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 SUMMARY

 We consider contingency tables having one variable specified as a response with just two
 categories. We look at conditions for collapsibility of a symmetric and a directed measure
 of association, the odds-ratio and the relative risk: situations are discussed under which
 equal partial associations coincide with the corresponding marginal association. Contrary
 to the odds-ratio the relative risk is collapsible, if there are independencies in the marginal
 distribution of the influencing variables. This fact is exploited to derive conditions for the
 lack of a moderating effect, the latter being a much discussed concept in the social science
 literature.
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 1. INTRODUCTION

 In many empirical studies, one wants to investigate how a response variable with just two
 categories depends on several qualitative variables. Data from such studies can be summarised
 in contingency tables containing at least one dichotomous variable, the response. Typically,
 there are some variables for which potential influences are of main interest and some others
 that play the role of only background variables: one needs to include the latter explicitly in
 an analysis, because they might modify one of the associations of interest, but one hopes to
 be able to report the results irrespective of the categories of the background variables. Typical
 examples are simple multicentre clinical trials, in which the categories of the response variable
 (V1) are success or failure of a treatment, those of the background variable (V3) are the different
 clinics or sites and those of the main variable of interest (V2) are the treatment types. Reporting
 results in such studies irrespective of site can be justified if one has strongly consistent results
 within sites and these agree with the result overall, that is, for the data combined from all
 sites. This is a description by example, in which the so-called moderating effect of a background
 variable is lacking. The concept of moderator variables is much discussed in the social science
 literature. However, its implementation has remained unsatisfactory. For a survey see Zedeck
 (1971).

 Moderator variables are, in the social sciences, mainly of interest in non-experimental
 situations like the following. The risk that a person becomes depressive is known to increase
 with the occurrence of life events like birth, death, severe illness or separation of friends. Since
 it is, in general, not possible to control such events, it becomes important to understand
 conditions which are likely to change or moderate this known relationship. Thus, one wants
 to determine which of the personality characteristics, environmental conditions, coping
 strategies or therapies are important moderator variables. One wants to estimate moderating
 effects and to understand under which conditions such effects cannot occur.

 Associated statistical tasks are to assess the relative importance of an additional influencing
 or regressor variable, to estimate the bias introduced by neglecting an important influencing
 variable and to state conditions under which a measure of association is unaffected by adding
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 a variable to an analysis. All of these aspects are well understood in the case of exclusively
 linear dependencies (Goldberger, 1964, chapter 10). For symmetric associations among discrete
 variables the last aspect has been called (parametric) collapsibility and was studied by Yule
 (1900), Simpson (1951), Bishop (1971), Whittemore (1978) and Ekholm (1985). In this paper
 we treat the situation in which all variables under study are discrete and there is a dichotomous
 response variable.

 There are two basic aspects to the lack of a moderating effect: (1) associations have to
 coincide for all levels of the moderator variable and (2) the conclusions regarding the
 associations have to remain unchanged if the moderator variable is excluded from the analysis.
 Correspondingly, we speak of strongly consistent results in terms of a given measure of
 association, if all partial associations within sites are equal, and we say that a measure of
 association is collapsible if also the equal partial associations coincide with the marginal
 association. We discuss in section 2 necessary and sufficient conditions for the collapsibility
 of the odds-ratio and the relative risk in the simplest case of a 23-contingency table. In section
 3 we give necessary and sufficient conditions for the lack of a moderating effect in those
 23-tables, in which equal partial relative risks are always collapsible. Nontrivial sufficient
 conditions for the lack of a moderating effect on the relative risk are derived in section 4 for
 general tables with nonzero cell probabilities. Finally, we show in section 5 how, for data in a
 2 x 3 x 3 x 2 table, where the response depends on all three of the remaining variables, the
 hypothesis of no moderating effect on the relative risk fits the data well.

 2. CONDITIONS FOR COLLAPSIBILITY OF ODDS-RATIOS AND OF RELATIVE RISKS

 For a 2 x J x K table of probabilities we use the indices i, j, and k for the categories of the
 variables V1, V2, and V3, respectively: denote by 11ijk the joint probability P(V1 = i, V2 =j,
 V3 = k) > 0. To make the interpretations of different measures of association more vivid, we
 name the variables as in simple multicentre studies: V1 as outcome or response, V2 as treatment
 and V3 as clinic or site. For our discussion on collapsibility we need marginal probabilities,
 such as

 Ri+ = lkrijk = P(V1 = i, V2 =i)
 which are called joint marginal probabilities in the 2 x J marginal contingency table. Further-

 more, we use conditional probabilities such as, for V1 = 1 given V2 =j and V3 = k,

 fll Ijk = Hlljk/Hl+jk-

 In the context of log-linear models for contingency tables (Birch, 1963) the natural measures
 of association are logarithms of so-called odds-ratios. For instance, the odds-ratios for outcome
 and treatments 1 and 2 within sites are

 fl1kfl22k k= ,..., K. (2.1)
 fl2k 21k

 They are also called partial odds-ratios for V1 and V2 given V3.
 In epidemiological studies, the measure of association used before the advent of log-linear

 models was the relative risk (see, e.g., Hill, 1962). For instance, the relative risks for V1 = I
 under treatment I compared to treatment 2 within sites are the following ratios of conditional
 probabilities:

 fll k, k- 1, ..., K. (2.2)
 l1 12k

 They are also labelled the partial relative risks for V1 = 1, given V3.
 One obtains the corresponding marginal measures of association from the probabilities in the

 marginal table of V1 and V2, or, to put it differently, after replacing "k" in (2.1) and (2.2) by
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 "? ". Results are said to be weakly consistent within sites if the partial associations given sites
 lead to similar interpretations regarding the success (Vl = 1) of treatment 1 (V2= 1) in
 comparison to the success of treatment 2: treatment I appears to be better, within sites, than
 treatment 2 if the odds-ratios in (2.1) or the relative risks in (2.2) are larger than one. Situations
 in which weakly consistent results appear reversed overall have been named the Yule-Simpson
 paradox (Yule 1900; Simpson 1951).

 If, given treatment 1, response is independent of sites then we speak of conditional
 independence of V1 and V3 given V2 = 1 and write V1 11 V3 I (2 = 1). In that case one of the
 following equivalent conditions, stated here without proof, holds:

 (i) H~~~~~~~n11, =n I,ll
 (ii) V t t 1 2 - (2.3)

 riIlll
 f l22l 11

 For Vj 11 V3 I (2 = 1) and VlIL V3 I (V2 = 2) we write, in brief, Vj 1 V3 I V2 and speak of conditional
 independence of V, and V3 given V2.

 The more standard description for Vf 1/ V3 I V2 is rlijk = 17i,j rI+jk/H+j+, and, for V311(V1,
 V2), the complete independence of V3 from V2 and V,, taken jointly, it is r1ijk= nij + H + ?k, where
 both hold for all (i, j, k). It is known (see, e.g., Birch, 1963) that V3 JI(VI, V2) is equivalent to
 V1 ] V31 V2 and V2 1 V3 I Vl. We now turn to conditions for collapsibility.

 Proposition 1. In 23-contingency tables necessary and sufficient conditions for results,
 which are strongly consistent, also to be collapsible are

 (i) for odds-ratios of V, and V2 (2.1): V1 11 V3 I V2 or V2 L V3 I31/,

 (ii) for relative risks of V1 (2.2): VI 1V I V2 or V2 t V3.

 Statement (i) is an immediate consequence of the conditions for collapsibility of log-linear

 interaction parmeters (Whittemore, 1978), and (ii) is proven in the Appendix.

 Remark 1. As far as collapsibility is concerned, odds-ratios behave analogously to
 concentrations asj. These are elements in the inverse of a positive definite covariance matrix
 E and they are simple multiples of partial correlation coefficients given all other variables
 (see, e.g., Wermuth, 1976). For trivariate normal distributions the following three statements
 are equivalent:

 (i) Vi VijI Vk,

 (ii) a' - o0,

 (iii) Pu.k = 0,

 where i,j and k are distinct elements of { 1, 2, 3} and Pij.k denotes a partial correlation coefficient.
 The marginal concentration between V1 and V2, a'12.3 is known to be related to the partial
 one, a12 (see, e.g., Wermuth, 1980) through

 a 12.3 = 12 13a23/a33

 so that, from u33 > 0, by positive definiteness, the claimed analogy becomes evident. This is
 not surprising, if one considers the exponential family parametrisations (see, e.g., Dempster,
 1971) of a joint normal and of a multinomial distribution for three variables. Concentrations
 are there the natural parameters for the former and log-odds ratios for the latter, provided
 the prerequisite for collapsibility is satisfied, that is, provided one has equal partial odds-ratios.
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 Remark 2. Relative risks behave similarly, but not completely analogously, to regression
 coefficients in bivariate normal regressions. Let fl,2.3 denote the partial regression coefficient,
 the coefficient of V2 in a linear regression of V1 on V2 and V3, and ,B12, the marginal regression
 coefficient, the coefficient of V2 in a linear regression of V1 on V2 alone. Then it is known
 (Currie and Korabinski, 1984) that the two are related through

 (P12 - P13P23)
 #12.3 = #12 pl( 2) ~123 ~fli P12(l - P23)

 where the p's are marginal correlation coefficients. This makes it plain that the regression
 coefficient is collapsible in the case of B12.3 A 0 (not V1 11 V2 1 V3) if and only if

 P23=0 or P13=P12P23

 which for joint normal distributions is equivalent to requiring that

 V2 L V3 or V1 1 V3 I V2.

 The difference, which remains to relative risks, concerns the strong consistency in terms of
 the analogous measures: concentrations and odds-ratios. In normal distribution theory the
 conditional associations between V1 and V2, given different levels of V3, are equal by definition,
 which is reflected in just one possible value for the partial concentration a12 (or the partial
 correlation coefficient P1 2.3). The relative risk can however, for V2 1 V3, be collapsible even if
 one has only weakly consistent results in terms of odds-ratios. An example is given in Table 1.

 TABLE 1

 Example for collapsible relative risks* in spite of unequal partial odds-ratios

 k= 1 k=2 Sum over k

 j=l j=2 j=l j=2 j=1 j=2

 i= 1 6 40 30 200 36 240
 (30%) (20%) (75%) (50%) (60%) (40%)

 i = 2 14 160 10 200 24 360

 Sum 20 200 40 400 60 600

 -=1.5 ------1.5 -=__ 1.5
 1121 1 11122 n 112+

 *All probabilities nijk are multiplied by 660.

 Remark 3. If outcome is independent of treatment, given sites (V1 I V2 I V3), then the results
 are strongly consistent in terms of relative risks and in terms of odds-ratios, and either both
 or none of these measures of associations are collapsible. Examples for the latter case are
 special versions of the Yule-Simpson paradox described for instance by Birch (1963, (5.1)) or
 by Bishop, Fienberg and Holland (1975, p. 41). To see the former, note that V1 j V2 1 V3 and

 V2 V3I V, imply V2 JL (V3, VI) and hence V2 1 V3. Similarly, V, f V21 V3 and V2 I V3 imply
 V2 (VI, V3), and in particular V2 I V3 1 VI.

 Remark 4. If outcome depends conditionally on both of treatments and sites, then at most
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 one of the measures of association is collapsible. To see this, note first that, for V1 j V2 I V3
 not to be satisfied, strongly consistent results in terms of odds-ratios and relative risks imply
 V1 I V3 I V2 (for details see e.g., Wermuth, 1986) and hence contradict an assumption. Note
 secondly that the two conditions for collapsibility of odds-ratios and relative risks cannot
 both be satisfied in tables with neither V1 4 V2 1 V3 nor V1 4 V3 1 V2: Birch (1963) has shown that
 in 2 x J x K tables the two independencies V2 4 V3 I V1 and V2 4 V3 together imply that one of
 the stronger hypotheses V2 11 (V1, V3) or V3 (V1, V2) has to hold. The claim then follows, because
 V1 4 V21 V3 and V1 4 V3 I V2 are necessary conditions for V2 4 (VI, V3) and for V3Jj(V1, V2),
 respectively.

 One conclusion, for data analyses, from Proposition 1 and the example in Table 1 is that
 collapsibility of relative risks offers new possibilities for giving more condensed descriptions
 of results in situations where the partial odds-ratios do not coincide. We therefore investigate
 tables satisfying V2 4 V3 next.

 3. EFFECTS OF ONE MARGINAL INDEPENDENCE IN A 23-TABLE

 A 23-table with V2 4 V3 can be viewed as the simplest situation in which a dichotomous
 response variable (V1) has two qualitative variables as possible influences and these are
 independent of each other. For V2 4 V3 one has, by definition, for j = 1, 2 and k = 1, 2,

 (i) n +jk/n +j+ r + +k
 or

 (ii) T1+ 1111+22 31
 11+2 l+ 1 +12 1, (31)

 or

 (iii) [I+ I k/I-+ 1 + = [+2krl-+2+-

 This restriction on the probabilities in the marginal contingency table of V2 and V3 has effects
 on the possible associations in the joint table, to see which, we note first that then

 n 1 12+ = +(1-a) l 122 (3.2)

 with a = nl 121n + + AR 12111+ + 1 + l 122n+ +2)-
 Thus, contrary to the case for general 23-tables, the marginal relative risk is a weighted

 average of the corresponding partial quantities, with positive weights adding to one. The
 implications of (3.2) are (1) that strongly consistent results in terms of relative risks are always
 collapsible, i.e., in agreement with the result overall, and (2) that weakly consistent results
 within sites can never appear reversed overall, that is, the Yule-Simpson paradox cannot
 occur. The last statement follows after noting that, in tables with a dichotomous response,
 weak consistency in terms of one measure of association implies weak consistency in terms
 of the other.

 Proposition 2: In 23-contingency tables with V2 4 V3 the necessary and sufficient condition
 for the lack of a moderating effect of V3 is

 (i) for odds-ratios of V1 and V2: V2 i V31 VI,

 (ii) for relative risks of V1 = 1: V2 4 V3 1 (V1 = 1).

 A moderating effect is lacking, if one has equal partial associations and these are collapsible.
 Since V2 IL V3 is sufficient for collapsibility of equal relative risks, Proposition 2 (ii) results by

This content downloaded from 134.93.178.68 on Sun, 23 Sep 2018 16:03:27 UTC
All use subject to https://about.jstor.org/terms



 358 WERMUTH [No. 3,

 noting the following equivalent statements for 23-tables with V2 11 V3:

 (1) n = n- 12
 n1121 n'122

 ( -1 1 1 n 1 22 =l(3.3)
 fll 21 fll 12

 (iii) V21V3I(Vl 1).

 For the proof of Proposition 2 (i) note first from Proposition I that conditions for the lack

 of a moderating effect on the odds-ratio are included in those for the collapsibility: if V1 I V3 I V2
 or V2 j V3 I V1 then one has equal partial odds-ratios. Note secondly that these conditions are
 still necessary and sufficient in 23-tables with V2 i V3, but that conditional independencies of
 variable pairs have different interpretations,

 (i) V1 [V2 1 V3 if and only if V2k (VI, V3),

 (ii) V1 J V3 1 V2 if and only if V3 j(Vl, V2), (3.4)

 (iii) V2[V3 1 V1 if and only if V2J (Vl, V3) or V3 1 (VI, V2).

 The only difficult part of (3.4) is, in (iii), the implication of V2 J V3 and V2 J V3 I V1. It follows,
 however, from one of Birch's results (1963, (5.3)) and it completes the proof of Proposition 2.

 Remark 1: The hypotheses V2J V3 I (V1 = 1) and V2 J V3 I V1, which are of little interest in
 general 23-tables with V1 as a response variable, become important in 23-tables having marginal
 independence of treatment (V2) and site (V3).

 Remark 2: The hypothesis of strongly consistent results in terms of relative risks may be
 tested with standard methods for odds-ratios (Bishop, Fienberg and Holland, 1975, p. 494).

 Remark 3: Equal partial odds-ratios are never collapsible in 23-tables with V2 k V3 and
 with outcome (V1) being marginally dependent on both of treatment (V2) and site (V3). This
 follows from (3.4) (iii) and Proposition 1. The further equivalencies in (3.4) (i) and (ii) imply,
 together with Proposition 2, that V3 has a moderating effect on the odds-ratio in all situations
 except in the more clear-cut ones, in which either outcome is independent of treatments given
 sites, (3.4) (i), or outcome is independent of sites given treatments, (3.4) (ii).

 Remark 4: If probabilities are estimated for 23-tables satisfying V2 j V3, then tables with
 V2 k V3 1 (V1 = i) for fixed, i are likely to show a reasonable fit to the hypothesis V2 j V3 I V, as
 well. One can then use the equivalence in (3.4) (iii) to discriminate between the two hypotheses:
 if statistical tests show V1 to depend conditionally or marginally on both of V2 and V3, then
 V2 t V3 I V1 should be rejected in favour of the less restrictive hypothesis V2 j V3 1 (V1 = i) for a
 fixed i.

 Proposition 3: In 23-contingency tables with outcome (V1) depending on sites (V3) given
 treatments (V2) the hypothesis of no moderating effect of site on the relative risk for V1 = 1 is
 equivalent to V2 l V3 and V2 J V3 I (V1 = 1). This result is an immediate consequence of
 Propositions I and 2.

 Remark. The combination of the two hypotheses in Proposition 3 does not fit into the
 log-linear model framework, but it suggests the generalisations treated in the next section.
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 4. THE LACK OF A MODERATING EFFECT ON RELATIVE RISKS

 The results of the previous two sections can be exploited to derive nontrivial sufficient
 conditions for the lack of a moderating effect of one background variable VM on the relative
 risk in general contingency tables having only nonzero cell probabilities HI. Let V1 be the
 response, V2 a treatment variable, VM be the moderator variable and V3 = V3U ... u VM- 1the
 remaining variables, with I, J, L and K categories, respectively. Then the partial relative risks
 for V1 = I under treatment j (V2 =j) compared to treatment j' (V2 =j'), given V3 and VM, are

 nII Ijkl- =1ljk/H +?jkl all k, 1 (4.1)
 Hl 1 I jlkl nlj'kl/H +j'kl

 Proposition 4: In an I x J x K x L-contingency table with Hlijkl > 0, sufficient conditions
 for the collapsibility over VM of the partial relative risks (4.1) that are equal for all levels of
 VM given V3 = k are

 V2 VM I V3V or V I VM I(V3, V2).

 This follows from the generalisation of the necessary and sufficient condition (A-2) in a 23-table

 to the general case with (4.1) and j = 1, j' = 2:

 Y10 l (H1 12k1 -l 1 12k1')( + Ikl r +2kl' - f+2k II+ Uk') = 0

 and the appropriate generalisations of (2.3) (iii) and (3.1) (ii).

 Proposition 5: In an I x J x K x L-contingency table with nijkl > , VM has no moderating
 effect on the relative risk (4.1)

 (i) given V3 = l if V2 VMI(V3, V1 = 1) and V21VMI V3,

 (ii) irrespective of V3 if V2J (VM, V3) (V1 = 1) and V2 1 (VM, V3).

 For the proof of Proposition 5 (i), note that the two independencies hold if and only if

 Hl jk,= Hljk+ H +kl/nl+k+ and H+jkl = + jk+ + +kl/+ +k+ -

 These imply that, for j = 1, j' = 2,

 HIkl HIlk+/H+lk+ [II I k+
 I12kl H l2k+ /H+2k+ nl 12k+

 so that the partial relative risks (4.1) are equal for all levels 1 of VM given V3 and collapsible
 over VM.

 Similarly, note that the two independencies in 5 (ii) are satisfied if and only if

 l jikl =Hlj+ + H1 +kl/H l + + + and n+jkl = H++ + HI+ +kl-

 These give, for j = 1, j' = 2,

 Hllllkl HI?l++/I+?++ H,1?l++
 HII 12k, H12+ +/II+2+ + Hll 12+ +

 so that the partial relative risks (4.1) are equal for all levels of V3 and VM and collapsible over

 V3 and VM. This completes the proof.

 Lemma: In an I x J x K x L-contingency table with HIijkl > 0 following a multinomial
 distribution for a given total number of observations,

 (i) V2 k VM I V3 and V2 Ij VM I (V3, V1) if and only if in addition either of V1 k V2 I (V3, VM) or
 V VM I(V2, V3) holds
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 (ii) V2 [ VM I V3 and V2 1 VM I (V3, V1 = 1) (i.e. VM has moderating effect on the relative risk
 (4.1) given the levels of V3) can be true, if no other independencies are satisfied.

 The first part (i) is a special case of Proposition 3 in Wermuth and Lauritzen (1983) and (ii)
 is proven with the estimated probabilities for the data presented in the next section.

 5. A SET OF DATA WITH OBSERVED RELATIVE RISKS BEING NEARLY COLLAPSIBLE

 From a follow-up investigation by Spielberger on smoking habits of students (Spielberger
 et al., 1984) observations on 2317 persons are summarised in a 2 x 3 x 3 x 2-table, where the
 variables are as follows,

 V1: smoking habits of the respondent

 V2: older sibling as role model

 V3: parents as role model

 V4: sex of the respondent.

 The first variable is a dichotomous response variable, V2 and V3 are the main influences of
 interest and V4 is a background variable.

 The first two columns in Table 2 show the observed frequencies nlik, and n +jkl = i njkl
 The third column contains the observed risks to smoke (i.e. for V1 = 1), Pl Ijkl = n1jk1/n+jk1l
 Those reflect what is supported by standard log-linear analyses, namely that smoking habits
 of the students (V1) depend conditionally on all three of V2, V3, V4; compare Table 3.
 From the hypotheses related to sex (V4) having no moderating effect on the relative risks to

 TABLE 2

 Observed and estimated* risks to smoke for 2317 students

 Observed Estimated Estimated relative risks
 Observed risks risks Siblings' Parents'

 frequencies to smoke to smoke effects effects
 Sex of Smoking Older P111k, P
 respon- behaviour siblings

 dent of parents PI 12k1 P1Ij5I
 nijkl n+jkl PlIjki P1 likl

 female none smokes no 1 4 .250 .223 1.09 .55
 do not smoke 37 172 .215 .205 .58
 smoke 26 52 .500 .545 2.66 .93

 one smokes no 8 18 .444 .407 1.16
 do not smoke 61 178 .343 .351
 smoke 103 174 .592 .587 1.67

 both smoke no 20 34 .588 .466 1.00 1.14
 do not smoke 97 191 .508 .465 1.32
 smoke 222 311 .714 .750 1.61 1.28

 male none smokes no 1 7 .143 .163 1.09 .46
 do not smoke 36 254 .142 .149 .49
 smoke 21 49 .429 .396 2.66 .77

 one smokes no 5 16 .313 .354 1.16
 do not smoke 48 152 .316 .306
 smoke 83 164 .506 .511 1.67

 both smoke no 9 32 .281 .402 1.00 1.14
 do not smoke 61 169 .361 .403 1.32
 smoke 233 340 .685 .650 1.61 1.27

 * Estimates as defined in (4.1)
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 TABLE 3

 Selected likelihood-ratio chi-squared test results for the data in Table 2

 Conditional inde-
 pendence given all

 Variables in remaining variables Degrees of

 the table for pair x2-value freedom p-value

 (VI, V2) 150.0 12 0.000
 (VI, 13) 104.5 12 0.000
 (VI. V4) 22.9 9 0.006

 (V,> V2, V3, V4) (V2. V3) 222.6 16 0.000
 (V2, V4) 15.7 12 0.205
 (V3I V4) 18.8 12 0.094

 (V2I V3) 322.6 8 0.000
 (V2, V3 I V4) (V2, V4) 7.3 6 0.291

 (V3I V4) 20.7 6 0.002

 smoke (compare Proposition 5), it turns out that only V4 II V2 I V3 in the marginal 3 x 3 x 2

 table of (V2, V3, V4) and V4 I V2 I(V3, V1) in the joint table of (V1, V2, V3, V4) fit reasonably
 though not well. These results and the Lemma, however, reveal that both of the hypotheses

 cannot be satisfied but that instead V4 JJ V2 1 V3 and V4j[ V2 I (V3, V1 = 1) may hold, that is, for
 known parental smoking patterns (V3), sex of the respondent has no moderating effect on the
 relative risks obtained by comparing situations that differ with respect to the role model older
 siblings provide.

 We proceed by computing smoothed estimates of risks as follows. First, the maximum-
 likelihood estimates 'mijkl of the cell frequencies mijkl are obtained under the independence
 hypothesis V4 J[ V2 1 V3 on the (V2, V3, V4)-margin (compare Birch, 1963). These are then modified
 to satisfy the additional hypothesis V4 I V2 I (V3, V1 = 1). More precisely we compute for the
 data at hand,

 (i) nijkl = fikl +jk + n+ +kl
 n+jkln+ +k+

 (ii) ljkl = lIk+ +kl m -m (4.1)
 mI +k+

 (iii) l ijkl = _ljkl
 m+jkl

 The probability estimates fl Ijkl fit both of the hypotheses V4 I[ V2 I (V3, V1 1) and V4 k V2 I V3.
 The estimates are reasonable in the sense that they provide a good approximation to the

 data in Table 3 and permit a more condensed description of the effects, since they fit conditions
 for the lack of a moderating effect of the background variable to the data. The most outstanding
 result for these data concerns families, in which parents do not smoke (V3 = 1): if a student
 has older siblings who smoke (V2 = 3), then the risk that he or she (V4 = 1 or V4 = 2) will
 also smoke is estimated to be 166% higher than for a student whose older siblings do not
 smoke (V2 = 2). This is reflected in the relative risk of 2.66 and holds even though the data
 convey a clear conditional dependence of the smoking behaviour (V1) on the sex of the student
 (V4): the risks to smoke are higher for females than for males at all levels of the remaining
 variables (V,, V3). The lack of a moderating effect of V4 on the relative risk of V1 = 1 for V2
 implies that one can estimate the effects of older siblings more stably than others estimated
 from the four-way table: they are in fact based on observations in a marginal table, that of V1,
 V2 and V3'. However, the statistical properties of our estimates in (4.1) still need to be investigated
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 and a formal goodness-of-fit test has to be developed. In a forthcoming paper it will be shown
 how our estimates relate to conditional (Andersen, 1973) and overall maximum-likelihood
 estimates.

 6. DISCUSSION

 During the last twenty years, the statistical literature on contingency tables strongly
 emphasised the use of log-linear models for analysing structures. Within this framework
 marginal independencies are, in general, not easily incorporated (see Birch, 1963). As a
 consequence, tables of the type discussed in this paper have received little or no attention
 and their nice properties have not been noticed. Model classes for contingency tables that
 permit one to impose structure on marginal tables, as well, only seem to have been proposed
 by Goodman (1973), Wermuth and Lauritzen (1983), Kiiveri, Speed and Carlin (1984) and
 Lauritzen and Wermuth (1984).

 Collapsibility in contingency tables has been defined either for probabilities (Lauritzen,
 1982; Asmussen and Edwards, 1983) or for interaction parameters (see Simpson, 1951; Darroch,
 1963; Plackett, 1969; Bishop, 1971; Whittemore, 1978). The former proved helpful in answering
 questions about the equivalence of models. However, the Yule-Simpson paradox can occur
 when conditions for collapsibility in probabilities are satisfied (examples have been given by
 Wermuth, 1986). This concept was neither designed to study conditions under which
 parameters measuring associations, other than the probabilities, may correctly be evaluated
 in a marginal table, nor is it appropriate for this purpose.

 We have shown that conditions for collapsibility of relative risks in tables having a
 dichotomous response variable involve independencies in the marginal distribution of the
 variables influencing the response (Proposition 1). The opposite pole to collapsibility of
 associations or interactions in contingency tables is the Yule-Simpson paradox, and this is
 caused by strong associations among the influences or regressor variables. The Yule-Simpson
 paradox can be seen as analogous to problems discussed, in other contexts, under the name
 of multicollinearity in multiple linear regression (Goldberger, 1964) or as the effects of
 nonorthogonal factors in analyses of variance (Snedecor and Cochran, 1967). Conditions for
 the absence of the Yule-Simpson paradox coincide with those under which relative risks
 possess nice properties: in the case of independent regressors, the marginal relative risk is a
 simple weighted average of the partial relative risks, equal partial relative risks are always
 collapsible (3.2), and the hypothesis of equal partial relative risks is equivalent to a conditional
 independence (3.3).

 In view of these results it no longer seem necessary to only approximate relative risks by
 odds-ratios, as has been proposed by Armitage (1975). One can plan studies in such a way
 that the resulting data fit hypotheses on marginal independencies perfectly. A decision on this
 has, of course, to depend on the purpose of the study: if in the target population of the study
 no marginal independencies are expected, then this can be an important argument against
 forcing them upon any sample. Many studies are, however, for reasons not discussed here,
 designed in such a way that a main variable of interest and a background variable behave
 like independent regressor variables: for instance, all multicentre clinical trials, in which equal
 numbers of patients are assigned to the treatments within sites, and all multicentre retrospective
 studies having equal numbers of patients with and without a given disease at all sites. Having
 equal numbers of patients within sites is just a special case of proportional allocation of
 observable units to treatments (V2) within sites (V3), and the latter is the empirical counterpart
 of the marginal independence of V2 and V3. Given such data, one can test the hypothesis that
 site has no moderating effect on the relative risk with standard methods (compare Proposition
 2).

 For more general types of data one can still relate the hypotheses of collapsibility over site
 and of no moderating effect of site on the relative risk to conditional independencies
 (Propositions 3, 4 and 5), and these permit us to reconcile seemingly contradictory results in
 data analysis (Compare the Lemma and Tables 2 and 3).
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 APPENDIX

 Here we prove Proposition I (ii). We assume again that all probabilities rIijk are positive.
 In a 23-table with equal partial relative risks for V1 = I given V3, this relative risk is collapsible

 over V3 if and only if VJ X V31 V2 or V2J V3.
 Note that the marginal risk for V1 = 1 given V2 =j is, for j = 1, 2,

 rilIli+ = 11IJ+ /ln+j+

 = (II il n11+jl + [I ILj211+j2)/fI +j . (A-1)
 With equal partial relative risks for V1 = I given V3 we have

 1l1l 1,, 1[1112

 lI 121 - 122

 and can express the marginal relative risk, by using (A-1), as

 fll I I+ =-1 I 11 (nl 2, n + I + -1 122 + 2)rI +2 +
 nl 12+ ll 121 (fl 12]1+21 + fll 122fl+22)fI+ 1 +

 This shows that the marginal relative risk equals the partial one if and only if

 (rIl 1121 lr + I + fl 22 fl+ 12)(fl +21 + fl +22) = (fl1 121 fl+ 21 + fl1 122 fl +22)(fl +I I + n1l2)-

 After rewriting we obtain

 (fl 121-r1 122)(fl+IIn +22-nl+21fl+12)=O, (A-2)
 which is satisfied if and only if

 fl___121 11+11n1?22
 n,1;2,= I or - = 1.
 fI 122 1l+2111+12

 These two conditions are, from (2.3) (iii) and (3.1) (ii), seen to be equivalent to V1 1[ V3 I (V2 = 2)
 and V2 0 V3, respectively. With the assumption of equal partial risks, the first implies V1 Jf V3 1 V2
 and the proof is complete.
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