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Chapter 6

SOME RECENT WORK ON METHODS FOR THE
ANALYSIS OF MULTIVARIATE OBSERVATIONAL
DATA IN THE SOCIAL SCIENCES

D.R. COX and N. WERMUTIL

A review is given of some recent work on a number of themes: the con-
struction of derived response variables, when some of the veclor variables
have components where individual interpretation is to be preserved, the
examination of the adequacy of covariance matrices as a means of cap-
turing dependency and association and the study of special patterns of
conditional independence.

1. Introduction

The purpose of this chapter is to outline some of our recent work connected
will the analysis of multivariale data with primary although not exclusive
emphasis on observational studies iu the social sciences. The majority of
the chapter deals with continuous variables where structure is assumed
to be adequately described via a vector of means and by a covariance
malrix. For further discussion of the important case of mixed discrete and
continuous variables, see Lauritzen and Wermuth (1989), Wermuth and
Lauritzen (1990) and Cox and Wermuth (1992a).

We concentrale on the structure of models of dependence and association
and on their interpretation rather than on methods of formal inference
whicli can typically be -achicved via maximum-likelihood, augmented by
examination for oullicrs, etc. or, when large amounts of data have to be
dealt with rather automatically, via corresponding robust methods.

Among the features of ‘classical’ normal-theory multivariate analysis as
set out, c.g., in the books by Rao (1973) and Anderson (1984) are the
following:

(1) except for methiods of internal analysis, such as principal component
analysis, there is invariance under linear transformations of the compo-
nenls;

(77} the covariance malrix as a swinmarizer of dependeney strueture al-
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lows no possibility of representing nonlincar or interactive effecls, except
via nonlincar transformation of the veclor concerued; c.g., for three com-
ponents we cannol delect a dependence of the regression cocllicient of Y;
on Yz given Y3 = y3 on the value of y3;

(7ii) a p x p covariance malrix contains 1p(p — 1) correlation cocflicients
so thatl, especially for large p, thiere is from various points of view a nced
to reduce the number of adjustable paramecters.

All these features have both positive and negaliveaspects. We discuss
these briefly in turn. The invariance of, e.g., the canonical correlation and
regression analysis of the p x 1 vector ¥ on the ¢ x 1 vector X under non-
singular transformalion of Y and ol X lcads to the clegant and ultimately
geomelric theory involved (Dempster 1969; Chapter 6).

Substantively, however, the invariance may or may not be sensible. 1hus
il the components ol Y are log height and log weight, it is sometimes plau-
sible that other linear combinations of log height and log weight arc the
appropriate basis for interpretation and the invariance of an analysis has
some appcal. On the other hand if the components arce, say, anger and anx-
icty it is more likely that an interpretation should preserve the individual
identily of the components as representing distinct features or propertics.
Il these were explanalory variables a lincar combination representing their
relalive clfects on some response could be a rcasonable base for interpre-
tation; when the componcnls are responses the position niay be diflcrent.
In Scction 2 we outline work in which some component variables may be
subject to linear transformations while others are required to preserve their
specific identity.

The points (i) and (iii) are somewhal contradictory in that the for-
mer points to a lack of ricliness in specificalion via the covariance matrix
whereas the latler aspect stresses possible overparametrisation in dealing
with largish arbitrary covariance matrices. There arc general implications
for the desirability of introducing substantive knowledge into the analysis.
Section 3 discusses the delection of effects not represented by covariance
matrices and Scclion 4 reviews ways of examining special covariance struc-
tures. A fundamental subject—matter distinction in such discussions is be-
tween responsc variables, intermediate response variables and explanalory
variables.

2. Derived variables

In Section 1 we distinguished between veclor variables to which lincar trans-
formations could be applied and vector variables where components have
an individual identity to be prescrved for interpretation. Of course, in
applications the distinclion is bound to be to some extent provisional.
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If we have a p x 1 vector Y of response variables and a ¢ x 1 vector
X of explanatory variables then in the absence of further subject-malter
information we may proceed as follows:

(a) to preserve the individual identity of the components of Y, consider
thie mullivariate regression of Y on X, i.e., the component by component
mulliple regression of Y on X and tlien look for substantively meaningful
simplifications and interpretations of which one extreme form might be that
cach component Y; has regression on a distinct subset of the components
of X;

(b) if p > q and it is required lo preserve the components of X but not
those of Y/, Cox and Wermuth (1992b) constructed a ¢ x 1 vector Y* such
that when regressed on X, the ith component Y;* has nonzcro regression

only on the corresponding Xj, i.e., ¥;* is conditionally independent of X;

(7 # 1) given X;. In essence a preliminary transformation to the ¢ compo-
nenls of thie canonical regression of Y on X is made and then, provided all
canonical correlalions are nonzero, a nonsingular transformation of these
variables achicves the desired structure. Equivalently,

Y =T (T0y Xy, Bye) ' By By, Y, (2.1

Ty “yy

where the covariance matrix £ of (X7, YT)T has been partitioned in the
usual way. Wermuth and Cox (1992) discussed this further and gave ex-
amples, additional to the one of Cox and Wermuth (1992b), where the
method led to simple representations of the data via the replacement of Y'*
as determined by (2.1) by components with simple interpretation.

An cquivalent formulalion is to note that Y{*, say, lias maximal par-
tial correlation with X, given X,,..., X,. It can thus be calculated as
the linear discriminant function (one-dimensional canonical variable) from
the regression of Y on X adjusling for X, ..., X, and residuals of a full
regression of Y on Xy, ..., X,.

In (b) if there are sonic virtually zero canonical correlations or if p < q, it
is either Loo ambilious or impossible to find a component Y;* to go with each
componcnt of X. Tor examnple, one might eliminate certain components of
X altogether or divide X into two parts (X, X)T and require ¥; to be

independent of X}l) (7 # 1) given X,-(l) and X(2). Except for small values
of p,q, guidance [rom subject-matter considerations is highly desirable.
There are numcrous extensions of the above ideca, among them the fol-
lowing. If Y and X are the p x 1 vectors of the same variables measured
al two dilferent times (two-phase panel study) then it would sometimes
be rcasonable to require that if a transformation to new variables is used
it should be the same for both Y and X. That is we write Y* = AY,



98 D.R. Cox and N. Wermuth

X* =AX. Then
cov(Y*, X*) = ALy AT, cov(X*) = AL AT
and Lhe regression coeflicients of Y* on X* are
By-x+ = (AD,  AT)(AZ  AT) ' = AD,, D) A1

and a possible requirement is that this is a diagonal malrix D, say, whose
clements may be of either sign. That is

A(E,Z; A = D. (2.2)

When 2,.27]} has distinct nonzero cigenvalues, there exists a malrix A
salislying (2.2) (Rao 1973, p.43) but, in general, the cigenvalues and cigen-
vectors will be complex and hence unsuitable for statistical interpretation.

By exploiting the knowledge that X and Y are the same variables imca-
sured al two time points there is a roule which may sometimes circumvent
such problemns. It is conccivable in some such situalions that the matrix of
concentralions X¥* is nearly a diagonal malrix since such a diagonal form
implies conditional independence of components Y;, X; for (5 # i) given
all other variables. Ilowever, il £¥* is of diagonal form then the matrix of
regression coeflicients is a symmetric malrix since

By x = —(n¥¥)~lpv=,

This suggesls to take first X** = (2¥*)~!X and to apply (2.2) to Y and
X**. This leads to

By xeo = —(E¥) ' = =By, .,

which as a positive definite malrix permils an orthogonal decomposilion
CByx+-CT =T, where CT = C~! and T'is a diagonal matrix with positive
diagonal elements, leading finally to

Y*=CY, X'=CX' =C(E)'X.

With more than two time points there are conneclions with multiple lime
series and cointegration analysis (Engle and Granger 1987) in cconometrics.
If we have vectors Y, X,V of respeclively response, intermediate respouse,
and explanatory variables further possibilities arise when transformations
of one or both of (¥, X) are allowable. In the simpler problem with just
two vectors Y, X the formal inclusion of squared and cross-product Lerms
of original variables as components of Y could be employed primarily as a
device for assessing the desirability of nonlinear transformation of the com-
ponents. A more formal approach could be based on maximun likelihood
eslimation ol a parametric family of transformations ol the componentls of
Y together with a matrix analogous to thal in (2.1).
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3. Adcquacy of representation by covariance matrix

We now turn Lo the second general issue mentioned in Section 1. Is it
adequate Lo describe the associations belween the component variables by
a covariance maltrix? To some extent this amounts lo testing multivari-
ate normality, although in many practical contexts it is not so much the
distributional form thal is of primary coucern as the possible existence of
more complex forms of dependency not revealed by the covariance matrix,
including the occurrence of outliers.

Again a distinction is to be drawn between methods that are invariant
under nonsingular transformations of the observed vector Y and incthods
that retain the original components (Cox and Small 1978) and here we
concentrate on the latter.

Two broadly contrasting approaches arc the plotling of residuals
(Anscombe, 1973) and the calculation of test statistics. For the former
there is somne evidence (Wermuth and Cox 1991) that rather than plotting
yi versus y; (1 # j), a more sensilive analysis results from plolting the
corresponding complete residuals v versus 17 (i # j), where ¥ is the de-
viation of y; from its linear least-squares regression on all other variables.
This hinges partly on the result that

COI‘l’(I'i,I‘j) = —=Pij. (k] (3.1

where k;; is the set of all variables other than 7 and j and, in the usual
notation, the corrclation coeflicient on the right-hand side of (3.1) is the
partial correlation between Y; and Y; given all other variables.

IFor more formal tests with all comnponents on an equal fooling, we may
calculate

(1) the Student ¢ statistic Qij for regression of ¥; on Yj? adjusting for
Y;, i.e., in the regression of Y; on both sz and Yj. This yields p(p — 1)
stalistics in all;

(77) the Student t statistic Q(jx) for regression of Y; on Y;Yi adjusting
for Yj, Yi. This yields Lp(p — 1)(p — 2) statistics in all.

It 1s clearly desirable to reduce the number of such statistics and this can
be done primarily via subject-malter considerations which may indicate
concentration on particular subsets of Q;; and Qi(jk)- 1l there is strong
linear regression present of Y; on a particular variable or set of variables Y,
it may be advisable to elitninate linear regression on Y, from the stalistics
Qi Qiginy-

There are a number of approaches to the assessment of this array of
statistics depending on the number of statistics for consideration and on
thie extent Lo which an approximate calculation of significance is important.
We may consider the most extreme significance level adjusted for selection
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or the whole set of values may be plotted against expecled normal order
statistics, Llic effect of correlalion on such plols usually being small.

It may be helpful to arrange the ‘squared’ terms Q5 in a squarce array,
and lo calculale row and columu mean squares or absolute values to de-
tect eflects associated with a parlicular component. A simmilar purpose is
achieved by summing Q;¢jxy first over j, k for fixed ¢ and then over 7,k for
fixed j.

Il clear evidence is found via one or more of the statistics () for nonlincar
behaviour, subject-matter interpretation will involve first inspection of the
corresponding scalter plots leading eithier to qualitative explanation, lo
transformation of variables or to the fitting ol an explicit model.

IL may al first sight seem odd to suggest calculating both @5 and Qjq,
e.g., in Lhe casc of two components X, Y to be treated on an cqual footing
regressing both Y on X% and X on Y?. Some theorctical juslification is
provided below. It can be shiown (Cox and Small 1978) thal asymptotically

corr(Qy x, Qxy) = pxy (2= 3nky), (3.2)
so that the forin
1 (2-3r%,) \ 7! x
(Q)’X»QXY)( ‘ rxy( 1 Pxr) ) ( g;)}‘, > (3.3)

has asymplolically a chi-squared distribution with two degrees of [reedomnn,
where rxy is the sample estimate of pxy. The same formula can be used
to combine Qij and Qji (i # j) in the general case.

Because (3.2) was given previously without proof we outline here the
arguments involved. For independent pairs (X, Y1),...,(X,, Yy), the nu-
merator of the statistic Qy x is

. Moy — Mg

QYX :ZYJ [Xf——ﬁloz—-%;—z——?;g;ﬂ(x]‘-ﬁlol) ’ (34)
where 1fgr = (30 X7) /n and the multiplier of ¥; is X} orthogonalized
with respect to the vectors {Xj} and {1}. The statistic Qy x itself is (3.4)
divided by a consistent estimalc of its standard error. We may suppose
withiout loss ol generality that the bivariate normal distribution of (X, Y)
has zero mean, unit variance and correlation p. We wrile Y; = pX; + Zj; it
follows from the orthogonalization that in (3.4) Y; can be replaced by Z;.
Further as n — oo, Mgy — 0, 11197 — 1, and 13 — 0 so that QIYX is
approximalely

> zi(x7 - 1).

. . . ’ .
This and the corresponding expression lor () vy are sums of n independent,
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and identically distributed terms. Therelore, cou(Q;,x,Q'XY) is the same
as the correlalion of a single term:

corr(Qy x, Qxy) = corr[(Y — pX)(X? = 1),(X — pY)(¥? = 1]

A direct calculation with the moments up to order 6 of the bivariale nor-
inal distribution gives the required result, hence verilying (3.2). A similar
but more complicated calculation would yicld the approximate covariance
malrix of the full set of quadratic statistics.

We give here only the bivariate case although a general multivariate ex-
tension 1s available. The need for two stalistics to assess nonlinear depen-
dence belween two variables trealed on a symmetrical footing and a more
forinal justilication ol the above procedures can be obtained by taking as
an allernative to the bivariate normal distribution the modification intro-
duced by one correction term of an Edgeworth expansion. For convenience
we suppose the random variables (X,Y) are scaled to zero mean and unit
variances and have correlation p, and take the densily in the asynunclric

forin (Barndor{[-Niclseu and Cox 1979)

$a(z,y;p) (1 + §1 paoHa(z) +3py Ia(2) (v
+3p1a 1 (2) Ha(y') -+ posHa(y )]}, (3.5)
where ¢, is the standardized bivariat.e normal density of correlation p, H, (+)
are llermite polynomials and p” are stan(lardlzed cumulants of the orthog-

onalized variables X and Y’ = =(Y-pX)/\/(1 = p?). Thisisslightly simpler

for detailed calculation than the more symmetrlc formu]atlon in lensorial
polynornials (Barndorll-Nielsen and Cox 1989, Section 4). In termns of the
standardized cumulants p.y of X and Y, we have

/’2}0 = P30, P;l = (P21 = pr3o)/ V(1 = p?),

Pz = (P12 = 2ppa + ppao)(1 = p2),

ﬂl)a = (pos = 3ppia + 3p’pa + P’ pao)/ (1 — pz)%- (3.6)
The cquivalent l"orm of (3.5) in Lcnns of Y and X' = (X — pY)/ /(= p?)

t

has coc(ﬁuents /’30' Pors P Pos found by interchanging sullices in (3.6).

Thus, po;j = P03y P1g = (/’12 = ppo3)V/ (1 = p?), etc.

Integration of (3.5) gives that the nlargmal density ol X is

$(2)[1 + Lpagls(x)),

where ¢ is the standardized normal density. Thus to the [irst order in the
p's the conditional density of Y’ given X =z is

S L0 () )] A 301 () () + poyTTa(y))
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50 lel. the standardized third cumulant of the conditional distribution of
Y is pgs and

E(Y | X =z) = Lpy(z? = 1),
var(Y | X = 2) = (1 + plye),
(Y 1Y = 2) = e+ Loy T - 1),
var(Y | X = 2) = (1 - p?)(1 + /)'12$)1

and symmelrically
E(X Y =y) = py+ $p1v/(T = p?)(* - 1),
var(X |V = y) = (1= p®)(1 + pyyv).

Now (3.5) represents a distribution only approximately even for very
siall p’s when the region of negative values of (3.5) has very small prob-
ability. Numecrical work suggests Lhat the formula is nevertheless capable
ol representing rcasonably a uscflul range of distributional shapes. There
arc [our paramelers defining nonnormalily, two represenling skewness and
two more dircctly concerned with dependence. Thus a test of bivariate
normality locally against the full family (3.5) would involve four statistics
lcading, as the statistic corresponding to (3.3), Lo a chi-squared with four
degrees of [recdom. I'rom a substantive viewpoint, distributional shape
may be of relalively minor interest and this is the justification for a re-
duction to Lwo slatistics. This could be achicved in various ways, bul the
simplest is Lo restrict aLLanxon to (llstnbutlons willh zero marginal skew-
ness, 1.e., with pg3 = p3o = Pao = /703 = 0; note that this is notl the samec
as rcqumn{7 7cr0'skewncss ol the conditional dlslrll)uhons which would

require /)0, = pyo = 0. In this special case, /;2, (1 =p?%) = pyy and
/)12(1 — p) = p12 — 2ppy; so thal for standardized variables

E(Y | X =z)=pz+ Lpau(a? - 1),

var(Y | X = z) = (1= p?) + (p12 — 2pp21 )%,

E(/‘( ] Y = y) = py-l— %plz(yz — l),

var(X | Y =) = (1 = p*) + (p21 — 2pp12)y.

Note the double interpretation of pya, p21 as delermining quadratic re-
gressions of imncans and lincar regressions ol variances; the special case p = 0
makes Lhis clear; sce Figure 1. In particular il Y is in some sensc a response
to X a nonzero value of p,; can be interpreted as suggesting a nonlincar
regression in the usual sense, whereas if X is a response to Y it can be

interpreted as suggesting systematic changes in conditional variance. Sce
the example of the diabeles data below.
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The appropriate choicc of signs of pya, p2; gives any combination of con-
vexity and concavily in the two regressions. The likelihood associated with
(3.5) in scven parameter form (i.c., wilh unknown mean and covariance
malrix and small nonzero pya, p21) is best calculated locally by exponen-
tiating the correction factor leading to the local (9,7) exponential family
in which the sample mean and covariance matrix is augmented by the four
third-order statistics (3" X2, Y X2V, 3 XiY2, 50 ¥?). By invariance and
or condilioning these can be replaced by the standardized marginal third
cumulants and the quadratic regression cocllicients of Y on X? and of
X on Y% The marginal skewnesses arc uninformalive separately aboul
piz and pgp, although in principle there may be some information in their
joint behaviour. Nevertheless, consideration of the relative variances sug-
gest thal, especially when p is small, the amount of information carried by
third cumulants is likely to be sinall compared with that in the regression
cocllicients.

1f in unstandardized units Lhe regression coellicienl of ¥ on X2 adjusted
for X is estimated as fy x2.x, then the corresponding cstimale of pyy,
assuming negligible skewness is

21 = 2By x2 x 5% /6. (3.7)

If the component variables in a multivariale normal distribution arc di-
chotomized al their medians, the resulting multidimensional binary dis-
tribution is such that the frequencies in cach of the resulting 2 x 2 x 2
tables are equal in pairs and arc given by simple functions of the marginal
corrclations (McFadden 1955). In particular, the three factor interaction
terms in a log linear fit all vanish. This can be used to provide a simple
test of whether a continuous multivariate distribution is consistent with a
multivariate normal distribution with possible nonlinear transforination of
the individual components.

In the diabeles data discussed below all standardized three factor inter-
aclions are sinall except for the one for the three variables isolated directly
for nonlincar relations, where the studentized valuc is 2.2. Of course, this is
short of the value needed to establish nonnormality on this basis alone; the
form of the interaclion is, however, precisely in line with the interpretation
" derived via the cross product @ statistics of (ii).

Example. From ongoing investigations ol delerminants of blood glucose
control (Kohlmann et al. 1991, 1993) we have obscrvations for 70 diabelic
patients, all having less than 10 ycars of formal schooling. The variables are
Y, a particular metabolic parameter, the glycosylated hacmoglobin (abbre-
viated as GIIb); X, a standardized score for particular knowledge aboutl
diabetes; 1V, duration of illness in months. Furthermore, three different
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altitudes of the patients are mecasured as subscale sum scores of a ques-
tionnaire. The allitudes are Lo caplure to whom or Lo whal the palient
altributes whal is happening in relation to his illness: Z, social exlernal-
ity (powerful others arc respounsible); U, latalistic externality (mere chance
determines what occurs); V, internality (the patient sees himsell as mainly
responsible).

The obscrved correlations among these variables are given in Table |
together with the correlations to two further constructed variables used to
describe thie type of nonlinearitly of some of the relations. Even the largest
corrclations are still moderate in size, but this is not surprising since we
cousider variables for which large variations belween persons are Lypical.

IFor these dala there is no indication of deviations from lincarity for the
relations of variables X, 7, U, V, W from the @ stalistics of (i) and (i1).
However, i the regressions involving variable Y there are four stalistics
larger than 20 Qwy = =24, Qyvz = 2.1, Qy(zw) = 2.6 and Qzorvy =
2.6. Becausc our purposc is Lo seck a qualitative explanation we make no
adjustments for the multiple tests involved.

The scatterplot in Figure 2 of standardized variables Y (good metabolic
adjustiment corresponding Lo low values) on W (duration of illness) shiows
a decreasing variabilily in Y over time with a concentration at a slightly
belter adjustiment the longer the duration ol Lhe illness, i.e., the longer the
palicnt’s experience with thie illness. For the contours added, a deusily
derived from an Edgeworth expansion is assumed for Y regressed on W
with p = pao = pog = py, = 0 and p|y = —0.243 as cstimaled using (3.7).

Ounc explanation of the nonlincar relations between Y, Z, W is thal the
dependence of metabolic adjustinent Y on social externality Z changes with
thie duration of thic illness, i.c.,

j =&+ (f+5w)z + bw = 110605 — (0.1466 — 0.0012w)z — 0.0376w.

The estimaled values in Lhis equation iinply that adjustment is belter if
social externality is high in the carly ycars of the illness, but it is worse
il social externality is high for patienls who have had the illness for many
years. One ralher tentative interpretation is that social externalily ineca-
sures Lo some extent the readiness of the palient to adhere strongly to the
physicians advice: this appears to be helpful for a good metabolic adjust-
ment in the early years of the illness but harmiful the longer the illness has
lasted.

A descriptive summary of the changes in the relations of Y and Z with
time is given in Table 2.
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Fig. 2. Scaltlerplotl of standardized values for metabolic adjustinent Y and du-
ration of illness W together with contours ol a density derived [rom Edgeworth
expansion

Table 2.

Changes in mectabolic adjustment, GIIb (Y), with the duration
ofillness (W) and changes in its dependence on social externality
(2).

Duration of illness in months

Overall  0-96 97-192 193-288

mean: Gllb 9.32 9.77 9.41 8.50
stand. dev.: Gllb 2.21 2.65 1.99 -1.34
correlation of Y and Z 0.04 ~-0.32 0.37 0.53

number of obs. 70 31 20 19
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4. Simplification of covariance structurcs

We now turn to issucs in a sense complementary lo those of Scction 3.
Supposc thal dependency is adequatcly described by a p x p covariance
malrix; is it helpful to have a more parsimonious representation?

Historically this has been approached from a number of somewhal inter-
related points of view involving simplifications in terms of

(i) zero correlations or blocks of zero correlations, chosen possibly in Uhe
light of inspection of the sample corrclation natrix;

(ii) simple block structure in the correlation matrix with, c.g., equal
correlation belween variables in a block and equal and different correlation
between variables in dilferent blocks;

(11i) zero clements in the concentralion matrix;

(iv) lincar relations involving lalent (unobserved or hidden) variables;

(v) scls of conditional independencics among component variables,
preferably expressing substantive rescarch liypotheses (Wermuth and Lau-
ritzen 1990).

Ilere (i) and (i1) represent special cases of lincar covariance struclures
(Anderson 1973), (iii) leads to the covariance selection models of Denipster
(1972), (iv) to faclor analysis and lincar structural mnodels (J6reskog 1973)
and (v) is related Lo the substantial literature in cconometrics and olher
ficlds, steriming in a sense from Wright’s path analysis (Wright 1921, 1923).
In the more forinal framework of exponential fanily models, (i) and (ii)
impose structure on the mean or moment paraincters whereas (iii) is set oul
in terms of the canonical paramelers and this leads to some simplifications
i formal inference and in compuling maximume-likelihood cstimates.

Ilere we concentrale on (v), especially because this appears to be a (ruit-
ful way of introducing into the analysis irnportant information both on the
nalurc of the component variables and on the relations between them. The
notion of representing the relations by graphs has been used to advantage
in connection witli expert systems exploiling the propertics of Markov ran-
dom fields. We sketch here related metliods using, however, two different
kinds of edge in the graphs and often dividing variables into blocks on the
basis of a priori substantive knowledge (Cox and Wermuth 1993).

‘The conventions for constructing such graphs as illustrated in Figures 3
to 5 [where we usc the notation for independence as introduced by Dawid
(1979)] arc in outline as [ollows:

(a) where possible, variables are classificd as responses, inlermediate re-
sponses, possibly at various levels, and explanatory variables; the nodes
representing the variables of the above types arranged in boxes from left
to right (in line with the notalion for conditional probability);

(b) variables in the same box are to be regarded symmetrically, c.g., bolh
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FFig. 3. Six distributionally equivalent ways of specilying a saturated model for
three variables: (a) joint distribution of Y, X,V with threc substantial concen-
trations; (b) joint distribution of ¥, X,V with thrce substantial covariances; {c)
mullivariale regression chain model with regressions of ¥ on V and ol X on V
and with correlated errors; (d) block regression chain model with regressions of Y
on X,V and of X on Y, V; (c) univariate regression ol Y on X,V and joint distri-
bution of X, V; ([) univariate rccursive regression system with Y as response to
X,V; X as interinediate response to V. For instance, graph (e) with double lines
round the right-hand box represents the standard lincar model for regression of
Y on fixed explanatory variables X, V.

Fig. 4. Four distributionally equivalent ways ol specilying Y || X|V: (a) covari-
ance sclection wodel for Y, X,V having parameters pyy.» #0, pruy # 0, and
pyz.v = 0; (b) univariatc rccursive regression model with fyv.x # 0, fyz.v = 0,
Buz # 0; (c) block regression chain wodel with ¥,V as joiut responses to X and
with independent paranicters pyy.x # 0, Byz.v = 0, fuzy # 0; (d) two indepen-
dent regressions of Y on V and of X on V with fyv # 0, fzv #0, pyz.v = 0.
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Fig. 5. Four distributionally equivalenl ways of specifying ¥ || X: (a) lincar

slruclure incovariances willi pyy # 0, pzv # 0, pyr = 0; (b) univariale recursive

regression mnodel with for.y # 0, fuyc # 0, fyx = 0; (c) mullivariale regression

chain model with pyu.x # 0, fur # 0, Byx = 0; (d) mulliple regression ol V on
two independent regressors Y, X, with fuy.x # 0, fvz.y 3 0, pys = 0.

as response variables, and joined, if at all, by an undirecled edge, whereas
variables in different boxes are joined, il at all, by directed edges, Lhe arrow
poiuling from explanatory variable to response;

(c) there is at most one connecting edge between any pair of nodes;

(d) variables in one box are considered always conditionally on all vari-
ables in boxes to the right;

(e) if full lines are used as edges, variables are considered also condilion-
ally on all othier variables in the same box, whereas il dashed lines are used
a responsc is considered marginalised over the responses in Lhie same box;

(I) if therc is no edge connecling two variables, tlic two variables are
conditionally independent, the conditioning variables being as specified in
(d) and (e);

(g) graphs are drawn wilh boxes to represent substantive rescarch hy-
potheses, i.c., when the presence of an edge implics an association large
cnough to be of substantive inlerest rallier than merely the absence of
a zcro constraint; such hypotheses thus representing nodels which are in
some scnse thie simplest appropriale;

(h) if a right-hand box has two lines around il, the corresponding vari-
ables are regarded as fixed al Llicir obscrved values, i.c., their distribution
is not modelled;

(i) a row of unstacked boxes represents an ordered sequenceof responses,
intermediate responses and explanatory variables. If no order is iinplied the
boxes are stacked.

When Lhese ideas are applied to the diabeles data of Table 1, we start
with a first classification of Lhe variables into a sequence of dependencies
and associations which is derived from substantive knowledge and from hy-
potlicses about the variables and whicli is expressed liere as the dependence
chain in Figure 6 containing four elementls, i.c., four boxes.

The strength and direction of the dependencics and associalions as well
as possible independencics are to be deduced from the estimales in the
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Fig. 6. A first classificalion of the variables inlo a sequence ol dependencies
and associalions wiltlh Y as rcsponse of primary interest having all olhers as
potential explanatory variables; with X as an intermediate variable considered
conditionally given Z, V,U, W, A; with Z,V,U as joinl intcrmediale variables on
equal fooling given W, A and with W, A as a background characteristics.
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Iig. 7. Chain graph of dependencies for the diabetes data.

conditional analyses specified in this way. The independencies arc displayed
wilth the chain grapl of Figure 7.

It shows in particular that of tlie explanalory variables considered tlie
important direct influences for metabolic adjustment (Y) are social exter-
nalily (Z), duration of illuess (W) and lime of dala collection (A); that
knowledge (X) depends directly only on falalistic externalily (U); that the
atlribution scores (Z, V,U) arc joinlly independent of the backgroundchar-
acleristics and thatl duralion of illuess (W) is independent ol the Lime of
data colfection (A, 1990 and 1991). Wilth A being a dicholomous variable
ils corrclation and regression cocllicients reflect differences among group
means.

There is a inleractive effecl of social externalily and duration on
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metabolic adjustinent as described before wilh Table 2 and (10). There
is a further main effecl of lime of dala collection: for Lhe first 38 palienls
there is a much worse average mictabolic adjustment (G1Ib=9.9) than for
Lire 32 palienls (GIL=8.6) observed one year later. It is conceivable that
this is a conscquence ol the feedback from the firsl study which showed
pronounced dilferences in metabolic adjustment for patients of lower and
higher educalional background. This could also explain Lhe larger vari-
ability in the melabolic adjustment in the carly years of the illness shown
in Figure 2: there were almost no patienls with less than 8 years of ill-
ness and good melabolic adjustment observed in 1990 butl a substantial
number of Lhemn one year later. In addilion, only in the first study the Lyp-
ical melabolic adjustimentls are considerably beller [or long than for short
durations of illness.

As expecled, knowledge is betler the lower the falalistic altribution; fa-
talislic externalily is posilively correlated wilh social externality bul nega-
tively wilh internalily; there is a weak negalive correlalion helween social
exlernality and internalily, possibly immplied by the ollier Lwo relations. A
chieck of the stability of Lhese results will be possible when dala for more
patienls arc available in about a ycar.

5. Discussion

We have in Lhis chapler concentrated on different inethiods which we judged
to be usclul in the analysis of mullivariate observational dala:

(1) Concentralion on constructing new variables such thal they have spe-
cial relations of conditional independence with a scl of explanalory vari-
ables. Thereby the explanatory variables either remain untransforimed since
Ltheir identity is lo be preserved or they are transformed in the same way
as Lhe responses il Llicy coincide with the responses bul arc mecasured at
an carlier liine;

(2) Concentralion on checking and modelling different forms ol nonlinear
dependencies or outliers. In particular it is explained in which scnse a
nonlincar dependence in a regression of Y ou X can correspond to a linear
regression of X on Y having a systemalic change with y of the varialion ol
X given Y =y,

(3) Concentration on simplifying covariance structures with chain graphs
implying conditional independencics. This permils one to integrale sub-
stantive knowledge about the roles of variables as responses, intermediale
and explanatory variables and to distinguish between two diflerent types
of multivariate dependencies, between block regression and multivariate
regression cquations.

The discussion throughoul the chiapter is exposilory or given as resulls
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needed to interpret the features of a specilic set of data. Some extensions
are most desirable, in particular Lo incorporate derived variables {or several
components of a dependence chain; Lo derive implications of conditional
nonlincar relations aflter marginalizing; to obtain model formulalions cor-
responding Lo multivariale regressions with discrele or possibly mixtures
of discrete and conlinuoiis responses.
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