970) and
aspects of the Markov condition were given by Rei-
chenbach (1956).]

The Faithfulness condition can be viewed as requir-
ing stability of conditional independence over small
variations in parameters in models; in other terms,
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conditional independence facts are to be explained by
structure alone. Under a natural parameterization of
linear normal models satisfying the Markov condition
for a DAG, G, the set of unfaithful distributions has
zero Lebesgue measure (Spirtes, Glymour and Scheines,
1993). The Markov and Faithfulness conditions are
realized — sometimes without explicit graphical repre-
sentations —in a wide array of models with causal inter-
pretations in the social sciences, epidemiology and
elsewhere and in the design of experiments and deriva-
tion of null hypotheses.

For every distribution P over a set of variables V
and every ordering of the variables there exists a DAG
compatible with the ordering such that P satisfies
the Markov and Minimality conditions and a DAG
compatible with the ordering such that P satisfies the
directed independence graph condition. In contrast,
there are many distributions that satisfy both the
Markov and Faithfulness conditions for no DAG what-
soever; even if for some orderings of the variables
there is a DAG for which P satisfies the Markov and
Faithfulness conditions, there may not be such a DAG
for every ordering of the variables. Unlike the other
combinations of assumptions, the Markov and Faith-
fulness conditions jointly enable independencies to give
some information about the directions of edges. The
distributions that CW call “nondecomposable” do not
satisfy the Markov and Faithfulness conditions for
any DAG. Their introduction of other graphical repre-
sentations for nondecomposable distributions there-
fore suggests that CW are implicitly imposing the
Faithfulness condition on the set of distributions repre-
sented by a DAG.

1.1 Graphical Chain‘Models

CW describe a number of different kinds of “block”
graphs, some of which represent sets of conditional
independence relations that cannot be represented by
DAGs unless the Faithfulness condition is violated.
Their structures include graphical chain models in the
sense of Lauritzen and Wermuth (1989) (hereafter,
LW), structures also discussed by SDLC. These objects
, contain directed edges, undirected edges and variables
grouped into blocks. The blocks of variables are lin-
early ordered; a directed edge X — Y occurs only if X
is in a block previous to Y; undirected edges can only
join variables in the same block. An edge A — B or
A — B occurs if and only if A and B are dependent
conditional on the set of all variables occurring in the
same block as B or in previous blocks.

The terminology of “explanatory” and “response”
variables, and other remarks in the review papers,
strongly suggest that directed edges in graphical chain
models are given a causal interpretation, but the causal
or structural significance of blocks and undirected
edges is problematic. Wermuth and Lauritzen (1990)

say little more than that variables joined by undirected
edges in the same block are “on an equal footing.”
SDLC suggest undirected edges X — Y represent recip-
rocal causation; in some units of the population X
influences Y and in other units Y influences X. Under
this interpretation, the chain graph represents a mix-
ture of two subpopulations, each represented by a
different DAG. We doubt that such mixtures generally
exhibit the conditional independencies represented by
a graphical chain model with undirected edges, but in
any case the SDLC suggestion remains to be demon-
strated. If feedback processes are represented by di-
rected cyclic graphs, then it follows from LW that
graphical chain models cannot represent them. Neither
do graphical chain models represent the marginal con-
ditional independence relations among observed vari-
ables that follow by the Markov condition from DAG
models with latent variables (although other sorts of
graphs that CW describe, but whose causal interpreta-
tion is not clear, can represent some marginal distribu-
tions of this kind). Graphical chain models could be
used to represent a collection of alternative DAG mod-
els when one is unsure as to which structure is correct
and the structures share certain conditional indepen-
dence properties, but SDLC and CW and the papers
they review do not unequivocally offer this interpreta-
tion.

The question of how the various “nondecomposable”
forms of conditional independence relations described
in CW could have been generated receives a straightfor-
ward answer using different generalizations of DAG
models. Rather than starting with sets of conditional
independence relations, finding a graphical formalism
to represent them and then asking what causal process
could have generated the constraints, we start with
various sorts of causal processes represented by di-
rected graphs and ask what sort of sets of conditional
independence relations or marginal conditional inde-
pendence relations they generate. It is important to be
willing to abandon the idea, characteristic of graphical
chain models, that the absence of an edge between two
variables X and Y (which has a clear causal interpreta-
tion, namely that X does not directly cause Y) must
always represent some conditional independence be-
tween X and Y; otherwise one excludes the natural
representation of feedback processes. Two relevant
generalizations of DAG models have been investigated.

1.2 Feedback and Reciprocal Causation

For many pairs of variables, A influences B and B
influences A, whether directly or through some other
set of variables considered in the system. Feedback
processes can be represented by time series, but for
linear systems they are often represented as well by
finite directed cyclic graphs (DCGs). Methods for calcu-
lating correlations for cyclic systems flow from the
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work of Haavelmo (1943) and Mason (1956). Despite
this pedigree, even in the linear case very little is known
about the connections between DCGs and conditional
independence properties. The various conditions we
have mentioned extend naturally to cyclic graphs, but
the relationships among the conditions are different in
cyclic and acyclic graphs. In the acyclic case, it is
possible to define a graphical condition, d-separation,
(Pearl, 1988) between three disjoint sets of variables
X, Y and Z in a DAG G, such that X is d-separated
from Y given Z if and only if the Markov condition
applied to G entails that X is independent of Y given
Z. In cyclic graphs the natural extension of the Markov
condition does not capture all of the atomic indepen-
dencies entailed by the natural extension of d-separation,
and some formulations of the Markov condition are
uninformative when extended to cyclic graphs (at least
in the linear case).

In the case of linear normal models with unspecified
values of some linear coefficients, there is a clear associ-
ation of families of probability distributions with cyclic
graphs, but we do not know in general how to character-
ize the conditional independence relations a linear nor-
mal cyclic system entails for all values of its free
parameters. There is a purely graphical necessary and
sufficient condition for a cyclic graph to require (for all
linear models associated with it) that pxyr = 0, where
U is a single variable (Glymour et al., 1987). The condi-
tion is in fact equivalent to a special case of d-sepa-
ration for cyclic graphs. We have examined several
four-variable cyclic graphs, and we find that the van-
ishing partial correlations of second order they require
(again assuming linearity) also agree with the general-
ization of d-separation to cyclic graphs. There is no
established convention for association of probability
distributions with DCGs in the nonlinear case, but the
linear case suggests that given the “right” association
d-separation may correctly characterize the set of con-
ditional independence relations common to all of the
distributions associated with the graph. [Added in
proof: The Markov condition in fact fails for some
linear models (with correlated errors) for DCGs. For
"example, x3 = ax; + bxys +esandxs =cx; +d xs
+ &4 does not entail that P23 14 = 0, as required by the
Markov condition for the graph x; = x; 2 x4 < x2.
Spirtes has proven that d-separation does characterize
the vanishing partial correlations implied by all linear
models (with corrected errors) associated with any
DCGs. See Directed Cyclic Graphs, Conditional Inde-
pendence, Non-Recursive Linear Structural Equation
Models, Carnegie Mellon Univ. Technical Report Phil-
35, Dept. of Philosophy, 1993.]

1.3 Latent Variables

Consider a DAG G representing a causal process
and any associated probability distribution P, where

(G,P) satisfy Markov condition. Suppose that only a
proper subset O of variables in the graph are measured
or recorded. What conditional independence relation
among variables in O is required by the Markov condi-
tion applied to G? What graphical object represents
those marginal conditional independence relations and
also represents information about G? A nice answer
to both questions is given in Verma and Pearl (1990).
They introduce the notion of the inducing path graph
for G which contains only measured variables in G,
encodes all of the marginal conditional independence
relations G entails (by the Markov condition) and in-
cludes some of the causal information represented in G.

An undirected path U between X and Y is an induc-
ing path over O in G if and only if (i) every member
of O on U except for the endpoints occurs at the
collision of two arrowheads on the path, and (ii) for
every vertex V on U where two arrowheads collide,
there is a directed path from V to X or from V to Y.
There is an inducing path between X and Y in G over
O if and only if X and Y are not independent conditional
on any subset of O\{X,Y}. For variables X, Y in O, in
the inducing path graph H for G over O, X < Yin H
if and only if there is an inducing path between X and
Y over O in @ that is directed into X and also directed
into Y; there is an edge X — Y in G if and only if there
is no edge X < Y in H, and there is an inducing path
between X and Y over O in G that is out of X and into
Y. (It is easy to show that there are no inducing paths
connecting X,Y in G over O that are not directed into
X or into Y.) The two kinds of edges in an inducing
path graph H have a straightforward causal interpreta-
tion: A directed edge X = Y occurs in H only if there
is a directed path from X to Y in G, that is, X is a
cause of Y; a double-headed edge X < Y occurs in H
only if there is an unmeasured 7" and a directed path
from T to X and a directed path from T to Y, the two
paths intersecting only at 7, that is, only if X and Y
have an unmeasured common cause.

Unfortunately, observed conditional independence
relations do not generally determine a unique inducing
path graph, and so both for the purpose of studying
causal inference and for characterizing indistinguish-
ability of latent variable DAG models, another struc-
ture is required. A partially oriented inducing path
graph (or POIPG for brevity) over a subset of variables
O, represents a class of inducing path graphs over O
that share the same adjacencies. A POIPG looks like
an inducing path graph, but with the presence or ab-
sence of some arrowheads left unspecified. A directed
edge in a POIPG indicates that all inducing path
graphs in the class have that edge; a bidirected edge
indicates that all inducing path graphs in the class
have that bidirected edge. POIPGs can have edges
ending in a mark, an “o0,” as in X o— Y, allowing some
of the inducing path graphs represented to have X <
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Y and some to have X — Y. Similarly, a POIPG may
contain an edge X o-0 Y. Two edges sharing a vertex,
each with a mark at that vertex, can be underlined, as
in -0 X o-, indicating that the two “0” marks cannot
simultaneously be arrowheads in any inducing path
graph it represents. For some latent variable causal
structures and sets of measured variables, the hypothe-
sis that one measured variable does (or does not) cause
another measured variable, or that two measured vari-
ables are affected by a latent common cause, can be
read from the POIPG constructed from the conditional
independence relations among the measured variables.

Spirtes (1992) describes a procedure for construct-
ing a POIPG from conditional independence relations
among observed variables and optional background
knowledge, and Spirtes and Verma (1992) adapt this
result to provide a polynomial time procedure to decide
indistinguishability (by conditional independence) of
any two DAGs with latent variables, assuming the
Markov condition. Three examples of POIPGs are
given in Figure 1 (i), (iii) and (vii).

The DCG models and the POIPGs provide represen-
tations of most of the nondecomposable sets of inde-
pendence hypotheses discussed by CW and explain
how such independence properties could be generated.
Of the five nondecomposable sets of independence
hypotheses CW describe, four can be generated by a
feedback process or a process with unmeasured com-
mon causes and represented by a DCG or POIPG. The
fifth set of nondecomposable independencies can be
generated by a cyclic graph but only with special pa-
rameter values (i.e., unfaithfully). Referring to CW’s
eight cases:

() YU W (X, V)and X 1l V | (Y,W): DCG with
Y—>X—> W~—>V — Y or all arrows reversed
[represented by the cyclic graph in Figure 1 (i)].

(i) Y1l W|Vand X |l V| W [represented by the
POIPG in Figure 1 (ii)].

(i) ¥ _1l WandX | V:[represented by the POIPG
in Figure 1 (iii)].
(iv) (v) and (vi) are represented by DAGs.

(vii) Y1l W and X |l V and V 1l W [represented

by the POIPG in Figure 1 (vii)]l. The POIPG
in Figure 1 (vii) actually represents these inde-
pendence relations only under the assumption of
composition; that is, that for any four disjoint
sets of random variables, X, Y, Z, W, the rela-
tions X 1l Y|Zand X || W | Z entail X 1|
(Y,W) | Z. Composition holds for normal distribu-
tions. .

(vil) YU W | XV, XLV |(Y,W)and VI W
This set of conditional and unconditional indepen-
dence relations is not represented exactly by any
DCG or POIPG unless the Faithfulness condition
is violated.

Yy——»y Y 4&—DoV Y «—>»V Y ¢——oV
I l °
X ——W X 4——O W X —P W

(iii)

@ (i)

Most of the empirical examples CW give have small
sample sizes, and the independence decisions are infor-
mal. In assessing the value of DCG and POIPG repre-
sentations, it does not therefore seem important to
consider whether feedback or latent variables are in
these particular cases likely to be the correct substan-
tive interpretations of the conditional independence
relations.

2. CLASSIFICATION AND BAYESIAN NETWORKS

The construction of a Bayesian network expert sys-
tem can be expensive and time consuming. Why
bother? One use we can imagine is as a kind of personal
calculator, a device an expert—or anyone who wishes
to defer to and emulate that expert—can use to find
out what her degrees of belief ought to be given various
pieces of evidence. The expert, or expert emulator,
can then use that information however she chooses in
making decisions. In some contexts this seems to us
a perfectly sensible purpose. Another conceivable pur-
pose is to provide a system that combines prediction
with explanations of how and why a prediction was
obtained. Updating a Bayesian network resembles a
course of reasoning, and perhaps some people may
want such accounts of how predictions are obtained.
But these are mostly advantages of computer-side
manner. What advantages do Bayesian networks have
as tools for furthering our knowledge and control of
empirical domains?

Consider predictions (which we will refer to as class-
ifictions) of a variable or variables Y using a set of
variables X as predictors, for new individuals or sam-
ples drawn from a fixed distribution. There are a vari-
ety of automatic classification methods now available:
neural networks, automatically constructed Bayesian
networks, various forms of regression, automatically
constructed decision trees and combinations of these
(Shaffer, 1993). There are also a number of methods
that rely on expert knowledge, such as hand-crafted
decision trees and hand-crafted expert Bayesian net-
works. In such problems, there is a good deal of psycho-
logical evidence that computerized models of experts
make better predictions in many domains than do the
experts themselves, but so also do simple algorithmic
prediction methods—for example, linear or logistic re-
gression—when there is a relevant database. Do expert
system Bayesian networks (or automatically constructed
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Bayesian networks) have any advantages in reliability
or computational ease over these other methods of
classification, and if so, under what conditions?
Research has just begun on these questions, and
the jury is still out on whether a Bayesian network
constructed by consulting an expert makes superior
classifications. SDLC note that all versions of the
CHILD network with graphical structure extracted
from an expert do less well at diagnostic prediction
than does a “simple algorithmic” method (a hand-
crafted decision tree). Moreover, SDLC compare the
predictive accuracy of the network with fixed parame-
ters estimated by the expert and with parameters
changed by conditioning on data from new cases-—
unsurprisingly, the latter is superior—but they give
no comparison with the predictive accuracy of the
network when the parameters are estimated as much
as possible entirely from the data. We wonder whether
the model using parameter estimates based as much
as possible on frequencies would (at least for some
sample sizes) in this case do better than either of the
methods of estimating parameters which they com-
pare. The application of a Bayesian network con-
structed by consultation with an expert appears even
more dubious in domains, such as psychology and
sociology, in which rather less is known about causal

mechanisms.
The graphical structure of Bayesian networks typi-

cally entails constraints on the joint distribution of
measured variables. We expect a predictor that entails
conditional independence constraints satisfied by the
population distribution to have a smaller expected
squared error than a predictor that does not, but the
value of this advantage depends on our capacity to
identify those constraints correctly: a predictor entail-
ing a constraint false in the population will be biased.
It seems to us a dicey question whether reductions in
the variance of estimates are worth the risks of bias
occasioned by assuming special conditional indepen-
dence constraints on a distribution. Whatever the final

result, it appears to us that while the method of con- -

structing Bayesian networks with the aid of experts
., shows promise and is certainly worthy of further re-
search, no decisive case has yet been made for the
value of building Bayesian networks or causal models
for the purpose of predicting within samples from a
fixed distribution.

3. OTHER USES OF BAYESIAN NETWORKS
AND CAUSAL MODELS

In the preceding section we used the qualifier “within
a fixed distribution” because we believe the special
value of DAG causal models is in predicting the results
of interventions that change the distribution of vari-
able values in a population. Predictions of this sort are

not considered in the SDLC paper, but they are often
the very point of causal models in studies that aim to
influence policy. Such predictions can be made if one
knows the causal structure of the systems in the popu-
lation and understands the direct effects of the inter-
vention. Unlike prediction within a fixed distribution,
predictions of the outcomes of interventions absolutely
require the use of the causal relations represented in
the directed graph. Regression or other methods which
take no account of causal structure will not suffice.
In a Bayesian network, given values for X on a new
unit, we estimate the value of Y by computing the
conditional probability of ¥ given X and doing what-
ever with the result. For a trivial example, suppose
the network is Figure 2 (i) with binary variables, value
1 indicating the condition and 0 indicating its absence.
The parameters of the network are P(Smoking), P(Yel
low fingers | Smoking) and P(Cancer | Smoking). If some-
one presents without yellow fingers we can compute
P(Cancer | Yellow fingers = 0); much of the SDLC re-
view is devoted to how to perform such calculations
in more complex cases. But what if, after constructing
the network, we were to adopt a policy that prevents
yellow fingers? Suppose we make everyone wash their
hands twice a day and wear gloves in between, conve-
nient gloves that do not make smoking more difficult
and that are not carcinogenic. Assume our Bayesian
network correctly describes the distribution of yellow
fingers, smoking and cancer in the population before
the new policy. Can the network be used to predict the
probability of cancer in someone without yellow fingers
after the policy is effected? Not by computing P(Can-
cer | Yellow fingers = 0) as we did before. Instead we
compute P {Cancer | Yellow fingers = 0) = Ppen{Can-
cer) = P(Cancer | Smoking)P(Smoking) (assuming after
the policy is adopted no one has yellow fingers.) This
is exactly the computation appropriate for the different
network shown in Figure 2 (ii) with parameters Py..(Yel-
low fingers), P(Smoking), P(Cancer | Smoking). The new
network is obtained from the old by removing the
directed edge from Smoking into Yellow fingers, giving
Yellow fingers a new exogenous distribution and leav-
ing the other parameters unchanged. The relation be-
tween the new network describing the distribution
after the intervention and the original network describ-
ing the distribution before the intervention perfectly
reflects the hypothetical facts: with the policy in place,

Gloves = Gloves =

off on
Yellow <@—Smoking —pp» Lung Yellow Smoking —@p Lung
fingers cancer fingers cancer

@ (it)
PSYLIG=off)= P IS)PLISIPS) PS,Y.LIG=on)= P(Y1G = on)P(L1S)P(S)

Fic. 2.
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smoking no longer causes yellow fingers; the policy
changes the probability of yellow fingers (to 0, or pretty
close), but because yellow fingers do not cause either
smoking or cancer, the new policy does not alter the
joint distribution of these two variables.

Interventions to exogenously determine the distribu-
tion of values of a variable X, and that affect other
variables only through X, break whatever edges into
X originally obtained in the graph or graphs describing
the causal structure(s) in the population and reparame-
terize the joint distribution accordingly. (Other kinds
of interventions, which we do not consider here, may
introduce as well as break edges.) We say X is “directly
manipulated” by the intervention. The analysis is not
ad hoc. When an intervention variable is introduced
(Gloves, in the example) and the original distribution
is understood to be conditional on a particular value
of the intervention variables (e.g., Gloves = 0), the
rule just illustrated follows from the Markov condition.
A general proof is given in Spirtes, Glymour and
Scheines, (1993).

This simple principle is at the center of experimental
design. In graphical terms, Fisher wanted to randomize
because he believed determining treatment by random-
ization guarantees that the structures describing the
experiment will then contain no edges from causes
of the outcome variable into the treatment variable.
Rubin’s proposals for causal inference in experimental
designs (Rubin, 1974, 1977) and their extension by Pratt
and Schlaifer (1988), are all consequences of the Mar-
kov condition for the special cases in which the in-
tervention entirely determines the distribution of the
variable or variables directly manipulated. The princi-
ple also explains features of distributions assumed in
Bayesian discussions of-experimental design (Kadane
and Seidenfeld, 1992).

So it is easy in principle to determine the effects
of a policy intervention provided one has a correct
description of causal structure and a parameterization
of the population distribution, and one knows the dis-
tribution of the directly manipulated variables that
will result from the policy. Prediction of the outcomes
of interventions is not so obvious if only a POIPG is
available—and a POIPG is the best way we know of to
characterize causal structure (without feedback) from
observed conditional independence relations. There is,
however, an algorithm that, given a POIPG and a set
of measured variables to be directly manipulated, gives
sufficient conditions and necessary conditions under
which other variables can be predicted, and computes
the new distribution (of a predictable variable) given
the original joint distribution and the postpolicy distri-
bution of the directly manipulated variables. (Spirtes
and Glymour, 1993; Spirtes, Glymour and Scheines,
1993).

4. MODEL DISCOVERY

Extracting causal and probability information from
experts can be time consuming and difficult even when
the experts have real knowledge. Worse, in many prob-
lems the real knowledge of experts is quite limited, and
according to a considerable psychological literature
experts in many subjects know substantially less than
they think they do. So we should be interested in fast,
reliable procedures that can combine fragmentary prior
knowledge with data to specify or partially specify
causal or structural models. Few topics are more con-
troversial in statistics, or, in our experience, more apt
to draw scorn rather than research, although explicit
arguments against the very idea (as opposed to argu-
ments against particular procedures that have been
proposed) tend to be feeble. For example, that “any
data can be fit by several alternative models” (Rodgers
and Maranto, 1989), or that there is no mechanical
way to tell whether statistical dependencies are gener-
ated by an unknown causal process or by chance. Were
the first objection sound a parallel would apply to all of
statistical estimation. The second objection overlooks
that humans can have some conviction that statistical
dependencies are due to some causal process without
knowing what that process is, and that even absent
experimental manipulations, the very existence of a
sensible model that explains puzzling features of a
sample, may reasonably increase our conviction that
the data are not a chance artifact.

Especially when it can be assumed that there are no
latent factors at work, in our view directed graphical
model specification is essentially a form of set valued
estimation involving unfamiliar parameters, but sub-
ject to the same concerns for asymptotic reliability,
error probabilities, variation of estimates and so on,
as is ordinary parameter estimation. In the absence of
strong prior information, model estimates should be
set valued exactly because of indistinguishability clas-
sifications noted by SDLC. A classical version of the
estimation theory should provide computable, consis-
tent estimators; a Bayesian version should show how
to compute at least the posterior mode and show that in
the large sample limit the procedure yields the correct
model - or class of models—almost surely.

A rudimentary theory of this kind already exists.
SDLC note the results of Cooper and Herskovits
(1992), which, given a linear ordering of discrete valued
variables, for Dirichlet priors find the DAG compatible
with the ordering and distribution that is the posterior
mode on the sample evidence. Substituting a heuristic
greedy search algorithm for the correct procedure,
which is computationally intractable, their K2 algo-
rithm is fast even for quite large numbers of variables
and performs extremely well on simulated large sam-
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ples. A non-Bayesian procedure, the PC algorithm,
provably generates the set of all DAGs that represent
(according to the Markov and Faithfulness conditions)
a set of conditional independence facts in a distribution
(assuming such a DAG exists). Prior ordering or partial
ordering is optional, and the output may direct some
or even all edges, depending on the structure of the
correct DAG, even if no ordering information is input.
The procedure minimizes the number of conditional
independence tests required and the size of the set of
variables conditioned on in each required test. PC has
been implemented for multinormal and for multinomial
variates in the TETRAD II program (Spirtes et al.,
forthcoming). The computational demands of the proce-
dure depend on the sparseness of G. For fixed maximal
degree, computation increases in the worst case as a
polynomial function of the number of vertices. The
procedure can be readily integrated with prior knowl-
edge restricting G, and its error probabilities, as func-
tions of sample size and average degree, have been
investigated in extensive simulation studies with ran-
dom graphs and randomly generated multinormal dis-
tributions. Wedelin (1993) has recently reported a
procedure, so far implemented only for binary vari-
ables, that uses a parametrization related to the Fourier
transform and an iterative algorithm for approximate
maximum likelihood estimation of DAG models. The
estimation is interleaved with an algorithm using Mini-
mum Description Length criteria to construct a DAG,
or an indistinguishability class of DAGs, from the
data. The procedure is asymptotically correct for
DAGs paired with faithful multinomial distributions.
It does not require prior information about the ordering
of the variables and has produced excellent results on
simulated data with large numbers of variables.
SDLC briefly discuss the BIFROST program which
generates chain graphs, described in more detail by
Lauritzen, Thiesson and Spiegelhalter, (1992) (LTS)
and illustrated again with data for the CHILD net-
work. The program requires as input a partial ordering
of the variables by blocks. It is not clear from this
description whether the algorithm is practical for large
numbers of variables, whether it is asymptotically cor-
rect, and to what extent the correct output depends

on correctly specifying the block structure. We would
like to know how the procedure performs on larger
problems such as the ALARM network (Beinlich et
al., 1989) for emergency medicine, which contains 37
variables, and has been used in tests of the reliability
of the three procedures previously mentioned.

All of the algorithms so far described assume there
are no latent common causes of measured variables.
In real problems we often do not know at the outset
whether statistical dependencies may be due to un-
measured factors affecting two or more measured vari-
ables. Absent some bound on the number of variables,
there is an infinity of alternative DAGs that may
accord with a set of observed conditional independence
facts assuming the Markov and Faithfulness condi-
tions, and there is no possibility of estimating a finite
indistinguishability class of DAGs. What might be
wanted instead are inference procedures that will de-
scribe features common to all DAGs admitting distri-
butions yielding features of the observed marginal
distribution, that is, POIPGs. It is often suggested
that absent experimental interventions these kinds of
inference cannot be correctly made even in principle,
but with reasonable background assumptions that is
not true. A correct algorithm for inferring POIPGs
from conditional independence relations among ob-
served variables is the FCI procedure given in Spirtes
(1992), whose output is a POIPG. The procedure has
been implemented for multinomial and multinormal
distributions. The Spirtes and Verma algorithm, noted
earlier, for deciding indistinguishability( by conditional
independence) of DAGs with unobserved variables de-
pends on the fact that POIPGs obtained by the FCI
algorithm completely characterize the observed mar-
ginal conditional independence constraints entailed for
the subset of observed variables by a DAG with latent
variables. The procedure recovers each of the POIPGS
(ii), (iii) and (vii) in Figure 1 from the corresponding
conditional independence relations CW provide and
also the undirected version of the cyclic graph in (i)

* (although we have no general proof that the algorithm

correctly recovers cyclic graphs), as well as much more
complicated structures in other cases.
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Comment

Joe R. Hill

The authors of these two papers are among the
most active nodes in an ever growing hypergraph of
interesting papers on statistical applications of graph
theory. It is an honor to discuss these two new hyper-
edges.

My discussion is divided into four parts. Section
1 discusses statistical applications of graph theory.
Section 2 briefly describes ways of leveraging parallels
between probability and database theory. Section 3
highlights two important points made in each of the
papers. Finally, Section 4 asks some specific questions.

1. STATISTICAL APPLICATIONS OF
GRAPH THEORY

Graph theory has a lot to offer statisticians. Conse-
quently, graph theory is quickly becoming an integral
part of modern statistics. Graphs, both directed and
undirected, and hypergraphs can be used to (a) repre-
sent qualitative multivariate relationships, (b) specify

" and visualize multivariate statistical models, (c) deter-
mine statistical properties of multivariate models and
(d) develop computationally efficient algorithms for
dealing with large multivariate models. The first two
of these contribute to effective communication between
applications experts and statisticians. The third helps
statisticians develop appropriate statistical theory.
The fourth makes computing feasible for more compli-
cated problems.

Graphical models provide a flexible paradigm for
describing multivariate statistical models. They can
have discrete variables (as in Bayesian networks, graph-
ical and recursive loglinear models for contingency
tables, and influence diagrams for applied decision anal-
ysis), or continuous variables (as in covariance selection
and structural equation models). Conditional Gaussian
models (Lauritzen and Wermuth, 1989; Wermuth and
Lauritzen, 1990) provide a framework for having both
kinds of variables in a single graphical model. Graphi-
cal models can have directed edges (as in Bayesian
networks, influence diagrams and regression models)
or undirected edges (as in graphical and decomposable
loglinear models, covariance selection models and Mar-
kov random field models for image restoration). Chain
graphs provide a framework for having both kinds of
edges in a single graphical model.

In their paper, Cox and Wermuth (CW) introduce,

Joe R. Hill is R & D Manager, EDS Research, 5951
Jefferson St. NE, Albuquerque, New Mexico 87109.

for multivariate normal models, the concept of dashed
edges as a way to represent constraints on covariance
matrices (i.e., to represent marginal independencies),
complementing the use of full edges to represent con-
straints on concentration matrices (i.e., to represent
conditional independencies). They illustrate the use of
the new enriched class of models with a number of
empirical examples.

Spiegelhalter, Dawid, Lauritzen and Cowell (SDLC)
give a status report on their ongoing development
of Bayesian networks for expert systems. They have
carefully combined a number of methods. They elicit
Bayesian graphical models from medical experts. They
use graphical ideas to convert the model into a compu-
tationally efficient form. They apply Bayesian estima-
tion techniques to “learn” probability parameters as
additional data are observed, and they use significance
testing methods to monitor and critique the model.

SDLC provide an effective method for eliciting the
qualitative, the probabilistic and the initial quantita-
tive aspects of an expert-defined model. The key to
their method is to use a directed acyclic graph to
represent the qualitative relationships between vari-
ables. Nearly everything else follows from this graph.

This graph determines a recursive factorization of
the joint distribution with, for each variable, a factor
that is the conditional distribution of that variable,
given its parents. This representation of the joint dis-
tribution has two advantages. First, the number of
probabilities that the expert has to specify is consider-
ably less than for a general joint distribution that does
not encode the implied conditional independencies as
efficiently. Second, these probabilities are “easy” for an
expert to specify for three reasons: (a) the expert has
to think about the distribution of only one variable at
a time, (b) each distribution is conditioned on the par-
ents of the variable, which are the variables that di-
rectly influence it and (c) the conditioning events can
be thought of as fixed scenarios. In short, it is easy for
an expert to think about the probability distribution of
a single “effect” given its immediate “causes.” This
second advantage contrasts sharply with the problems
associated with directly specifying an overall joint dis-
tribution. In that case, the expert would not be able to
think conditionally but would have to think in multiple
dimensions simultaneously and would typically have
to specify many very small probabilities.

Once the model has been specified, it is converted to
a junction tree representation for efficient computation.
This conversion is carried out in a series of steps
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guided and justified by three important ideas: (a) graph
separation in the moral graph of an ancestral set deter-
mines conditional indépendence, (b) the cliques of a
chordal graph form an acyclic hypergraph and only
acyclic hypergraphs have junction trees [later in the
paper, their method for specifying hyper-Markov prior
distributions depends on the fact, proved by Vorob’ev
(1962), that a consistent set of marginal distributions
has an extension iff the margins they are defined on
form an acyclic hypergraph] and (c) large problems can
be made computationally more tractible by decompos-
ing them into smaller, component problems that re-
quire communication between neighboring components
only.

The major point of this section has been to emphasize
the important role that graph theory is playing in both
of these papers. It has helped in communicating with
substantive experts. It has helped in specifying and
understanding multivariate statistical models. And it
has helped with the computational aspects of those
models. It is time that we started teaching graph
theory in statistics courses of all levels.

2. LEVERAGING PARALLELS TO
DATABASE THEORY

2.1 A Problem

Not everything is bliss in the world of graphical
models. They have some rather subtle properties. They
also lack some properties that seem at first to be
trivially true. Some of the more important of these
problems arise when probabilities can be zero. Al-
though this situation does not arise in either of the
papers, newcomers to_graphical models might be mis-
led into thinking that some statements made in SDLC
and CW are valid in more general settings.

For example, CW state that “for a trivariate normal
distribution of Y, Z, X the hypothesis Y {| X | Z
and X 1l Z | Y corresponds to zero concentra-
tions for pairs (Y, X) and (X, Z) and it implies X _{|
{Y, Z).” Nothing could be simpler. The conditional inde-
pendency ¥ I X | Z splits X and Y and the condi-

, tional independency X il Z | Y. splits X and Z, so
the two of them together split X and (Y, Z), hence they
imply the conditional independency X _{| (Y, Z). For
multivariate normal models, which CW are dealing
with, this reasoning is fine; in fact, it is valid for any
family of strictly positive probability distributions.
However, if probabilities can be zero, then the result
is not true! For example, the distribution p(0, 0, 0) =
p(1,1,1) = 1/2, plx, y, 2) ='0 otherwise, satisfies the
first two of these conditional independencies, but does
not satisfy the third. See Moussouris (1974) and Dawid
{1979b) for other examples.

The problem is that the Gibbs—Markov theorem re-
quires strictly positive probability distributions. This

positivity condition limits the possible applications of
the equivalence of graph-generated conditional inde-
pendence models and factorizations of joint distribu-
tions. In particular, the theorem cannot be applied to
Bayesian networks with functional constraints (Laurit-
zen and Spiegelhalter, 1988) or to contingency tables
with structural zeros or to statistical mechanics sys-
tems with forbidden states (Moussouris, 1974).

In his discussion of Besag’s paper on Markov ran-
dom fields in spatial statistics, Hammersley (1974)
explained why he and Clifford did not publish the
result when they first discovered it in 1971. He wrote
(pp. 230-231),

In proving this result, we assumed a positivity
condition, namely that no probability should be
zero. . .. In many of the most important practical
applications to statistical mechanics, the physical
system is subject to constraints which prevent
the system from assuming certain forbidden
states. . . . So it seemed to us not only aesthetically
desirable but also practically important to amend
our proof in order to make the theorem indepen-
dent of the positivity condition . .. The very good
reason for our failure [to do so] was the unexpected
discovery by a graduate student, Mr John Mous-
souris, of a counter-example!

In short, Hammersley and Clifford did not publish
the result because they thought the positivity condi-
tion limited the theorem too much for it to be useful
in practice. Now no one doubts the importance of the
theorem even with the positivity condition. But it
is still quite inconvenient that no result exists for
distributions with zero probabilities.

2.2 A Solution

Here is a solution that was suggested by parallels to
relational database theory. Table 1 summarizes basic
database/probability parallels; see Hill (1991) for more
details. To state the results, we need some terminology
from graph theory. A hypergraph is a set of nodes
together with a set of hyperedges; each hyperedge is
a subset of the nodes of the hypergraph. The 2-section
of a hypergraph is an undirected graph with the same
set of nodes as the hypergraph and an edge between
each pair of nodes that belong to a common hyperedge.
A hypergraph is conformal if its set of hyperedges
equals the set of cliques of the edge set of its 2-section.
A hypergraph is acyclic if it is conformal and its
2-section is chordal. It can be shown that a hypergraph
is acyclic iff it has the running intersection property
iff it has a junction tree.

We also need some terminology adapted from data-
base theory. Graph separation in an undirected graph
determines a set of conditional independencies. A set
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TaBLE 1
Basic database and probability parallels

Probability concepts

Database concepts

Set of random variables V

Distribution for V, p[V],
a probability function

Marginal distribution of
X <V, plX]

Conditional distribution
plV | X =]

Factorization constraint
RV, ..., i, Ve Vv

Conditional independency
X 1l Y| Z binary
factorization constraint
XX UZ YUZ

Set of attributes (column
names) B

Relation (table) over R,
rR], an indicator func-
tion for a set of tuples
(rows)

Projection of ronto X <
R, AX]
Selection AR | X = x]

Join dependency
X {Rl, e ,Rk},Rj <R

Multivalued dependency
Z—-—X | Y, binary join
dependency X (X U Z,
Y U Z}

of conditional independencies is said to be graph-gener-
ated if there exists a graph that generates it. A condi-
tional independency X _{| Y | Z splits variables in X
from variables in Y; the variable set Z is called the
kernel of this conditional independency. The split graph
generated by a set of conditional independencies has
an edge between every pair of variables that is not
split by any of the conditional independencies in the
set. The closure of a set of conditional independencies
is the set of conditional independencies implied by the
original set. Two sets of conditional independencies
are said to cover each other if their closures are equal.
A set of conditional independencies is said to be con-
flict-free if it is graph-generated and it does not split
any of its kernels. Two sets of constraints are said to
be equivalent if the sets of probability distributions
that satisfy them are equal. Similar definitions have
been given for databases.

The Gibbs-Markov theorem can be stated in the
following three ways, each providing insight into the
relationships between graphs, sets of conditional inde-
pendepcies and factorization constraints.

TueEOREM 1+. Let G be an undirected graph over V.
The set of conditional independencies generated by G
is equivalent, for strictly positive distributions, to the
factorization constraint generated by the cliques of G.

TaEOREM 2+. Let V be a hypergraph over V. The
set of conditional independencies implied by the factor-
ization constraint generated by V is equivalent, for
strictly positive distributions, to the factorization con-
straint generated by V if and only if V is conformal.
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THEOREM 3+. Let C be a set of conditional inde-
pendencies defined on V. C is equivalent, for strictly
positive distributions, to the factorization constraint
generated by the cliques of the split graph of C.

Fagin, Mendelzon and Ullman (1982) and Berri et al.
{1983) proved the following database theorems, which,
after accounting for the different terminology, look a
lot like the three theorems stated above. In fact, how-
ever, because relations are indicator functions (there-
fore allowing zero values), these theorems, which have
stronger requirements on the underlying graphical
structure, suggest a way to relax the positivity condi-
tion.

Tueorem DBL. Let G be an undirected graph over
R. The set of multivalued dependencies generated by
G is equivalent to the join dependency generated by
the cliques of G if and only if G is chordal.

TueoreEMm DB2. Let ® be a hypergraph over R. The
set of multivalued dependencies implied by the join
dependency generated by ® is equivalent to the join
dependency generated by ® if and only if R is acyclic.

Tuaeorem DB3. Let M be a set of multivalued depen-
dencies defined on R. M is equivalent to the join depen-
dency generated by the cliques of the split graph of M
if and only if M has a conflict-free cover.

By translating database terms into probability
terms (Table 1) in these three database theorems, we
get the following three probability theorems, the proofs
of which will be given elsewhere.

TueEorEM 1*. Let G be an undirected graph over V.
The set of conditional independencies generated by G
is equivalent to the factorization constraint generated
by the cliques of G if and only if G is chordal.

- THEOREM 2%, Let V be a hypergraph over V. The set
of conditional independencies implied by the factoriza-
tion constraint generated by V is equivalent to the
factorization constraint generated by V if and only if
V is acyclic.

THEOREM 3*. Let C be a set of conditional indepen-
dencies defined on V. C is equivalent to the factoriza-
tion constraint generated by the cliques of the split
graph of C if and only if C has a conflict-free cover.

Although Theorems 1*, 2* and 3* do not require
strictly positive distributions, they do impose stricter
constraints on the underlying graphical structures
than do Theorems 1+, 2+ and 3+. Theorem 1* re-
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quires the graph to be chordal for there to be equiva-
lence, whereas Theorem 1+ puts no requirements on
it. Theorem 2* requires the hypergraph to be acyclic
for there to be equivalence, whereas Theorem 2+ re-
quires only that it be conformal. Theorem 3* requires
the set of conditional independencies to have a conflict-
free cover for there to be equivalence, whereas Theorem
3+ puts no requirements on it (actually, the closure
with respect to strictly positive distributions of a set of
conditional independencies is always graph-generated).

As far as I know, Theorems 1%, 2¥ and 3* are new,
although, by now, they are probably not unexpected.

Parallel developments in the two fields have occurred
in the past, with neither aware of the other, apparently.
For example, Vorob’ev’s (1962) results on extending
consistent marginal distributions parallel similar re-
sults for the extension of consistent databases (Beeri
et al., 1983). And Beeri and Kifer’s (1986a, 1986b, 1987)
work on fixing sets of multivalued dependencies that
have intersection anomalies parallels Dawid’s (1979b)
method for fixing up sets of conditional independen-
cies.

3. MODELS AND DATA

Two simple but important points, each mentioned
in both papers and neither having to do directly with
graph theory, deserve to be emphasized. First, both
papers take the position that a model represents the
substantive knowledge that an expert brings to the
problem prior to seeing specifically relevant data. One
practical consequence of such a position is that statisti-

Comment: What’s Next?

David Madigan

These papers represent two of the many different
graphical modeling camps that have emerged from a
flurry of activity in the past decade. The paper by
Cox and Wermuth falls within the statistical graphical
modeling camp and provides a useful generalization of
that body of work. There is, of course, a price to be
paid for this generality, namely that the interpretation
of the graphs is more complex. I cannot resist comple-
menting the authors on the remarkable feat of finding

David Madigan is Assistant Professor, Department of
Statistics, GN-22, University of Washington, Seattle,
Washington 98195.

cians cannot work in a vacuum; rather, they must
interact and communicate effectively with domain spe-
cialists. And, on a more philosophical note, this posi-
tion highlights the fact that a scientifically meaningful
model for the data is as much a subjective prior assess-
ment of the relative likelihood of possible values as is
a scientifically meaningful model for the parameters of
such a model. Second, SDLC stress and CW mention
that observed data allow us not only to estimate param-
eters in the model but also to monitor and, if need be, to
critique the model. It is refreshing to see frequentists
concerned about representing expert knowledge and
Bayesians worried about model criticism.

4. SOME QUESTIONS FOR THE AUTHORS

Can you have discrete variables in chain graphs with
dashed edges? Can you explain why the diagnostic
ability of the Bayesian network was not as good as
that of the CART-like algorithm? From Table 6, it
appears that for 110 cases (of 168) the Bayesian net-
work assigned the correct diagnosis the highest proba-
bility; what were the ranks of the correct diagnoses
for the other 58 cases? Has anyone created Bayesian
networks with both discrete and continuous variables?
Of course, with mixed models the number of parame-
ters in each distribution will not stay fixed after updat-
ing. Has anyone considered creating a “Bayesian chip”
that could be used to create truly parallel “Bayesian
machines”™?

Reading and thinking about these papers has been
a real pleasure.

‘an example for each of the different graphical models

they propose.

The paper by Spiegelhalter, Dawid, Lauritzen and
Cowell falls within the probabilistic expert system
camp. This is a tour de force by researchers responsible
for much of the astonishing progress in this area. Ten
years ago, probabilistic models were shunned by the
artificial intelligence community. That they are now
widely accepted and used is due in large measure to
the insights and efforts of the authors, along with other
pioneers such as Judea Pearl and Peter Cheeseman.

I will confine my remaining comments to the Spiegel-
halter et al. paper and explore some open questions
that I believe will rapidly become important, now that
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many basic technical issues are being successfully
solved.

WHAT CAN YOU DO WITH A GRAPHICAL MODEL?

My primary concern is with the apparent mismatch
between the informal, qualitative character of hu-
man reasoning and the rigorous, formal, quantitative
approach of graphical models {Henrion, Breese and
Horvitz, 1991). Knowledge-based system builders now
have access to knowledge representation tools of con-
siderable expressive power and flexibility (e.g., Skuce,
1991) while the poor graphical modeler has to make do
with nodes, links and probability distributions. These
concerns are practically motivated. At the University
of Washington we are constructing an intelligent tu-
toring system (ITS) for basic statistics. At the heart
of any ITS is an explicit model of the student’s knowl-
edge. Acknowledging the inherent uncertainty, we use
a Bayesian graphical model for this purpose. However,
a second ITS component concerns instructional strat-
egy —the procedural knowledge of experienced teach-
ers. Graphical models fail dismally to represent this
knowledge, yet a simple rule-based system does a rea-
sonable job. In a project at the Fred Hutchinson Can-
cer Research Center in Seattle, we are constructing a
knowledge-based system to assist nurses who handle
telephone calls from bone marrow transplant patients
and their physicians (Bradshaw et al., 1993). Graphical
models can calculate the probabilities of various com-
plications, but cannot represent the heuristic knowl-
edge of experienced nurses as they manage the call. In
general, the range of potential applications for graphi-
cal models is considerably smaller than for knowledge-
based systems.

There may be a way out of this dilemma: a number
of authors have suggested combining conventional
knowledge-based systems with probabilistic models.
The key to the success of such hybrid systems is
that each component contributes to the portion of
the process that it does best: the knowledge-based
components guide the interaction by using rough
rules-of-thumb that can help to quickly scope, categor-

» ize, gather information about, stricture and interpret
important aspects of the problem; the probabilistic
components rely on carefully crafted assessments of
uncertainty to provide specific answers about particu-
lar situations in a rigorous manner (Bradshaw et al.,
1993; Szolovits and Pauker, 1978). Control rests with
the knowledge-based component, which calls the proba-
bilistic component as required.

Closely related to this is the emerging area of “knowl-

- edge-based model construction” (KBMC). The effective
application of belief network tools requires a relatively
high level of modeling sophistication, and model con-
struction has proven to be a serious bottleneck. These

tools contain some of the algorithms of probabilistic
modeling, but cannot embody the experience and intu-
ition of the skilled modeler. KBMC seeks to combine
probabilistic modeling tools (including belief networks
and influence diagrams) with a knowledge-based sys-
tem that helps domain experts without extensive train-
ing in probabilistic modeling to build, evaluate and
refine probabilistic models (Breese, 1989; Goldman and
Breese, 1992; Holtzman, 1989). For complex problem
domains, sharing and re-use of model components is
vital: the knowledge base could dynamically assemble
a probabilistic model, tailored to the problem at hand,
from model fragments (Almond, Bradshaw and Madi-
gan, 1993). Notable applications of KBMC technology
include the Boeing Company’s DDUCKS tool, a knowl-
edge-based influence diagram workbench (Bradshaw et
al.,, 1991) and the text understanding application of
Goldman and Charniak (1992).

In short, it seems likely that in the future, graphical
models will not exist as stand-alone applications, but
rather will be embedded in larger systems, encom-
passing a variety of knowledge bases, databases and
models.

MODEL UNCERTAINTY

An alternative to KBMC is to automatically induce
models from existing databases. This is discussed by
the authors in subsection 5.4. They begin by stating
that “An approach that takes model comparison to its
full consequence is to induce the network directly from
data ... ignoring the prior structural and quantita-
tive information available.” Why does the “full conse-
quence” involve the absence of prior information? One
of the great advantages of the Bayesian graphical
model approach is that prior knowledge, both struc-
tural and quantitative, can realistically be elicited and
incorporated into both model selection and subsequent
inference (Madigan and York, 1993). Indeed, with even
a modest number of nodes, the graphical model space
is vast, and there is a concern that in the absence of
some prior knowledge, model selection procedures may
fail (Draper, 1993).

Historically, model selection procedures have fo-
cused on finding the single “best” model. However, this
ignores model uncertainty, leading to poorly calibrated
predictions: it will often be seen in retrospect that
one’s uncertainty bands were not wide enough (Draper,
1993). A Bayesian solution to this problem involves
averaging over all plausible models when making infer-
ences about quantities of interest (see, for example,
Raftery, 1988, and Kass and Raftery, 1993). Indeed
Hodges (1987) comments that “what is clear is that
when the time comes for betting on what the future
holds, one’s uncertainty about that future should be
fully represented, and model [averaging] is the only
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tool around.” In many applications, however, because
of the size of the model space and awkward integrals,
this averaging will not be a practical proposition, and
approximations are required. Draper (1993) describes
“model expansion”: averaging over all plausible models
in the neighborhood of a “good” model. Madigan and
Raftery (1991) describe an approach for Bayesian
graphical models that involves seeking out the most
plausible models and averaging over them. Raftery
(1993) applies this to structural equation models. Madi-
gan and York (1993) suggest a Markov Chain Monte
Carlo approach that provides a workable approxima-
tion to the complete solution. These methods can also
be applied to incomplete data (Madigan and Kong, in
preparation). The point is that with Bayesian graphical
models, correctly accounting for model uncertainty is
entirely possible.

Model averaging in the context of expert systems
raises special problems: displaying multiple models
requires careful software design; enhanced explanation
facilities are required; software for model prior elicita-
tion is needed. The issue of compatible priors in alter-
native models, addressed by the authors in Section

Comment

Sharon-Lise Normand

1. INTRODUCTION

The authors of these two highly complementary arti-
cles are to be congratulated on their timely contribu-
tions to the readership of Statistical Science and to
statisticians in general. The article by Spiegelhalter
and colleagues provides a comprehensive review of the
most recent statistical developments in expert sys-
tems, guiding us through a complete analysis in the
expert system domain. Cox and Wermuth present a
pointed discussion on the interpretation and graphical
representation of linear dependencies for continuous
valued random variables. In this discussion I will ex-
pand upon the range of applications of graphical mod-
els and emphasize some specific areas discussed by the
authors. Specifically, my comments will address (1) the
role of graphical models in statistical inference, (2) data

Sharon-Lise Normand is Assistant Professor of Biosta-
tistics, Department of Health Care Policy, Harvard
Medical School, 25 Shattuck Street, Parcel B, 1st Floor,
Boston, Massachusetts 02115.

8, is of considerable importance. While the procedure
suggested seems reasonable, a more general framework
is required. Certainly, when precisely specified proba-
bilities are involved, the procedure should be used with
extreme caution.

INTERCAMP COMMUNICATION

Other (independence) graphical modeling camps are
to be found within decision analysis, philosophy of
science and statistics. Several different camps are lo-
cated in computer science. To date, these camps have
communicated remarkably effectively with each other,
fostering rapid progress. The challenge we face is to
maintain the communication. The gulf between the two
papers here demonstrates both the diversity of the
progress and the extent of the challenge.
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propagation in graphs and (3) limitations of graphical
models.

2. THE ROLE OF GRAPHICAL MODELS

Graphical models can play an important role in struc-
turing statistical analyses, in performing complicated
computations and in communicating results. Thus the

. motivation for creating a graphical representation of

a statistical model is threefold: (1) the graph provides
an effective vehicle for communication among research-
ers, (2) the graph displays a knowledge map of the
dependency structure posited in the model and finally
(3) the graph can be transformed into a static secondary
structure that can be used for efficient probability
calculations. Professor Spiegelhalter and his colleagues
touch on all three reasons with emphasis placed on
calculating probabilities while Professors Cox and Wer-
muth stress the value of the graph as a knowledge
map. It is particularly important to note that one may
choose to exploit any or all three reasons for using a
graphical model.

The term graphical model has a very precise defini-
tion in the contingency table literature (Darroch, Laurit-
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zen and Speed, 1980; Edwards and Kreiner, 1983;
Wermuth and Lauritzen, 1983). In this discussion I
will, however, use the term more generally to refer to
statistical models that host some conditional indepen-
dence properties. Hierarchical models (Lindley and
Smith, 1972; Morris, 1987) are a class of statistical
models that immediately come to my mind when dis-
cussing graphical models. Inherent in hierarchical mod-
els is the notion of conditional independence across
observations at one stage and across parameters at
another stage. Consider for example a two-stage nor-
mal hierarchical model used to combine information
across experiments. The observed data will consist of
a summary measure from each experiment, y;, and an
associated measure of precision, V;. In a random effects

model, it is assumed that fori = 1, 2, ..., k studies
(1) ¥il6 =" N(6, Vi,
(2) gillu’rzinifp.N(.u’TZ))

where 0; represents the underlying study effect for the
ith experiment and x and ¢* are the hyperparameters
of the mixing distribution governing the generation
of each underlying study effect. The directed graph
corresponding to this model will have % separate nodes
for each summary measure, k& separate nodes for
each underlying study effect and a node for each of
the hyperparameters. Unlike the CHILD network dis-
cussed by Spiegelhalter and colleagues (Figure 2 in
their article) and the examples considered in Cox and
Wermuth's paper, only a subset of the nodes in the
graph representing this hierarchical model will ever be
observed. Substantially more complicated hierarchical
models, those with more stages and more dependency
structure such as the multiprocess models of Harrison
and Stevens (1976), can be represented graphically.
The value of displaying the qualitative structure of
statistical models has been vastly underutilized by
statisticians but appreciated in other branches of sci-
ence. In the medical arena, we frequently encounter
graphical representations of decision models, namely
decision trees. In its simplest form, the decision tree
is ‘a singly connected graph in which some nodes repre-
sent risk factors such as age and gender, some nodes
represent complications and symptoms and some
nodes represent decisions. For example, researchers
may be interested in investigating whether older pa-
tients who are suspected of having an acute myocardial
infarction will benefit from thrombolytic therapy. A
decision-analytic model is then built using information
from the experts (cardiologists) and from the results
of clinical trials (e.g., the rate of incapacitating compli-
cations from thrombolytic therapy for older patients).
Some statisticians are investigating methods of quanti-
fying uncertainty in medical decision analysis (Katz

and Hui, 1989) because, typically, statistical error is
not incorporated in most decision analyses. Clearly,
the expert system methodology could play a substan-
tial role in this effort —propagation of the uncertainty
attached to the decision tree inputs is naturally accom-
modated within the graphical framework.

More recently we have witnessed in the statistical
literature the use of graphical representations to under-
stand the dependency structure in order to perform
the “correct” computations. For example, Bernardinelli
and Montomoli (1992) use a graphical representation
of a hierarchical model of relative risk mortality to
display the qualitative structure of the data but also
to indicate which conditional distributions must be
specified to calculate the joint distribution. Gilks et
al. (1993) construct a graphical model for modeling
precursors of cervical cancer in an application of Gibbs
sampling in medicine for a similar specification pur-
pose.

Finally, as Professor Spiegelhalter and his colleagues
have indicated, the graphical model can be used to
perform efficient probability calculations in high dimen-
sional problems. The main goal is to have queries
regarding certain sets of variables answered quickly.
This is achieved through local computations performed
through an algorithm designed to capitalize on the
dependency structure embedded in the statistical
model. In the expert system setting, the computation-
al efficiency of the propagation algorithm is obvious.
However, it has been shown that even in standard
models, computation within a graphical framework can
be beneficial. Normand and Tritchler (1992) discuss the
use of a graphical model as the computational device
for updating parameter estimates in a hierarchical
model and show that the graphical model characterizes
the hierarchical model and its computations in a unified
way.

3. DATA PROPAGATION IN GRAPHS

. Because one of the central roles for the expert system
is that of updating the system once evidence has been
realized, I will recast for the reader the essence of how
this is achieved. The task at hand is the following:
information is observed and consequently, the joint
distribution needs to be updated in light of this new
information. Essentially the problem becomes one of
conditioning and a brute force approach is clearly un-
desirable in high dimensional problems. It is worth
recalling that there were over a billion possible config-
urations in the CHILD network. Propagation refers to
the transmission of hereditary features to or through
offspring and this is the “divide and conquer” strategy
employed in graphical models: the joint set of random
variables is divided into subgroups, a source subgroup
is identified, a marginal is taken in the source subgroup
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and then that marginal multiplies a function on a
destination subgroup. A marginal is then taken in the
destination subgroup and that marginal multiplies a
function on its destination subgroup and so on and so
on. Professor Spiegelhalter and his colleagues refer to
the subgroups as belief universes and equate these
universes to the cliques of the relevant undirected
graph. A clique is a set of random variables such
that no further factorization of the probability function
characterizing the distribution is possible; that is, there
are no further independence constraints on the
elements in the clique. Ideally the state space of the
cliques should be small otherwise the efficiency gains
through the use of the propagation algorithm will be
lost. The propagation algorithm described in the article
by Professor Spiegelhalter and colleagues is based on
the junction tree. The junction tree may be thought of
as a singly connected graph in which each node consists
of sets of random variables (the cliques). In the case of
multinomial random variables, any node in the junction
tree may be used as a root for propagation. The steps
necessary to transform the original directed graph into
the junction tree (referred to as compilation by Profes-
sor Spiegelhalter and his colleagues) are many and
sometimes nontrivial.

4. LIMITATIONS OF GRAPHICAL MODELS

The (potential) limitations of graphical models that I
envision are related only to one of my three motivating
reasons for using graphical models, and these have to
do with efficient computation. First, Professor Spiegel-
halter and his colleagues have indicated the importance
of the size of the state spaces of the cliques obtained
after triangulation in measuring the computational
benefits of a graphical model approach. In preserving
all the induced dependence relationships in a model
through the “moralizing” procedure, the dimensional-
ities of the cliques are increased. These dimensionali-
ties are further increased after triangulation. It is not
immediately clear in which statistical models the com-
putational advantages of a graphical model approach
will be realized. Further research into identifying
classes of statistical models that could benefit from
the computational efficiency of graphical models needs
to be undertaken.

Second, the junction tree algorithm for propagation
in graphical models works well in models in which the
random variables arise from a multinomial distribu-

tion. There does exist an algorithm that mimics the
junction tree algorithm in models for which some of
the variables are multinomial and some are Gaussian.
However in these latter graphs (mixed graphs), only
means and variances are propagated. Moreover, there
is an additional requirement in the compilation pro-
cess for marked graphs, that of strong decomposabil-
ity, that further increases the dimensionalities of the
cliques. In addition, for graphs that host other distribu-
tions, Monte Carlo methods have to replace exact
methods.

Third, I am not satisfied with how well one can
assess model fit in graphical models. I have a difficult
time assessing model adequacy in a logistic regression
model with more than five covariates! I will not equate
my model-checking capabilities to those of Professor
Spiegelhalter and his colleagues but surely model as-
sessment involving the number of variables typified
in the expert system domain requires a tremendous
amount of skill. In the CHILD network, how can one
assess whether age at presentation is related quadrati-
cally to disease or whether age at presentation is re-
lated quadratically to lung disease but only linearly to
the remaining five diseases? How important is correct
specification of the functional form of the model vari-
ables and how important are “missing links” in pre-
dicting the state of a particular configuration? The
node monitors proposed by Professor Spiegelhalter and
colleagues are admittedly using a prequential approach
but I hope research will extend to model diagnostic
methods using other endpoints.

Graphical models will play an increasingly important
role in the structuring of statistical analyses for com-
plex problems. These models enhance communication
among researchers, thereby facilitating scientific mod-
eling, and provide a unifying approach to computation.
Research into automating algorithms for distributions
other than the multinomial and the Gaussian distribu-
tions should be explored. More examples of graphical
models need to identified and analyzed, and the effects
of model misspecification on prediction quantified. In
closing, I thank the authors for presenting their valu-
able ideas.
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Comment: Graphical Models, Causality

and Intervention

Judea Pearl

I am grateful for the opportunity to respond to these
two excellent papers. Although graphical models are
intuitively compelling for conceptualizing statistical
associations, the scientific community generally views
such models with hesitancy and suspicion. The two
papers before us demonstrate the use of graphs—spe-
cifically, directed acyclic graphs (DAGs)—as a mathe-
matical tool of great versatility and thus promise to
make graphical languages more common in statistical
analysis. In fact, I find my own views in such close
agreement with those of the authors that any attempt
on my part to comment directly on their work would
amount to sheer repetition. Instead, as the editor sug-
gested, I would like to provide a personal perspective
on current and future developments in the areas of
graphical and causal modeling. A complementary ac-
count of the evolution of belief networks is given in
Pearl (1993a).

I will focus on the connection between graphical
models and the notion of causality in statistical analy-
sis. This connection has been treated very cautiously
in the papers before us. In Lauritzen and Spiegelhalter
(1988), the graphs were called “causal networks,” for
which the authors were criticized; they have agreed to
refrain from using the word “causal.” In the current
paper, Spiegelhalter et al. deemphasize the causal inter-
pretation of the arcs in favor of the “irrelevance” inter-
pretation. I think this retreat is regrettable for two
reasons: first, causal associations are the primary
source of judgments about irrelevance, and, second,
rejecting the causal interpretation of arcs prevents us
from using graphical models for making legitimate
predictions about the effect of actions. Such predictions
are indispensable in applications such as treatment
management and policy analysis. I would like to sup-

* plement the discussion with an account of how causal
models and graphical models are related.

It is generally accepted that, because they provide
information about the dynamics of the system under
study, causal models, regardless of how they are dis-
covered or tested, are more useful than associational
models. In other words, whereas the joint distribution

Judea Pearl is Professor of Computer Science and Di-
rector of the Cognitive Systems Laboratory, University
of California Los Angeles, 405 Hilgard Avenue, Los
Angeles, California 90024.

tells us how probable events are and how probabilities
would change with subsequent observations, the causal
model also tells us how these probabilities would
change as a result of external interventions in the
system. For this reason, causal models (or “structural
models” as they are often called) have been the target
of relentless scientific pursuit and, at the same time,
the center of much controversy and speculation. What
I would like to discuss in this commentary is how
complex information about external interventions can
be organized and represented graphically and, con-
versely, how the graphical representation can be used
to facilitate quantitative predictions of the effects of
interventions.

The basic idea goes back to Simon (1977) and is
stated succinctly in his foreword to Glymour et al.
(1987): “The advantage of representing the system by
structural equations that describe the direct causal
mechanisms is that if we obtain some knowledge that
one or more of these mechanisms has been altered,
we can use the remaining equations to predict the
consequences —the new equilibrium.” Here, by “mecha-
nism” Simon means any stable relationship between
two or more variables that remains invariant to exter-
nal influences until it falls directly under such influ-
ences.

This mechanism-based model was adapted in Pearl
and Verma (1991) for defining probabilistic causal theo-
ries; each child-parent family in a DAG I represents a
deterministic function X; = f{pa;, &), where pa; are the
parents of variable X; in T, and &, 0 <i <7, are mutu-
ally independent, arbitrarily distributed random distur-
bances. Characterizing each child-parent relationship
as a deterministic function, instead of the usual condi-
tional probability P(x; | pa), imposes equivalent inde-
pendence constraints on the resulting distributions and
leads to the same recursive decomposition

(1) P(xi,...,x,) =HP(x,-|pa,~)

that appears in Eq. (1) of Spiegelhalter et al.’s article.
However, the functional characterization also specifies
how the resulting distribution would change in re-
sponse to external interventions, since, by convention,
each function is presumed to remain constant unless
specifically altered. This formulation is merely a nonlin-
ear generalization of the usual structural equation mod-
els, where function constancy (or stability) is implicitly
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assumed. Moreover, the nonlinear character of f; per-
mits us to treat changes in the function f; itself as a
variable, F;, by writing -

(2) Xi=fz{(Paini;£i)
where
file, b,¢) = fila,c) whenever b = f;.

Thus, any external intervention F; that alters f; can be
represented graphically as an added parent node of X,
and the effect of such an intervention can be analyzed
by Bayesian conditionalization, that is, by simply setting
this added parent variable to the appropriate value f;.

The simplest type of external intervention is one in
which a single variable, say X, is forced to take on
some fixed value x.. Such intervention, which we call
atomic, amounts to replacing the old functional mecha-
nism X; = f{pa;, &) with a new mechanism X; = x} gov-
erned by some external force F; that sets the value x.
If we imagine that each variable X; potentially could
be subject to the influence of such an external force
F;, then we can view the causal network I' as an efficient
code for predicting the effects of atomic interventions
and of various combinations of such interventions.

The effect of an atomic intervention set(X; = x}) is
encoded by adding to I' a link F; = X; (Figure 1), where
F; is a new variable taking values in {set(x}), idle}, x}
ranges over the domain of X;, and idle represents no
intervention. Thus, the new parent set of X; in the
augmented network is pa’; = pa;U{F}}, and it is related
to X; by the conditional probability

~

P(x; | pa;), ifF;=idle,
0, if F; = set(x})

(8)  P(xi|pai)= and x; # xj,
1, if F; = set(x})

L and x; = x/.

The effect of the intervention set(x! is to transform
the original probability function Plx,...,x,) into a
new function Py (xi, ..., x,), given by

(4) Py(x1,...,%,) =P (x1,...,%, | F; = set(x})),

where P’ is the directed Markov field dictated by the
augmented network I'" = TU{F; = X;} and (3), with an
arbitrary prior distribution on F;. In general, by adding
a hypothetical intervention link F; = X; to each node in
I', we can construct an augmented probability function
Plxi,...,x; F1,...,F,) that contains information
about richer types of interventions. Multiple interven-
tions would be represented by conditioning P’ on a
subset of the F/s (taking values in their respective
set(x})), while the preintervention probability function
Pwould be viewed as the posterior distribution induced
by conditioning each F; in P’ on the value idle.

This representation yields a simple and direct trans-
formation between the preintervention and the postin-
tervention distributions:

Plxy,...,x)
P(x; | pa;)
0, if x; # xi.

’ ifxi = xl{)

(5) Pu(xi,...,x,) =

This transformation reflects the removal of the term
P(x;|pa;) from the product decomposition of (1), since
pa; no longer influence X;. Transformations involving
conjunctive and disjunctive actions can be obtained
by straightforward applications of (4) (Goldszmidt and
Pearl, 1992; Pearl, 1993b; Spirtes, Glymour and Scheines
1993). The transformation exhibits the following prop-
erties:

1. An intervention set(x{) can affect only the descen-
dants of X; in T.
2. For any set S of variables, we have

(6) PS | pa;) = P(S | x},pa:).

In other words, given X; = x! and pa;, it is super-
fluous to find out whether X; = x} was established
by external intervention or not. This can be seen
directly from the augmented network I" (Figure
1), since {X;}Upa; d-separates F; from the rest of
the network, thus legitimizing the conditional
independence S || F;| (X, pa;).

Fi16. 1. Representing external intervention, F;, by an augmented network T’ = T U{F; > Xi}.
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3. A necessary and sufficient condition for an exter-
nal intervention set(X; = x)) to have the same
effect on X; as the passive observation X; = x! is
that X; d-separates pa; from Xj, that is,

(7) Px;(xj) =P(lex,") iff X,-_LLpai IX,'.

Equation (4) explains why randomized experiments
are sufficient for estimating the effect of interventions
even when the causal network is not given: because
the intervening variable F; enters the networks as a
root node (i.e., independent of all other ancestors of X;)
it is equivalent to a treatment-selection policy gov-
erned by a random device.

The immediate implication of (5) is that, given the
structure of the causal network I', one can infer postin-
tervention distributions from preintervention distribu-
tions; hence, we can reliably estimate the effects of
interventions from passive (i.e., nonexperimental) ob-
servations. Of course, (5) does not imply that we can
always substitute observational studies for experimen-
tal studies, as this would require an estimation of
P(x; | pa;). The mere identification of pa; (i.e., the direct
causal factors of X;) requires substantive causal knowl-
edge of the domain which is often unavailable. More-
over, even when we have sufficient substantive
knowledge to structure I, some members of pa; may
be unobservable, or latent. Fortunately, there are con-
ditions for which an unbiased estimate of P,/(x; can
be obtained even when the pa; variables are latent and,
moreover, a simple graphical criterion can tell us when
these conditions are satisfied.

Assume we are given a causal network I' together
with nonexperimental data on a subset X, of observed
variables in ' and we wish to estimate what effect the
intervention set(X; = x}) would have on some response
variable X;. In other words, we seek to estimate P, {x;)
from a sample estimate of P(X,). Applying (4), we can
write

P(x;) = P'(x; | Fi = set(x}))

23

®) =32 P'(x;| S, X; = «f, F; = set(x}))
s

X P'(S | F; = set(x})),
wherel S is any set of variables. Clearly, if S satisfies
(9) S 1l Fiand X; Il F;| (X:,S),
then (8) can be reduced to

Py(x;) = 21 P(x;|S,xi) P(S)

- (1) = S Pl |
= Es[P(x;] 8, i) ].

Thus, if we find a set S < X, of observables satisfying

(9), we can estimate P.;(x;) by taking the expectation
(over S) of Plx;| S, x}), and the latter can easily be

estimated from nonexperimental data. It is also easy
to verify that (9) is satisfied by any set S that meets
the following back-door criterion:

1. No node in S is a descendant of X;, and
2. S d-separates X; from X; along every path con-
taining an arrow into X,.

The name “back-door” echos condition 2, which re-
quires that only indirect paths from X; to X; be d-sepa-
rated; these paths can be viewed as entering X; through
the back door.

In Figure 2, for example, the sets S; = {X;, X4} and
S; = {X4, X5} would qualify under the back-door crite-
rion, but S; = {X,} would not because X, does not
d-separate X; from X; along the path (X, X3, X1, Xy,
X3, X5, X;). Thus, we have obtained a simple graphical
criterion for finding a set of observables for estimating
(by conditioning) the effect of interventions from purely
nonexperimental data.

It is interesting that the conditions formulated in
(9) are equivalent to those known as strongly ignorable
treatment assignment (SITA) conditions in Rubin’s
model for causal effect (Pearl, 1993c; Rosenbaum and
Rubin, 1983). [The graphical translation of Rubin’s
model invokes the mechanism X; = X; < r, where X;
represents the treatment-assignment, X; the observed
response, and r represents the causal-effect variable.
Indeed, following the counterfactual interpretation of
r, X; is a deterministic function of X; and r, and r plays
the role of f; in (2) (Pearl, 1993¢)]. Reducing the SITA
conditions to the graphical back-door criterion facili-
tates the search for an optimal conditioning set S
and significantly simplifies the judgments required for
ratifying the validity of such conditions in practical
situations.

Equation (4) was derived under the assumption that
the preintervention probability P is given by the prod-
uct of (1), which represents a joint distribution prior
to making any observations. To predict the effect of
action F; after observing C, we must also invoke as-
sumptions about persistence, so as to distinguish prop-

X1

1

Xj

Fi1c. 2. A DAG representing the back-door criterion, adjusting
for variables {Xs, X4} (or {X4, X;}) yields an unbiased estimate of

Plx; | setix)).
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erties that will terminate as a result of F; from those
that will persist despite of acting F;. Such a model of
persistence was invoked in (Pearl, 1993b); there, it was
assumed that only those properties should persist that
are not under any causal influence to terminate. This
assumption yields formulas for the effect of conditional
interventions (conditioned on the observation C) which,
again, given I', can be estimated from nonexperimental
data.

A more ambitious task has been explored by Spirtes,
Glymour and Scheines, (1993)—estimation of the effect
of intervention when the structure of I is not available
and must also be inferred from the data. Recent devel-
opments in graphical models (Pearl and Verma, 1991;
Spirtes, Glymour and Scheines, 1993) have produced
methods that, under certain conditions, permit us to
infer plausible causal structures from nonexperimental
data, albeit with a weaker set of guarantees than those
obtained through controlled randomized experiments.
These guarantees fall into two categories: minimality
and stability (Pearl and Verma, 1991). Minimality guar-
antees that any other structure compatible with the
data is necessarily more redundant, and hence less
trustworthy, than the one(s) inferred. Stability ensures

Comment

Michael E. Sobel

It is a pleasure to discuss these excellent papers.
Spiegelhalter, Dawid, Lauritzen and Cowell nicely put
together a number of themes, demonstrating, in a Bayes-
ian context, the utility of graphical modelling in the
construction of probabilistic expert systems. The au-
thors show how graphs can be used heuristically to
solicit expert opinion, and in Section 6, how the theory
of conditional independence graphs can be used to
make tractable (while maintaining reasonable substan-
tive assumptions) the calculation of probabilistic fea-
tures of the system (monitors). For example, the authors
want to apply to the directed independence graph of
their Figure 2 the decomposability theorem for undi-
rected conditional independence graphs, which permits
a full factorization of the probability distribution. To
do so, they associate the graph of Figure 2 with its
moral graph (an undirected conditional independence

Michael E. Sobel is Professor of Sociology and of Ap-
plied Mathematics, Department of Sociology, Univer
sity of Arizona, Tucson, Arizona 85721.

that any alternative structure compatible with the data
must be less stable than the one(s) inferred; namely,
slight fluctuations in the distributions of the distur-
bances ¢; (2) will render that structure no longer com-
patible with the data.

When the structure of I' is to be inferred under
these guarantees, the formulas governing the effects
of interventions and the conditions required for esti-
mating these effects become rather complex (Spirtes,
Glymour and Scheines, 1993). Alternatively, one can
produce bounds on the effect of interventions by taking
representative samples of inferred structures and esti-
mating P(x;) according to (10) for each such sample.

In summary, I hope my comments convince the
reader that DAGs can be used not only for specifying
assumptions of conditional independence but also as a
formal language for organizing claims about external
interventions and their interactions. I hope to have
demonstrated as well that DAGs can serve as an ana-
lytical tool for predicting, from nonexperimental data,
the effect of actions (given substantive causal knowl-
edge), for specifying and testing conditions under
which randomized experiments are not necessary and
for aiding experimental design and model selection.

graph) and use the fact that the separation properties
of the moral graph apply to the directed independence
graph. They then embed the moral graph into a triangu-
lated graph, enabling use of the desired theorem; fur-
ther simplications come from organizing the cliques of
the triangulated graph into junction trees.

. My vantage point is that of a social statistician: as
such, there is more for me to say about the paper by
Cox and Wermuth. In particular, I want to expand on
and further tie several themes in this paper to research
in the social and behavioral sciences. Thus, discussion
focuses primarily on this paper; I shall often freely
borrow notation from there.

TYPES OF INDEPENDENCE GRAPHS

Cox and Wermuth nicely characterize various types
of dependencies among random variables. Prior work
has focused attention on two types of independence
graphs. If no ordering is imposed on the variables,
undirected graphs are used; here, the absence of an
edge between two vertices denotes conditional indepen-
dence of the variables associated with the vertices,
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given all the remaining variables. In a normal theory
context, this corresponds to a 0 in the concentration
matrix of the variables; thus, Cox and Wermuth call
this a concentration graph. If some variables are taken
as ordered with respect to others, for example, a set
of variables viewed as independent is temporally prior
to a set viewed as dependent, a different type of theory
is useful. For this case, vertices can be placed within
blocks and blocks arrayed from left to right; there is
no ordering within blocks, but given a vertex and its
associated random variable, vertices in blocks to the
right denote prior (temporally or otherwise) random
variables. By virtue of this ordering, we are not typi-
cally interested in the distribution of a variable X in
a block, conditioning on all other variables, but in the
distribution of X, conditioning on variables in blocks
to the right (prior variables), or conditioning on prior
variables and other variables in the same block. The
latter case has received a great deal of attention. Here,
edges between variables within a block are undirected,
and edges between variables in different blocks, de-
noted by arrows pointing to the left, are directed. The
absence of an arrow (or undirected edge if I = m below)
from vertex i in block I to vertex j in block m denotes
conditional independence of X; and Xj, conditioning on
all remaining variables in blocks 1, ... m; one might
think of the conditioning set as containing prior and
“present” variables. When X; is viewed as dependent,
it’s relationship to X; is measured by the partial regres-
sion coefficient f.;.;.zr, Where R denotes all remaining
vertices in blocks 1, ..., m; the regression is called a
block regression.

Cox and Wermuth also take up the case where the
conditioning set consists of prior variables, using dashed
edges in their graphs to distinguish this case from that
above (where edges are full). With the same block
structure and variables as above, the absence of a dashed
arrow {(dashed undirected edge if [ = m) from { to j
denotes independence of X; and Xj, conditional on all
remaining variables in blocks 1, ..., m — 1;ifl = m,
the X; — X; relationship can be measured by the par-
tial correlation, given the variables in blocks 1, ...,
m — 1; otherwise, with X; dependent, this relation-
'ship is measured by the partial regression coefficient
Brixj-xrs, Where R* denotes all remaining vertices in
blocks 1,...,m — 1; the regression is called a multivar-
iate regression.

The authors use the three types of independence
graphs to illustrate the large number of ways in which
the dependence structure of a set of random variables
might be characterized. For. example, their Figure 1
shows six different probabilistically equivalent ways
of specifying a saturated model for just three variables.
Subsequently, they exposit eight different types of
dependence structures for four variables, using empiri-
cal examples to illustrate many of these. In each exam-

ple, both substantive considerations and statistical
evidence are used to select a model, but the data are
not allowed to override substantive knowledge and/or
interests. Example 2 features this nicely; the correla-
tions and concentrations in Table 2 initially suggest a
different model than that ultimately selected.

I look forward to seeing further developments in the
theory of dashed independence graphs employed by
Cox and Wermuth. This important case, apparently
neglected in earlier work, is relevant to decision makers
and planners, whose predictions depend on past infor-
mation, not also on information contemporaneous with
the time to which the prediction refers, and it is at
least as relevant to social and behavioral scientists as
the cases above. For example, multiple versions of
the response are sometimes recorded in experiments
(Winer, 1971). Here, a researcher typically wants to
know the relationship between the response and the
experimental variable, perhaps conditioning on a covar-
iate vector, but certainly not also conditioning on the
remaining versions of the response. Alternatively, in
many studies, both experimental and nonexperimental,
one measures a set of responses that are theoretically
connected to a set of prior variables, but the responses
are not so connected. For example, if interest centers
on the educational attainments of siblings (or husbands
and wives), one wants to know the partial regression
coefficients relating the responses to family background
variables. One might also want to know the relation-
ship between the educational attainments, as measured
by the partial correlation coefficient, conditioning on
background variables. Again, the partial regression
coefficients that also condition on the educational at-
tainments of other siblings (or other spouse) are typi-
cally not of interest.

SIMULTANEOUS EQUATION MODELS

Cox and Wermuth have reservations about the use
of simultaneous equation models featuring (see their
Figure 4) coefficients y,, and y,. between “jointly deter-
mined” variables X and Y. For the model depicted in
Figure 4, the authors point out that missing edges in
the path diagram (graphical representation of the
model) do not typically correspond to conditional inde-
pendencies, and they argue that the interpretation of
model parameters is problematic. (Note that their re-
marks would also hold if only one of the foregoing
coefficients was nonzero and the errors were corre-
lated.) They conclude that meaningful interpretations
of the parameters of simultaneous equation models,
when these exist, have to be developed on a case-by-
case basis, a conclusion that challenges the conven-
tional wisdom (in the social and behavioral sciences)
on how such parameters are to be interpreted. Further
examination of the conventional wisdom therefore
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seems worthwhile: the following look, while very brief,
adds weight to Cox and Wermuth’s conclusion.

In sociology and psychology (and also in some econo-
metric work and papers on graphical models), it is not
unusual to see the argument that y., and y,. capture
reciprocal causation. Becaue the concept of causation
is asymmetrical, this does not make sense.

A more standard interpretation in economics is that
structural parameters capture fundamental aspects of
the behavior of economic agents. These parameters are
preferred to the reduced form parameters; a single
change in a structural parameter can change many re-
duced form parameters. Some economists, however, do
not find this view compelling. For further criticism, as
well as review of relevant literature, see Sobel (1994).

Another interpretation, due essentially to Strotz and
Wold (1960), used in econometrics (e.g., Fisher, 1970)
and psychometrics (Sobel, 1990), is that the underlying
model is recursive:

Yt = ytu + yyxX,_1 + 8y,

(1)
X, = W+ pi, Y1 + &2

This is a linear dynamical system in discrete time with
fixed coefficients; under suitable conditions Y+, and
X.+r converge, as r gets large, to values Y and X
respectively. Under this interpretation, both y,. and
¥.y are regression coefficients in (1). However, note the
errors are constant over time, which seems substan-
tively unreasonable.

The foregoing supports Cox and Wermuth's view
that despite frequent use, parameters of simultaneous
equation models tend to elude meaningful interpreta-
tion. To balance the discussion a bit, without denying
the general point, I ¢an think of occasional examples
where one would clearly want to use such a model to
get the right interpretation. Let

Y =y V + ruX* + &,
X= ywa+ )’ny* + &,

with (V, W, X* Y% 1l (§,,&), and |l denotes inde-
pendence. To fix ideas, suppose that (V, W, X* Y*)
. are temporally prior to (X, Y), and X* and Y* are
anticipated (and unfortunately unobserved) values of
X and Y, respectively. Thus, the researcher considers:

Y=yp,V+y.X+e,
X =y..W+ )’ny+ Ex,

(2)

3)

where &, = & — yz0z, 6: = X — X*, &x = & — Vay0y,
dy = Y — Y* Suppose that (V, W, X* Y* 1l (0, 6y).
Under the setup above, X is correlated with &,, Y is
correlated with &, and block regression gives incon-
sistent estimates for the parameters of (2); an excep-
tion is the case where anticipations are perfect, that
is, X = X* Y = Y*. Consistent estimates of the

regression coefficients can be obtained by using W and
V as instruments in the first and second equations of
(3), respectively. In this example, note that simultane-
ity arises from measurement error and simultaneous
equation methods are needed to estimate the parame-
ters of the relevant conditional expectation.

Given the problems above, it is useful to recall that
a simultaneous equation model specifies a conditional
distribution f(xs|x:); from this it is evident that the
dependencies can be characterized either by a multi-
variate regression (called the reduced form in economet-
rics) or, if an ordering is imposed on the dependent
variables, by means of a sequence of univariate recur-
sive regressions (called the recursive form in economet-
rics). Following Wold, Cox and Wermuth emphasize
the value of this recursive form.

GRAPHICAL MODELS AND SOCIAL SCIENCE
RESEARCH

Graphical models could be useful in the social sci-
ences, but I am not sure social scientists will pay them
much attention; certainly the review article by Kiiveri
and Speed (1982) in Sociological Methodology went
unnoticed. There are probably several reasons for this.
First, social scientists do not typically think in terms
of probabilistic dependence and independence, condi-
tional or otherwise. In statistical modeling, the social
scientist’s goal is to test hypotheses and arrive at
quantitative estimates of relationships; if a model in
use permits an interpretation in terms of the foregoing
probabilistic concepts, for example, the univariate re-
cursive regressions, that is well and nice, but second-
ary. In many cases, comparisons across groups are
sought; here one typically wants to compare estimates
of various quantities, and knowledge that within group
conditional independence structures are identical (or
not) across groups does not fully answer the primary
questions. Second, following the lead of econometri-
cians, quantitative social scientists argue that they are
modeling processes and testing theories, as opposed
to exploring data structures, and that tools appropriate
for the latter are inappropriate for the former. In that
vein, while Cox and Wermuth demonstrate, via their
examples, the value of using graphical models espe-
cially in exploratory work, quantitative social scien-
tists, who actually do a fair amount of exploratory
work before hitting upon the desired confirmatory
model, often do not acknowledge this exploratory pro-
cess.

Having given a few reasons for doubting that social
scientists will pay much attention to graphical model-
ing, I nevertheless give several examples of how such
models can be useful. First, in many areas of social
science, not that much is known, and it is often useful
to start with an exploratory analysis. Researchers who
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take advantage of graphical models could be led to
systematically explore dependence structures that
they would not otherwise have considered. This may
lead to a model which attempts to pin down the rela-
tionships of interest more precisely. Consideration of
these models could also be useful in so-called confirma-
tory work; the following examination of a typical mod-
eling exercise in covariance structure analysis should
illustrate the point. A researcher begins with a model
of interest. (The case where a nested sequence of mod-
els of interest is entertained at the outset is similar
and thus will not be exposited separately.) One aim of
the analysis is to select a preferred model. Perhaps the
initial model fits the data adequately, using conven-
tional statistical criteria (e.g., the likelihood ratio). In
this case, the analysis is terminated. But now suppose,
as often happens, that this model does not fit the data.
In that event, a researcher who nevertheless prefers
this initial model may shop around for a goodness-of-fit
index (there are many) that suggests the fit is really
good enough after all. If such an index cannot be found
or if the researcher did not look for one, the initial
model is rejected, and typically a search for a better
fitting model begins. There are many ways to conduct
such a search, but typically modification indices, which
tell the user the constrained parameters in the analysis
to free up, are used. After a sequence of such modifica-
tions, an unsaturated model that fits the data by con-
ventional criteria is found, or one of the many possible
versions of the saturated model is obtained. Now of
course this search procedure is nothing but exploratory
analysis, and when used poorly, it leads to a model
that is at best not to be taken seriously. Instead of
looking around for goodness-of-fit indices and modifi-
cation indices (or at least in addition to), a natural
alternative at this stage is to ask whether it is reason-
able to widen the class of searches, and if so, whether
it is reasonable to use graphical models to see if alterna-
tive types of structures, perhaps not initially contem-
plated, may account for the data. If the answer is yes,
with intelligent use, we might find out something new;
of course, if used like some of the indices above, this
will not be the case.

CAUSATION AND CAUSAL INFERENCE

I use the facts that Cox and Wermuth disassociate
their work from causal concepts and Spiegelhalter et
al. use the term “direct influence” to refer to intuitive
judgements of relevance as a license to close with some
remarks on causation and irrélevance; these remarks
are more general in nature, not particularly addressed
to either paper. _

There is a large philosophical literature on causation,
and numerous views have been espoused (including the
view that probabilistic relations have nothing to do

with causation). Thus, the merits of an inference about
causation (hereafter causal inferences) cannot be evalu-
ated unless the concept of causation under consider-
ation has been made clear. Undaunted by this problem,
many researchers in artificial intelligence, decision sci-
ence, philosophy and statistics who write on graphical
models often simply equate the absence (presence) of
a directed edge or a path in an independence graph
with the absence (presence) of causation; in many in-
stances they neither formally define causation by condi-
tional independence nor attempt to say what it is.
Their counterparts in the social and behavioral sciences
utilize path diagrams in a similar way, equating the
presence or absence of parameters or functions of these
with the presence or absence of causation.

Although social and behavioral scientists do not typ-
ically say what causation is, at least among users
of structural equation models there appears to be an
implicit commitment to a manipulative account of the
causal relation, evidenced in the interpretation of
model parameters as unit (or average) effects. For ex-
ample, in the context of a univariate regression,
Byx-xp+ is interpreted as the amount Y would increase
for any unit (or on average) if the value of X, say x,
were increased to x + 1, and all remaining variables
(in the conditioning set) were “held” constant. Of
course, these variables are not actually held constant,
but merely conditioned upon, a point I shall ignore
here [but see Sobel (1990)]. If this value is 0, one might
say that X does not cause Y. In the normal theory
context, this is equivalent to conditional independence;
this ties the discussion to treatments in the literature
on graphical models which use conditional indepen-
dence and dependence relations to make causal infer-
ences, arguing that the inferences so obtained will
sustain a manipulative account.

The foregoing types of interpretations are very strong,
and one wonders when these are warranted. To that end,
such interpretations hinge on comparing, for any unit,
its values on the dependent variable(s) as the unit takes

‘on all values of the independent variable(s). The aver-

ages when all units in the population take on the same
value can then be compared with one another, by look-
ing, for example, at average differences. Readers famil-
iar with Rubin’s (1974, 1977, 1978, 1980) work on causal
inference or the review by Holland (1986) will realize
that I have just defined an average effect. Of course,
in practice a unit can be administered only one value
of the causal variable. Nevertheless, when treatment
assignment is random, or random conditional on a
vector of covariates, valid causal inferences can be
obtained by calculating the usual sample quantities
(valid in the sense that the estimator is unbiased and/
or consistent for the desired population quantities).
In Sobel (1992), I introduce the concept of causation
in distribution and use the ideas in Rubin’s model to
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examine the issue of spurious causation. Since spurious
causation is typically defined as a case in which certain
marginal dependencies vanish upon conditjoning, the
results are relevant to literature in graphical modeling
that equates the absence of causation with conditional
independence. The idea behind causation in distribu-
tion is to examine the distribution of the response Y,
when every element of the population has the same
value x on the causal vector (X) and to compare the
distributions as x varies. If the distributions do not
change as x varies, one says X does not cause Y in
distribution and otherwise one says X causes Y in
distribution. For a conditioning set Xgs, I show (1)
X 1l Y | Xg+ does not imply X does not cause Y in
distribution, and (2) X does not cause Y in distribution,
does not imply X 1| Y | Xg.. For example, if Xz is
prior to variable X, and X prior to variable Y, with no
variables intervening between X and Y, the results
state that X may (or may not) “directly influence” Y
(using the sense of directly influence in the graphical
modelling literature), but X may not (may) cause Y in
distribution. Note also there is no path connecting X
to Y in this example. This should suggest that causal
inferences based on the usual conditional independence
relations do not generally sustain a manipulative ac-
count of the causal relation. Sobel (1992) also gives

Comment

Joe Whittaker

It gave me great pleasure to read these articles. Here
we have two papers on the application of conditional
independence: one to the specification of a graphical
model for assessing association in multivariate re-
sponses and the other to message passing on a directed
graph, in a paper which expertly summarises the proba-
bilistic view of dealing with uncertainty in expert sys-
tems. Right at the outset, let me state my own belief
that it is not so much the graphic display but the
notion of conditional dependence and independence and
the idea of a ternary relationship that X, affects (or is
irrelevant to) X, in the presence of X3, which consti-
tutes the fundamental contribution of graphical models
to statistical analysis.

I particularly want to focus on the Cox and Wermuth
(CW) paper, which I believe raises some unresolved

Joe Whittaker is Senior Lecturer, Mathematics Depart-
ment, Lancaster University, LAl 4YF, United King-
dom.

necessary and sufficient conditions for equivalence of
conditional independence and causation in distribution.

The foregoing suggests more cautious use of the
term “causation” in future work. Not surprisingly, I
do not like the terms “causal network” and “influence
diagrams”; is not influence just another synonym for
causation? The terms employed by Spiegelhalter et
al. (directed graphical model, belief networks) seem
preferable. Finally, I want to briefly take up the term
“irrelevance,” sometimes defined via structures that
satisfy the axioms of generalized conditional indepen-
dence (Smith, 1988). (Smith uses the term “uninforma-
tive” and is always careful to mention the conditioning
set.) From my view, scientists often allow the connota-
tive aspects of words to creep into their use of technical
terms, and this can be detrimental. Thus, one might
want to choose terms whose connotative aspects are
in accord, as much as possible, with the technical defi-
nition. In that vein, relevance seems to encompass
many things, including causation; for example, the
phrase “causally irrelevant” describes one form of irrele-
vance. Even leaving aside causation, adding informa-
tion to the conditioning set of marginalizing over this
set can make “irrelevant” variables become “relevant”;
should these variables have been called irrelevant to
begin with?

issues, and discuss three topics in more detail: the
value of a graphical representation, the distinction
between multivariate and “block” regression and the
role of the Schur complement as a partial variance.

VALUE OF A GRAPHICAL REPRESENTATION

Few practising statisticians can be unaware of the
immediate and powerful impact of visual display in
conveying the results of a statistical analysis to a
consulting client. A tremendous selling point of graphi-
cal models is the graph: a fact which is well known to
statistical researchers in related areas such as path
analysis, causal modelling, factor analysis and struc-
tural equation modelling. The same lesson can be learnt
from the recently expanding field of neural networks,
where statisticians [for instance, Ripley (1993) and
Cheng and Titterington (1993)] are discovering that
neuroscientists and computer scientists have been busy
proposing neural network formulations of nonlinear
statistical classification methods. While perhaps not
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exactly original they are not reinventing the wheel for
the neural net exposition provides a deeper understand-
ing contributing greatly to the upsurge in popularity
of these methods.

There is therefore some pressure to embellish the
conditional independence (CI) graph with additional
information, on top of the essential iconographics for
nodes, edges and directed edges; it is easy to under-
stand the motivation of the authors in introducing
further types of edges, such as the dashed edge. For
instance, it is often suggested that the thickness of
the edge should reflect the strength of the dependence
and I agree that

immediately conveys the information that the (2,3)
dependence is stronger than the (1,2) dependence, thus
helping the data analyst to make sense of possibly
complex interactions.

However, this is not a suggestion which I would
support as it obscures the overriding defining feature
of a conditional independence graph: the edge (1,3) is
missing because X3 || X;|X,. It is the absence of an
edge which generates the graph. Admittedly this is a
subtle point and choosing to visually represent a defin-
ing feature by a blank space is perhaps unfortunate.

DISTINCTION BETWEEN MULTIVARIATE
REGRESSION AND “BLOCK” REGRESSION

A particular contribution of the CW paper is to
highlight the difference between multivariate regres-
sion and so-called “block” regression and to demon-
strate that graphical modellers have some difficulty in
portraying the former. The reason, of course, is that
graphical modelling interests itself in the analysis of
conditional relationships while multivariate regression
focuses on marginal relationships.

For example, an idea of the distinction can be gained
by asking what parameters have to be zero for an edge
in a CI graph to vanish. In the multivariate regression
of (Y1, Y,) on X, which essentially consists of comput-
ing separate univariate regressions of Y; on X and Y,
on X, the regression coefficient fy,x = 0 eliminates the
edge connecting Y, with X in CI graph (ai). Similarly
Brox = 0 eliminates the edge in (aii). Two separate CI
graphs are required to represent these concepts.

L@
(®

=

(aii)

The “block” regression corresponds to CI graph (b).
The edge connecting Y; with X in CI graph (b) vanishes
if the partial regression coefficient fy,xyy, = 0. The
techniques may give the same numerical answers in
certain special cases, for instance if Y; || Y5|X or if
Y. 1l X, but in general they do not. The same issue
of whether to parameterise in the conditional or in the
marginal distribution arises in the analysis of discrete
data, for example, see the papers of Liang, Zeger and
Qaqish (1992), Laird and Ware (1982). There is no
universal panacea.

The authors attempt to combine the graphs (ai, aii, b)
and extract the best from both worlds by defining the
dashed edges in the graph (c)

(b)

(c)

by the interpretation that if such an edge is missing
it should be concluded that Y: [l X rather than
Y, 1l X|Y..

At this point I find I have to take up the cudgels
and put the “purist” view that such an extension leads

to difficulties and ambiguities and is even perhaps

unnecessary. I make four points.
1. Liability to misinterpretation: Consider for exam-

ple the graph

©

(d)
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defined by missing dashed edges. To me, the only
possible visual interpretation of graph (d) is that of
complete (mutual) independence of X;, X; and Xs.
But of course, there are well-known counter examples
to the assertion that {X; || X, X: |l X5 X, 1l X3}
implies the mutual independence of X;, X5, X;. Only
if (X1, X, X;) are jointly normal could such an assertion
hold, which restriction would violate the attractive
feature of graphical models that it unifies the theories
of discrete and continuous variable dependence.

2. Separation: Key to the construction of CI graphs
is the focus on the joint distribution and the mapping
of the ternary conditional independence relation X,
Al X,|X. to the, similarly ternary, separation prop-
erty of subsets in a graph “a is separated by b from
¢.” Technically this concept is defined by: all paths in
the graph starting from a vertex in e and finishing at
a vertex in b have a nonempty intersection with c.

Marginal independence is a binary relationship be-
tween random variables and so cannot easily map onto
the separation property of nodes in a graph.

8. Coherence: To obtain a coherent picture CI graphs
focus on a single joint distribution, fiss. . say, and
analyse it in terms of conditional distributions of the
form fatrest- Because fig., = fkll...k—l fk—lu...k—z “e f2|1f1
this single joint distribution can be built up from a
nested sequence of marginal distributions. For exam-
ple, the missing (1,3) edge in the directed graph of a
Markov chain

[oNcEoYo

signifies the X3 {| X;|X.. However the graph (e) still
refers to a single joint distribution of four random
variables.

Unfortunately, a single joint distribution is not gen-
erally specified by all pairwise marginal distributions,
and so a graph built from these may easily indicate
ambiguities as in the mutual independence example
above.

4. Latent variable embedding: It may be unnecessary
to invent new types of graphs. For example, consider
an analysis of the undirected dashed edge chain graph

deﬁned by {Xl _U_ X3, X1 _U_ X4,X2 _U_X4} and ask if
information on X; is needed to predict X; when X, is
known.

Now the graph (f) is a consequence of the directed

CI graph (g)

QEONONO
., @ ® ®

in which Z;, Z, and Z; are mutually independent and
the X’s are conditionally independent given the Z’s
(X1 1l X, as they have no Z's in common). The CI
graph (f) is a “consequence” in the sense that the mar-
ginal distribution of (X1, Xj, X35, X4) is obtained from
that of (Xl, Xz, X3, X4, Zl, Zg, Z3) by integrating out
(Z1, Zs, Z3) and has the requisite properties of marginal
independences indicated by missing dashed lines.

The moralisation procedure of Lauritzen and Speigel-
halter (1988) indicates that (g) is embedded in the
undirected CI graph (h) for the joint distribution of
(X1, X, X3, X4, Z1, Z2, Z3).

Since X, does not separate X; from X3 in (h), the
answer is that X; cannot be discounted if X, is ob-
served. However, ironically if X, is not observed, the
graph reflecting the distribution (X1, X3, X4, Z1, Zs, Zs)
is (i)

and clearly, X; is uninformative about Xj.
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This device of embedding the dashed graph into a
CI graph with “latent variables” certainly solves some
problems. It also indicates why latent variables in
highly structured graphs allow marginal empirical de-
pendences to determine the statistical analysis. A
prime example of this is the graphical analysis of the
state space model underlying the Kalman filter.

ROLE OF THE PARTIAL VARIANCE
(SCHUR COMPLEMENT)

The technical conditions for conditional indepen-
dence in multivariate normal distributions, for in-
stance, that X; || X,|X; is characterised by a zero
in the inverse variance matrix of (X, X,, X3), appear
somewhat bizarre at a first acquaintance. A good un-
derstanding requires an interpretation of the elements
of this inverse variance matrix, and I found it useful
in writing Chapter 5 of my book (Whittaker, 1990) to
use the concept of the partial variance as the vehicle
for this explanation. For instance, slightly extending
the notation of the CW paper, when a vector X with
variance X is partitioned into (X,, X;) the block in the
inverse variance X~! corresponding to X, is ¥* =
(£ Y. (and not (X.)7Y), the essential content of the
inverse variance lemma is that

(1) ST = var(X,|X,)!.

Here var(X,|X,) is the partial or residual variance of
X, having regressed out X,, and defined by var(X, —
X.(X,) where X,(X,) is the fitted (multivariate) regres-
sion of X, on X,. These entities can be represented in
the Pythagorean vector diagram

Xa _Xa(Xb) X Xa

X (Xp) X

The notion of a partial variance permits the diagonal

Rejoinder
D. R. Cox and Nanny Wermuth

We are grateful to all the contributors for their
thoughtful and constructive contributions. There is
rather little with which we disagree so that our reply
is brief. '

While to some extent the use of the word causal is
a matter of convention, we much prefer to restrict the

elements of the inverse variance matrix to be inter-
preted as functions of the multiple correlation coeffi-
cient: if a = {i} is 1-dimensional, so that b denotes the
p — 1 remaining variables, then (1) becomes

Zﬁ = var(XiIXmst)_l = V&I‘(Xi)_ll (I_RZ(I))

where R(i) is the multiple correlation coefficient of X;
with the remaining variables. In consequence, the larger
% in relation to var(X;) the more predictable is X;
from the other variables. By choosing a = {i j} to be
2-dimensional, formula (1) enables an explicit expres-
sion for the off-diagonal elements of the inverse
variance in terms of the partial correlation of X; and
X; given the remaining variables. In point of fact
T [ Jxivi = —cort (X;, Xi| Xrest).

The inverse variance lemma, which is by no means
new, is really just statistical interpretation of invert-
ing a partitioned matrix. In fact var(X,|X;) can be com-
puted from var(X,) — cov(X,, X;)var(X,) lcov(X,, X,)
which in the mathematical literature is well known as
the Schur complement of the matrix

cov(Xs, X))

var(X,)
var(X,)

cov(Xe, Xb)}

The determinant represents the squared length (vol-
ume) of the residual vector in the Pythagorean vector
diagram above. This quantity is denoted by X, in
CW as in many books on the multivariate normal dis-
tribution, but such a notation obscures various elemen-
tary properties such as var(4X,|X,) = Avar(X,|X,)A’
where A is a fixed linear transform, and if B is inverti-
ble, var(X,|BX,) = var(X.|X;) expressing the invari-
ance of the partial variance to a change of units in the
regressor variables.

Various forms of the lemma exist and a frequent
application is to Bayesian analysis for instance, in the
analysis of linear models by Lindley and Smith (1972),
in standard treatments of factor analysis, and in Kal-
man filtering.

word to situations in which we have knowledge of some
underlying process. We reassure Dempster that we are
deeply concerned with the elucidation of processes that
might have generated the data, but are cautious about
what conclusions can be drawn from single investiga-
tions or even repeated investigations, especially but
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not only when these are observational. We agree that
the graphs suggested by Glymour and Spirtes could
possibly be chosen as another description of our nonde-
composable models but we do not regard them as
indicating useful potential processes to generate the
data, the point of our distinction.

In a recent paper, Stone (1993) elucidates require-
ments for particular causal interpretations. He also
examines critically strongly ignorable treatment alloca-
tion. Pearl in his contribution gives an important
graphical interpretation exactly of this assumption,
this facilitating the judgement of the effects of inter-
ventions in a hypothesized causal process.

Several contributors mention the role of latent vari-
ables, including as a special case the occurrence of
measuring errors. We agree that their use, preferably
sparingly, especially in elucidating nondecomposable
models, needs further study. For instance, the tetrad
conditions studied by Spirtes, Glymour and Scheines
(1993) for linear relations become relevant as well for
binary variables having a quadratic exponential distri-
bution. This distribution has some of the properties of
the multivariate normal distribution and provides ex-
act or approximate answers to Hill's question about
graphical theory for binary distributions and to Whit-
taker’s comments on complete independence.

Dempster favours shrinking estimates toward zero
as opposed to setting parameters exactly to zero. We
agree when empirical prediction is the objective, but
not where essentially qualitative understanding via
simple representations is involved, and the latter is
our main concern.

The issue, raised by Whittaker, of labelling the edges
of a graph can be solved in various ways if a single
degree of freedom is attached to each edge (by partial
correlation coefficients or by standardized regression
coefficients, for instance). The introduction of graphs
with dashed edges has, however, a different objective,
because it leads to structures of independence different

from those discussed by Whittaker, thus enriching the

class of graphical chain models, as pointed out by
Hill. Whittaker’s graphs (ai) and (aii) do not represent
. the multivariate regression of our Figure 1lc because
the essential association between the two responses is
omitted.

Rejoinder
David J. Spiegelhalter, A. Philip Dawid, Steffen
We are grateful to the discussants for their thoughtful

comments: since our paper is already quite long enough
we shall try to restrict our responses. We shall first deal

Whittaker points out the relation of the Schur com-
plement to partial correlations and inverse covariance
matrices. An early treatment of this in the statistical
literature is by Cramér (1946, subsections 22.7, 23.4 and
23.5). The connection between partial correlation and
canonical parameters in the exponential family has
opened the road to defining analogous independence
structures for discrete variables and for mixed discrete
and continuous variables, known now as block regres-
sion (full edge) chain models.

In general distributional assumptions are necessary,
in addition to the independence graph, for a full speci-
fication of a statistical model. Indeed some research
hypotheses may not be possible for a particular joint
distribution of specified form. For example, X |
Y|A cannot hold without additional independences if
the joint distribution is given by the linear logistic
regression of the binary variable A on the bivariate
normal variable (X, Y). Similarly if (X, Y) are condition-
ally bivariate normal given the discrete variable A,
then marginal independence of X and Y is possible only
with additional independences. See Cox and Wermuth
(1992b) for further details.

We were glad to see that Sobel regards our introduc-
tion of multivariate regression (dashed edge) chain
graphs as a step toward more traditional analyses in
the social sciences. In fact, it was one of our purposes
to provide simple examples which help one to recog-
nize similarities and distinctions between different ap-
proaches, the latter being explicitly appreciated by
both Sobel and Dempster.

Because of the particular focus of our paper, we have
put little emphasis on such issues as description of
sample selection, checking data quality, testing model
adequacy, examining the need of data transformation
and comparison of the fits of different kinds of models.
All of these are a normal if often difficult part of ap-
plied statistical work. From our present perspective,
whether the formal aspects to the analysis are in fre-
quentist or Bayesian terms is a secondary issue.

A special topic for further work concerns the role
of graphs with both kinds of edge, for example, in
representing the regression for multivariate binary
data studied by Zhao and Prentice {1990) and by Fitz-
maurice and Laird (1993).

L. Lauritzen and Robert G. Cowell

with representations of causality, followed by some
technical points on zero probabilities. Automatic model
construction will then be considered, and whether a



