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Abstract

A description of possibilities and limitations in analysing data with
the help of graphical chain models is attempted. For several sets of
data the research hypotheses and their evaluation in the light of the
empirical evidence are discussed. Thereby, it is pointed out, which
further developments regarding statistical theory, strategies in data
analysis and computational aspects appear desirable.

1 Introduction

[ appreciate the opportunity to give this tutorial on graphical chain models
at the 8th Symposium on Computational Statistics in Copenhagen.

Graphical chain models were introduced by Lauritzen and Wermuth (1984)
as tools for the analysis of relationships among variables, some of which are
qualitative and some quantitative. The investigated relations are symmetric
or directed associations taking into account that in some research situations
the variables are considered to be on equal footing and in others some vari-
ables are regarded as responses, some as potential influencing variables and
some as intermediate variables playing the role of both influence and re-
sponse. As the models apply to data from cross-sectional studies, causal
analyses are neither intended nor possible.

*This is the revised version of a tutorial given in Copenhagen

By now, the main aspects of mathematical and statistical theory are well
developed (Lauritzen and Wermuth, 1989), Frydenberg and Lauritzen, 1988).
First important results for computational procedures to perform maximum
likelihood estimation (Frydenberg and Edwards, 1988), as well as correspond-
ing computer programs (Edwards, 1988) are available, and a survey (Lau-
ritzen, 1988) as well as an expository paper have been written (Wermuth and
Lauritzen, 1988). Thus, the way has been paved to address those who might
actually want to use the models for data analyses and also those who can
develop computational procedures and software, still necessary to turn the
available methodology into a flexible, user-friendly tool for analysing data.

In view of this, I give only a very brief outline of the theoretical basis
(Section 3 and Appendix), while the strategies employed in analysing the
available data, as well as underlying principles and intentions are described
in some detail (Section 2). In the actual presentation of the rather hetero-
geneous research questions and analyses (Sections 4 and 6) the same type of
strategy has been applied throughout.

2 Employed strategy

Each strategy of evaluating empirical evidence for research purposes com-
prises the following elements

o formulation of the research purpose,

e judgements on whether the data rather support or rather contradict
the hypotheses, or whether the evidence is inconclusive,

e summary of results.

2.1 Formulating the research purpose

The substantive research questions, considered here, concern relations be-
tween variables. We call a total set of such relations an association structure.

The research purpose can be presented in a number of different ways. Ei-
ther a mere verbal description of subject-matter theories and their expected
implications can be given, or one can attempt to characterise expected struc-
tures with the help of graphs or with the help of parameters in statistical
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models, or both. In each instance, it is necessary to contemplate the impli-
cations of alternative formulations in order to be able to decide whether the
intended research purpose lends itself at all to an empirical examination and
whether some discrepancy has to be expected between what can actually be
observed and analysed and what should be investigated.

In this context not only measurement problems regarding the variables
are important, but also possible difficulties in adequately representing effects
or consequences of a subject-matter formulation in terms of parameters in
statistical models. It is my conviction that a judgement on the last aspect re-
quires an intensive communication between statisticians and subject-matter
researchers.

One example can illustrate this. In the social sciences it is common to
speak of direct as opposed to indirect relations between variables. There
are clearly different ways in which these notions may be understood and
be translated to have parameter equivalents in statistical models. It is the
task of the statistician to state most explicitly the precise meaning of the
parameters as well as the restrictions on the parameters, not only in a formal
way, but in a language which permits to reach a common understanding
between statistician and subject-matter researcher on the appropriateness
of the parameters in the given context.

In graphical chain models quantitative properties of observational units
correspond to continuous random variables, while qualitative -sometimes
also called categorical- variables correspond to discrete random variables.
Within that framework substantive research questions of the following two
broad types can be studied: (i) a variable pair has an only indirect relation,
(i1) a variable pair has a strong direct relation. We use the term substantive
research hypothesis to remind that both of (i) and (ii) are postulated, while
only (i) is assumed in a corresponding statistical model.

In order to obtain a precise meaning of such hypotheses a conscious decision
has to be made on which variables are to be considered simultaneously. We
call the variables belonging to one such set the concurrent variables. Within
graphical chain models any indirect and direct relation of a variable pair
means: given all of its remaining concurrent variables.

If certain distributional assumptions are satisfied, an indirect relation does
not only show up in certain parameters being zero, but can also be interpreted
as conditional independence given all of the remaining concurrent variables.

By using the notion of conditional independence it becomes possible to see
quite distinct parametric situations as analogous ones. This is formalised by
using so-called conditional independence graphs.

In such graphs discrete variables are drawn as dots and continuous vari-
ables as circles. An example with eight variables and three sets of concurrent
variables is given in Figure 1. The sets of concurrent variables are fixed with a
dependence chain which is an ordered partitioning of the set of all variables.
The dependence chain in Figure 1 is C = (a,b,¢) where, for instance, the
chain element a contains variables A, X, Y. The chain elements are drawn
as boxes. The dependence chain in Figure 1 defines three sets of concurrent
variables: aUbUe¢, bUc and c. Set a contains responses with potential influ-
ences in bU¢, b contains intermediate variables with potential influences in
¢, and in set ¢ no variable is considered to be a response. Within boxes there
is a line connecting two points if a strong direct relation is hypothesised. A
line indicates that the variables are thought of as being on equal footing so
that their relation is symmetric. If a strong direct relation is hypothesised for
variables in different boxes then there is an arrow pointing from the influence
to the response. There is at most one connection permitted for each variable
pair. Such a connection is called an edge.

Two graphs may coincide (i) in the number of variables, (ii) in the number
of edges, and (iii) in the type of edge for each variable pair, but differ in the
type of involved variables. Then, these graphs have quite different paramet-
ric implications, but an association structure with the same interpretation
regarding direct and indirect relations. Which parameters are attached to
any given conditional independence graph depends mainly on the type of
distributions of the involved variables. Examples are given in Sections 4 to
6 and in the Appendix.

2.2 Judgement of empirical evidence

When judgement of empirical evidence is treated here, I concentrate on those
aspects that help to decide which relations may be regarded as direct and
which as only indirect. This implies in no way that standard checks of plau-
sibility of observed values, of deviations from distributional assumptions or
of residual plots are to be neglected. The view is rather that these should
supplement the analyses, discussed here. Whenever I had access to the raw



a={AX,Y} b=(B,Z} c={C,U,D}

Figure 1: Example with four qualitative variables (A,B,C,D), four quantita-
tive variables (X,Y,Z,U). The dependence chain is C = (a,b,¢). It implies
the following three sets of concurrent variables

set 1: all variables (a UbUc),

set 2: bUc= {B,Z,C,U,D},

set 3: c.

data, such checks were, in fact, performed.

In order to get to a well-founded decision on those aspects of an association
structure, which are defined by complementary sets of direct and of only
indirect relations, a fairly standardised strategy was chosen:

o First, a test statistic and a corresponding p-value was computed for
each variable pair under the hypothesis that the pair is conditionally
independent given its remaining concurrent variables. Small p-values
were judged as evidence against an only indirect relation of this pair,
high p-values as an indication that the relation might be indirect, and
an intermediate value, like 0.01 < p < 0.2, to permit none of these two
conclusions.

e Second, the individual test results were judged in relation to the hy-
pothesised structure. The simplest (and rarest) case occurred when all
assumed direct relations corresponded to very small p-values and all
postulated indirect relations to very high ones. Then only two tasks
remained. It was checked (i) whether a good fit to the observations
was preserved after all independencies were assumed simultaneously,
and (ii) whether more detailed analyses of any apparently independent
pair gave no counterindications. My method of choice for (ii) was to
look at studentised interactions, i.e. estimates of interactions divided
by their estimated asymptotic standard deviation, computed after util-
ising results by Dempster (1973).

If only the postulated direct relations were unsupported by the ob-
servations the substantive research hypothesis had to be modified by
postulating additional indirect relations.

On the other hand, if the assumption of any only indirect relation
was contradicted by what had been observed, then the hypothesised
structure was rejected altogether and a search for a sensible revised
hypothesis was performed.

e Third, alternative structures which appeared to fit equally well and
structures suggested just by looking at the data, were summarised with
the help of corresponding graphs. Their meaning is to be contemplated
in discussions with the researchers in the subject-matter areas.



2.3 Summarising results

Summaries of the statistical results concerning association structures should
not stop with reporting values of test statistics or corresponding well-fitting
graphs. What is actually needed are simple, interpretable data summaries.
However, in general, a decision on which measures of association represent
the best way to summarise results is not easy. A clear advantage of stan-
dardised, sample-size, and unit-independent measures of associations, such
as correlations or path coefficients, is that they facilitate a judgement on
the relative importance of different variables and on whether the smooth-

‘ ing of data has led to large departures from the observations or not. Such

standardised measures are not yet available for pure qualitative or for mixed
data, and more experience is necessary regarding the ease in interpreting and
communicating different types of summaries.

3 Theoretical basis

The basic distributional assumption used for deriving the theoretical results
on graphical chain models is a particular joint distribution of discrete and
continuous variables named CG-distribution. It is defined by a conditional
joint Gaussian distribution of continuous variables given the discrete vari-
ables, and by positive probabilities for each level combination of the discrete
variables. As explained in more detail below a graphical chain model is spec-
ified by distributional assumptions based on CG-distributions together with
a set of conditional independence restrictions.

The use of this distribution for deriving the theoretical results does not
imply that graphical chain models should only be used if observable variables
follow a CG-distribution, but only that the described techniques are best in
a certain sense if this assumption is satisfied. For graphical chain models
with only continuous variables the same parameters and estimates can be
obtained by just assuming linear relations but not a joint normal distribution
(Wermuth 1988).

Graphical chain models may be viewed as a formalisation of common pro-
cesses in actual data analyses, of looking at levels and differences in means,
standard deviations, correlations and counts. The reason is that these famil-
jar measures appear as parameters in a CG-distribution and are estimated

by corresponding sample equivalents.

If the joint distribution of a set of ¢ continuous variables, denoted by
I' = {X,Y,2,U,...} and a set of p discrete variables denoted by A =
{A,B,C,D,...} is a CG-distribution, then the joint density of all variables
(V =T UA) can be written with the help of moment characteristics. These
are the probabilities II;, the means g, = (uf, 4!, ...)T, and the conditional
covariance matrices ;. The joint density is then a product of conditional
Gaussian densities grja, and of the marginal probability function ga =1II; :

1\ o 1 -
gv = grjada = [(\/—2—7;) | 2] l’621’{—5()( — ) B (x = )} T
where | = 1,..., L denote the level combinations of the discrete variables,

xT = (z,y,2,u,...) are the realisations of the continuous variables. Occa-
sionally, K is referred to as concentration matrix having concentrations as
off-diagonal elements and precisions along the diagonal.

Equivalently, the logarithm of the density may be written in terms of
canonical characteristics as

1
loggv = d; + h,Tx - EXTK,X,

where the discrete, linear and quadratic canonical characteristics are denoted
by d;, h], K, respectively.

The relations between the two sets of characteristics (di, h;,K;) and
(14, p1, X4) are

1

di = log Il — 7{q log(2m) + log | B |+ B},
hl = El—lp'h

K = 2,‘1.

A CG-regression is a conditional distribution derived from a CG-distribution
by conditioning an arbitrary subset of variables on all of the remaining vari-
ables. In graphical chain models CG-regressions are used as building blocks.

Let, as an example, C = (a, b, ) be an ordered partitioning of the variable
set V = aUbUc. The assumed joint density fy of all variables in a graphical
chain model can then be written as

fV = Galbc gblc Yc-
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Here gap and gy denote densities of CG-regressions, and g. the density of
a CG-distribution. The dependence chain C = (a,b,c) defines three sets of
concurrent variables: aUbU¢, bUc and c.

Graplical chain models for fy result by requiring selected variable pairs to
be conditionally independent given the remaining concurrent variables. Such
restrictions on a variable pair correspond to zero two-factor and zero higher-
order—factor interactions involving this variable pair in a parametrisation of
the associated CG-distribution in terms of interactions. An example for this
parametrisation in the case of V = {A,B,X,Y} and C = (V) is

In g(i,j,z,y) = A (/\."+Af+A;‘B)
( ABX)

VR Rl e
(" + 0¥ + 0P + 94 )y

(¢ + 'lpr + ll)B/\' + ,‘/)ABX)
(wY +¢AY +¢BY + l/}ABY)

— (¢XY +¢'Axv +¢Jaxy + ABXY) 2y

Whenever there are no continuous concurrent variables the A-interactions
are identical to interactions in a log-linear model (compare, e.g., Bishop et al.,
1975). Whenever there are no discrete concurrent variables the two-factor ¢
interactions are identical to the concentrations in covariance selection models
(Dempster, 1972). Mixed interactions, like 2, A7, involving both discrete
and continuous variables, have not seem to have appeared in other statistical
models. Interactions in a CG-distribution are related to, but distinct from
interactions in analyses of variance models. For a discussion of this notion
in the latter context see Cox (1984).

wlmwle + 4+ 4

4 Case studies with only quantitative variables

The examples with quantitative variables only contain

e asimple one where the hypothesised structure fitted well and the results
on the association structure could be confirmed in several samples

o another one where the observations contradicted one of the assumed
independencies leading to a search for a sensible revised hypothesis.

4.1 Personality characteristics
4.1.1 The substantive research hypothesis

The variables anxiety and anger are of central importance in trying to un-
derstand effects of stress and of coping with stressful situations. Spielberger
et al. (1970, 1983) have designed questionnaires which are to measure the
variables viewed as personality characteristics on the one hand (called trait)
and as capturing behaviour considered to be specific to particular situations
(called state) on the other hand. A discussion, as to whether the distinction
between the two constructs may be adequately measured with questionnaires
is ongoing.

If state is measured in a fairly neutral setting then a plausible hypothesis
concerning these variables is derived from the following. Associations of a
linear type are considered to be appropriate descriptions of pairwise relations
between the variables. Expectations regarding the correlation structure of
the four variables are : (i) all marginal correlations are positive and of mod-
erate size, while no partial correlation is negative, (ii) emotions in particular
situations (states) are influenced by the dispositions (traits) of a person and
not conversely, (iii) if either state variable is predicted in terms of the other
three variables then there is no direct dependence on the other trait variable.

A reformulation of (i) and (ii) in terms of a graphical chain model is dis-
played in Figure 2. Another, equivalent formulation (compare Appendix) in
terms of the graph of so-called block recursive linear regression equations
(Wermuth, 1988) is shown in Figure 3. The parametric implications of this
hypothesised structure are expressed with the help of a matrix of linear re-
gression coefficients in Table 1.
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Figure 4 and Figure 5 illustrate that the same independencies can be spec-
ified in a model with no responses, and also in another one in which trait
variables are predicted in terms of state variables. The corresponding sta-
tistical models are, in fact, equivalent. This means that parameters and
estimates for the one model may be obtained by one-to-one transformations
from the other. The equivalence of statistical models in which the role of
responses and influences are reversed, explain why causal analyses are not
possible.

4.1.2 The empirical evidence and summaries

The data in Table 2 indicate a good agreement between hypothesis and ob-
servations, since the two relevant partial correlations are close to zero.

In parametric terms the good fit can be seen either in the covariance na-
trix, in the concentration matrix, or in the matrix of path coeflicients (Ta-
ble 3), defined as linear regression coeflicients of standardised variables. Path
coefficients are obtained by computing least squares estimates from the (es-
timated) correlation matrix.

It has been a traditon in univariate recursive path analysis (Wright, 1934)
to draw a graph of the structure (actually a chain graph) and to attach the
estimated path coefficients and standardised residual variances to them, as
in Figure 6. As shown here, this practice may be retained, when the models
are not univariate recursive, but block-recursive.

11

a={X)Y) b={ZU}

State Bre. yu Trait
anxiet x O Z i

y anxiety

Px y.zu Pz
State Y O u Trait
anger B anger

yu. xz

Figure 2: A research hypothesis concerning personality characteristics
pertaining to special situations (state) and to typical attributes of the
person (trait) expressed as chain graph having chain C = (a,b) and

XlU I(Z)y)i Y_”_Z |(U1X) or ﬂtu.yz = ﬂyz.zu =0

a={X,Y} b={Z,U}
€, .
State Trait
anxiety Brzyu anxiety
X - z
Byx .uz B Xy.zu p m
Y "~ U
State / Byquz Trait
anger e, anger

Figure 3: The same research hypothesis but a different parametrisation than
in Figure 2 expressed with a graph for block-recursive linear regression equa-
tions and ﬂzu.yz = ﬂy:.ru =0
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a=[(X,Y,ZU})

State X Prz.yu Trait
anxiety anxiety
p,‘y. - Pau.xy
State Y U Trait
anger Pyuxz anger

Figure 4: An equivalent statistical model as in Figure 2, but a different
research hypothesis, since there are no response variables: C

Pruy: = Pyzxy = 0

= (a) and

=(X,Y]} b=(ZU)
Bzx yu
State ) Trait
anxiety X - 2 anxiety
p xy Pau. Xy
State v > U Trait
anger By xe anger

Figure 5: An equivalent statistical model as in Figure 2, but a differ-
ent research hypothesis, since there is a different set of response variables:

C= (bva) and ﬂzy.uz = ﬁur.zy =0
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Table 1: An equivalent hypothesis as in Figure 2 expressed with a correspond-
ing matrix of block-recursive regression coefficients (compare Appendix)

Variable X Y Z U
State anx  State ang  Trait anx  Trait ang

X:= State anxiety 1 - ﬂxy,zu - ﬂxz‘yu 0

Y:= State anger — Byx.zu 1 0 = Byuxz
Z := Trait anxiety 0 0 1 — Biu
U:= Trait anger 0 0 — Buz 1
Variable’s chain element a a b b

‘able 2: Observed marginal correlations (lower half) and observed partial
correlations given all remaining variables (upper half), n=88 females; Data
from Hodapp, 1988

Variable X Y Z U

State anx State ang Trait anx Trait ang

X:= State anxiety 1 57 40 -.11
Y:= State anger 71 1 -.03 .28
Z := Trait anxiety .63 .54 1 .58
U:= Trait anger .48 54 .70 1
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Table 3: Path coefficients (off-diagonal) and one minus coefficients of de-
termination (diagonal), as observed (first row), and as estimated under the
hypothesis of Figure 2 (second row); n=88

Variable X Y Z U

State anx State ang Trait anx Trait ang

X:= State anxiety .40 .54 41 -.11
41 .52 .35 .00
Y:= State anger .60 44 —.03 27
.59 .45 .00 .23
Z := Trait anxiety .50 .7
.50 71
U:= Trait anger .50
.50
State 4 Trait
anxiety 35 anxiety
X - yA
59 .52 71
Y g U
State / 23 Trait
anger o anger

Figure 6: Presentation of results with path coefficients estimated under the
hypothesis (Figure 1) (n=88)
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4.1.3 An alternative, disjoint hypothesis treatable within the frame-
work of linear structural equations

The hypothesis, treated above, cannot be studied within the context of tra-
ditional structural equations (Goldberger, 1964). If one wants to use this
latter framework one first has to remove overparametrisation in the equa-
tions, leading, for instance, to Figure 7, and one may then impose additional
restrictions, to get to a hypothesis as in Figure 8.

Though, in general, in pictures of traditional structural equation models no
simple interpretations are possible of missing arrows, they correspond to con-
ditional independencies in this particular example. As these independencies
concern two of the marginal distribution and hence do not imply indepen-
dencies in the joint distribution of all four variables, the specification has
been called incomplete, elsewhere (Wermuth, 1988). The test result shows
a very poor agreement of this hypothesis with the observations: the value
of the likelihood-ratio chi-square statistic on 2 degrees of freedom is 88.8 for
0143 = 0234 =0.

4.1.4 Confirmation of results in further samples

The remaining part in this section presents analogous data and tests for the
same variables, but for much larger samples of female (Table 4, Table 5) and
male (Table 6, Table 7) college students. It is reassuring to see exactly the
same type of structure in both samples. The natural follow-up question is
whether sex of the respondents has a moderating effect (compare Wermuth,
1989) on the structure. This leads, for instance, to the hypothesis concerning
mixed variables in Figure 9.

The corresponding test results (Table 8) appear to indicate a good fit. The
tests have all more than one degree of freedom; thus more detailed analyses
become necessary. A look at relevant studentised interactions in Table 9,
which should, roughly, behave like standard normal deviates, provides reas-
suring evidence. Since there is not a single large value (say larger than two),
there is no indication for a poor fit.

The results of this analysis are displayed in terms of observed correlations
as well as correlations estimated under the hypothesis of Figure 9 in Table 10.
It would be preferable to report path coeflicients, instead. However, no
software is available yet to permit easy calculations.
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State anxiety Trait anxiety

m x sz.u Z
. x \04

Pa

y Y ﬂyu .z U
State anger Trait anger

Figure 7: A saturated (exactly identified) structural equation model for the
personality characteristics, which is identical to a multivariate regression
model

State anxiety Trait anxiety

X B z
o) XzZ.u
’ X \O<

?
1

-

Y Y Byu.z u
State anger Trait anger

Figure 8: A research hypothesis defined with a structural equation model for
personality characteristics implying Bzu. = Byzu =0
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Table 4: Observed marginal correlations (lower half) and observed partial
correlations given all remaining varaiables (upper half), and further data
summaries, n=684 females; Data from Spielberger

Variable X Y Z U
State anx State ang Trait anx Trait ang

X:= State anxiety 1 45 A7 -.04
Y:= State anger .61 1 .03 .32

Z := Trait anxiety .62 AT 1 .32
U:= Trait anger .39 .50 49 1

Mean 18.87 15.23 21.20 23.42
Standard Deviation 6.10 6.70 5.68 6.57
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Table 5: Test results for conditional independencies of selected variable pairs,

n=684
Value of Degrees Corresponding

Concurrent  chi-square of fractile
Pairs variables statistic  freedom or p-value
(X,Y) XYZU 153.90 1 <. 001
(X,Z) XYZU 171.51 1 <. 00t
(X,U):=(State anx, Trait ang) XYZU 1.22 1 .268
(Y,Z) :=(State ang, Trait anx) XYZU 0.33 1 .572
(Y,U) XYZU 78.04 1 < .001
(Z,U) XYZU 72.98 1 < .001
(Z,U) YAl 189.73 1 < .001
(X, U)&{Y,2) XYZU 2.10 2 .350
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Table 6: Observed marginal correlations (lower half) and observed partial
correlations given all remaining variables (upper half), and further data sum-
maries, n=588 males; Data from Spielberger

Variable X Y VA U

State anx State ang Trait anx Trait ang

X:= State anxiety 1 .46 43 —.02

Y:= State anger .60 1 .06 .26

Z := Trait anxiety .58 A3 1 25

U:= Trait anger 31 41 40 1

Mean 18.15 14.75 19.58 23.70

Standard Deviation 5.57 6.01 5.22 6.22
20



Table 7: Test results for conditional independencies of selected variable pairs,

n=>538
Value of Degrees Corresponding

Concurrent chi-square of fractile
Pairs variables statistic  freedom or p-value
(X)Y) XYZU 139.27 1 < .001
(X,2) XYZU 122.94 1 < .001
(X,U):=(State anx, Trait ang) XYZU 0.30 1 .590
(Y,Z) :=(State ang, Trait anx) XYZU 2.10 1 .143
(Y,U) XYZU 41.52 1 < .001
(Z,0) XYZU 38.43 1 < .001
(Z,U) ZU 100.58 1 < .001
(X, U)&(Y,Z) XYZU 2.93 2 .229

21

a={X,Y} b={Z,U} c={A}
Trait
State X O- Z  anxiety Gender
anxiety
\
e A
L —]
State /
anger y V= U Trait
anger

Figure 9: A research hypothesis expressed as chain graph having chain
C = (a,b,¢) and implying that the structure among X,Y,Z,U (as expressed
in Figure 2) is not moderated by gender of respondent: (X,Y) || A|(Z,U),
X JUNY,2),and Y || Z|(X,U) T
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Table 8: Test results for conditional independencies of selected variable pairs,

Table 9: Studentised interactions estimated for level i=1 of A under the saturated
model for data on personality characteristics, n=1272

Involved variable pair

n=1272
Value of Degrees Corresponding

Concurrent  chi-square of fractile

Pairs variables statistic  freedom or p-value
(X,Y) XYZUA 293.17 2 < .001
(X,Z) XYZUA 294.45 2 < .001
. (X,U):= (State anx, Trait ang) XYZUA 1.52 2 .529
(X,A):= (State anx, Gender) XYZUA 3.50 5 .626
(Y,Z):= (State ang, Trait anx) XYZUA 2.43 2 .296
(Y,U) XYZUA 119.56 2 < .001
(Y,A):= (State ang, Gender) XYZUA 6.45 5 .264
(Z,0) XYZUA 111.41 2 < .001
(Z,A) XYZUA 35.05 5 < .001
(U,A) XYZUA 13.84 5 .017
(2,U) ZUA 290.31 2 < .001
(Z2,A) ZUA 44.15 3 < .001
(U,A) ZUA 14.74 3 .002
(X,U)&(Y,Z2)&(X,A)&(Y,A) XYZUA 13.99 11 .233

23

Interaction (X,A):= (Y,A):= (X,U0):= (Y,2):=
type name (St anx,Gen) (St ang,Gen) (St anx,Tr ang) (St ang,Tr anx)
mixed X .96
linear Y Sl
mixed PpAaX 1.30
quadratic  ¢AY 1.86

PpAxY -1.10 -1.10
l/)AXZ 04
PAXY —.25 —.25
AYZ 68 .68
¢AYU 72
pure Pprv 1.07
quadratic y¥? —1.54
24



Table 10: Observed correlations (first row) and correlations esti-
mated under the hypothesis of Figure 9 (second row) (compare

also Appendix, Example 2)

A := gender

females (n = 684)

Variable

X Y Z U

State anx State ang Trait anx Trait ang

X:= State anxiety 1.00
1.00
Y:= State anger .61 1.00
.61 1.00
Z := Trait anxiety .62 A7 1.00
.62 .45 1.00
U:= Trait anger .39 .49 49 1.00
41 .48 .49 1.00
males (n = 588)
Variable X Y Z U

State anx State ang Trait anx Trait ang

X:= State anxiety
Y:= State anger
Z := Trait anxiety

U:= Trait anger

1.00
1.00
.60 1.00
.59 1.00
.59 43 1.00
.58 .39 1.00
31 41 40 1.00
.35 43 .40 1.00
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4.2 Blood pressure

In recent work on stress and coping with stressful events it is, typically, at-
tempted to consider the interplay of physiological, emotional, contitutional
and environmental variables. From a larger study (Hodapp et al., 1988)
a subset of variables was selected for our purpose of investigating the as-
sociation structure among several quantitative variables. Observations are
available for 98 male respondents on

- variables for systolic and diastolic blood pressure, which are based on means
of two measurements taken with a sphygmomanometer before and after com-
pleting questionnaires,

- variables for two emotions, for anxiety at work and for anger at work, which
are defined as sum scores of questionnaires,

- two constitutional factors, on an index for the weight of a respondent de-
fined as quotient of weight in kilogram to height in centimeters and on age,
recorded in years.

We assume that the dependence of the physiological variables from both
of emotional and constitutional factors is of interest, as well as the type
of dependence of the emotions from the constitutional factors alone. This
permits to define a dependence chain with three elements for the six variables
such that the different chain elements refer to physiological, emotional and
constitutional variables, respectively.

The hypothesis displayed as graph in Figure 10 states that the emotions
are both direct influences for one of the blood pressure variables, and both
of the latter depend on age and weight. Furthermore, both measures for
emotions are expected to be dependent on age but not on weight. Observed
summary statistics are given in Table 11. The many small values of corre-
lation coefficients suggest that from this sample not all of the hypothesised
dependencies will be established as being substantial.

Table 12 shows test results for the data in Table 11. A high value of a
chi-square statistic, like 8.51 with one degree of freedom for the hypothesised
only indirect relation of pair (Y,U) (having p-value .004) indicates a poor
agreement of the hypothesis py, z; = 0 with the observations. Given the
poor fit for pair (Y,U) alone, the whole hypothesis of Figure 10 has to be
revised.

Thus we try to decide for each of the sets of concurrent variables, sepa-
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rately, which relations can be regarded as being only indirect. The four pairs
(X,Z), (X,W), (Y,2) and (Y,V) appear to have zero partial correlations if
looked at alone and there is still a good fit (1.94 with p-value .748) if zero
partial correlations are requested for all four pairs, simultaneously.

A decision for pair (X,V) is less clear-cut, since looked at alone, there is
neither evidence for a strong relation nor for a lack of linear relation (1.72
with p-value .186). The global test statistic for (X,V), (X,2), (X,W), (Y,2)
and (Y,V) to have zero partial correlations, simultaneously, does not show
a poor fit (4.19 having p-value .525), but the contribution of (X,V) to this
statistic is not small (2.23 with p-value = .131). If one decides to regard all
of these five pairs to have no direct relation then no further pair involving
X or Y can be selected, in addition. This follows from the test result for
pair (Y,W) and from pairs (X,Y), (X,U), (Y,U) all having larger partial
correlations than pair (Y,W). ‘

The value of the statistic for p,u.w = 0 in addition to having p,yuw = 0
is with 3.73 (having p-value .05) too large to speak for a good fit. These
considerations lead to the revised hypothesis about the structure displayed
in Figure 11. This graph shows that even when there are only a few vari-
ables, pictures of the structures may be drawn in a confusing way. It would
be nice to have computer programs, to draw good pictures and to display,
automatically, graphs of equivalent models.

Table 13 shows how well the standardised regression coefficients, the path
coefficients computed from the observed covariance matrix are in agreement
with those estimated under the hypothesis of Figure 11.
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Figure 10: A research hypothesis concerning blood pressure and emotions
expressed as chain graph having chainC = (a,b,c) and Y || (Z,U)|(X,V, W),
(Z2,U) | WiV
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Table 11: Observed marginal correlations and other summary statistics for
n=98 males, Hodapp et al., 1988

Variable X Y Z U w \Y
Syst Diast Anx Ang Wght  Age

X := Systolic blood pressure 1

Y := Diastolic blood pressure 738 1

Z := Anxiety at work -.033 -.059 1

U := Anger at work 195 -.042 353 1

W:= Weight relative to height 351 317 -102 211 1

V= Age 2270 139 -.058 283 390 1

Mean 128.31 85.46 8.23 4.38 42 32.74

Standard deviation 13.47 11.38 343 2.90 .04 11.67
29

Table 12: Test results for zero partial correlation given all of the remaining
concurrent variables; to data of Table 11

Value of  Degrees Corresponding

Concurrent  chi-square of fractile

Pairs variables statistic  freedom or p-value
(X,Y) XYZUVW 76.35 1 <.001
(X,Z) := (Syst, Anx) XYZUVW 0.67 1 .581
(X,U0) XYZUVW 8.14 1 .005
(X,V) XYZUVW 1.72 1 .186
(X,W):= (Syst, Wght) XYZUVW 0.25 1 .625
(Y,2) := (Diast, Anx) XYZUVW 0.58 1 .549
(Y,U) XYZUVW 8.51 1 .004
(Y,V) := (Diast, Age) XYZUVW 0.42 1 .526
(Y,W) XYZUVW 2.78 1 .092
(Z,U) ZUVW 17.06 1 <.001
(Z,V) := (Anx, Age) ZUVW 1.36 1 .241
(Z,W) ZUVW 2.00 1 153
(U,V) ZUVW 6.30 1 .012
(U,W) ZUVW 2.55 1 .106
(V,W) VW 16.20 1 <.001
(X,Z)&(X,W)&(Y,2)&(Y,V) XYZUVW 1.94 4 .748
(X,V) in addition XYZUVW 2.23 1 131
both of the above XYZUVW 4.19 5 .525
(Y,W) in addition XYZUVW 11.59 1 <.001
both of the above XYZUVW 15.79 6 .015
(Z,W) in addition to (Z,V) ZUVW 3.713 1 005
both ZUVW 5.10 2 076

30



Table 13: Path cocfficients as observed (first row) and as

estimated (second row) under the hypothesis of Figure 11 a={X.Y} b={Z,U} c=(W.V})
. w
Systolic blood '
Variable X Y Z U W \% pressure Weight
Syst Diast Anx Ang Wght  Age State

X

anxiety
X := Syst 1.000  -.719  .057 -.212 -.036 -.093 \

AN

1.000 -.733 .000 -.206 .000 -.071 §
Y := Diast  -752 1.000 -.054 221 -.124 047 =
-738 1.000 .000 .216 -.139 .000
7 := Anx 1000 -417  .143 120 -
1.000 -.392 .185 .000 v - |
U := Ang -383 1.000 -.155 -.245 o anger \
-362 1.000 -.169 -.203 Diastolic blood \OAge
. pressure
W:= Weight 1.000 -.390 v
1.000 -.390
V= Age -.390 1.000
-390 1.000

Figure 11: A revised research hypothesis concerning blood pressure and emo-
tions expressed as chain graph having chain C = (a,b,¢)
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5 A case study for qualitative variables: peri-
natal mortality

Since the analysis of only categorical data is well developed (see, e.g., Bishop
et al.), we give only a simple example, one which indicates that a condi-
tional independence may show up even when the total sainple size becomes
extremely large.

A hypothesis concerning the relative importance of two alternative poten-
tial influences for perinatal mortality is displayed in Figure 12. Definitions
for the categories of these variables and of a related risk factor are presented
in Table 15. The increase in risk (Table 16) for perinatal mortality by a fac-
tor of more than four for those women, wlo are unable to report the survival
status of their previous child, is to be compared with the risks for women
never pregnant before (Table 17) and with those due to known risk factors
like vaginal bleeding (Table 18). The test results (Table 14) as well as inspec-
tion of standardised interactions (Table 19) indicate clearly that skin colour
is by far the inferior of the two considered influences for perinatal mortality.

A further known aspect of analyses with very large sample sizes is il-
lustrated with the marginal table (Table 20) concerning survival status of
previous child and skin color: though no appreciable differences in rates are
observed, the studentised interactions become rather large. The reason is
that this standardisation is sample size-dependent. This is just one instance
illustrating that statistical significance need not coincide with subject matter
relevance.
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a=(A) b= {B,C}

. Survival state last
Perinatal prior child
mortality B

| —

o<
A C

Skin colour

Figure 12: A research hypothesis expressed with a graph having chain
C = (a, b) implying H,j;, = IIy;

Table 14: Tests for conditional independencies, 13801
women, NIH

Value of  Degrees Corresponding

Concurrent  chi-square of fractile
Pair variables statistic  freedom or p-value
(AB)  ABC 279.12 8 <.001
(A,C) ABC 6.03 5 .302
(B,C) ABC 71.99 8 <.001
(B,C) BC 68.81 4 <.001
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Table 16: Counts and other data summaries for perinatal deaths
(A), survival state of last prior child (B), and skin colour of
woman{(C); Data for 13801 women, National Institutes of Health
(1972) p.187

Table 15: Definition of categories of
variables in the mortality data

A: inalt
=1 P:Srmal al death Levels  Observed Observed Estimates under I, = IIy;
1;2: io A B C count % -rate count %o -rate relative risk
1 1 1 270 28.7 297.5 31.6
B: Survival state of last prior child f ; } 9143 9270 9122'2 30.9 )
=1 livi : : -
323, child death 2 2 1 108 107.6
Tk 1 3 1 134 74.0 132.8 73.3 2.3
j=3: fetal death 2 3 1 1678 1679.2
=4: tal death :
125, L’E‘l’;z:n ca 1 4 1 17 89.5 193 1015 3.2
’ 2 4 1 173 170.7
1 5 1 56 125.8 59.3 133.4 4.2
C: Skin colour of woman 2 5 1 389 385.7
k=1: light
o o 11 2 3 341 3435 316
’ 2 1 2 10502 10529.5
1 2 2 5 33.6 4.6 30.9 1
. . 2 2 2 144 144.4
D: Occurrence of vaginal bleeding
I=1: never during pregnancy ; g g 1;2; 2.2 1;2?; 3.3 23
1=2: first trimest :
T st nmester 14 2 37 108.2 347 1015 3.2
1=3: second trimester 9 4 o 305 3073
1=4: third trimest '
e tmester 15 2 16 143.8 427 1334 4.2
2 5 2 274 277.3
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Table 17: Counts and other
data summaries for perinatal
deaths (A) and skin colour
(C), women never pregnant
before; Data for 13438 women,

NI, p.187

Table 18: Counts and other
data summarics for perinatal
deaths (A) and time of first
occurrence of vaginal bleed-
ing during pregnancy (D) for
woinan with light skin colour;

19048 woinen, NIH, p.399

Table 19: Studentised interactions under the sat-
urated model for mortality data; 13801 women,
NIH

Levels Observed Observed
A C count %o -rate

1 1 188 26.6
1 6884

1 2 232 36.4

2 2 6134

Levels Observed Observed
A D count  %g-rate

I 1 304 21.4
2 1 13876
12 172 1.5
2 2 2047
13 113 128.9
2 3 764
1 4 79 44.6
2 4 1693
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Levels Two-factor Levels Three-factor
A B C A's A B C A's
1 1 —-8.12 1 1 1 —-.17
1 2 -2.57 1 2 1 -.12
1 3 1.72 1 3 1 87
1 4 3.34 1 4 1 -.21
1 5 7.13 1 5 1 —.02
1 1 —.89

1 1 .08

2 1 —.55

3 1 .90

4 1 -3.00

5 1 4.30
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Table 20: Counts and other data summaries for survival state
of last prior child (B) and skin colour of woman (C); 13801

women, NIH

Levels Observed Observed estimates under Il = 11,
B C count % -rate % -rate  studentised ABC
1 1 9418 78.6 78.8 .75

2 1 111 0.9 1.0 —-1.21

3 1 1812 15.1 15.3 35

4 1 190 1.6 2.1 —-5.36

5 1 445 3.7 3.0 7.56

1 2 10873 78.8

2 2 149 1.1

3 2 2117 15.3

4 2 342 2.5

5 2 320 2.3
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6 A case study with both qualitative and
quantitative variables

This last section presents first analyses of a type of structure which is the
most interesting in the sense that adequate statistical models to analyse it
have been lacking in the past.

In Kohlmann et al. (1988) it is well described how psychologists develop
theories concerning possible consequences for the children if parents employ
particular educational styles. We use here just four of their variables, all
of which are observed as sum scores of questionnaires. The relevant part of
the theory concerning the four variables, for which summary statistics are
displayed in Table 21, may be summarised as follows.

Inconsistent behaviour of a parent is expected to increase trait anxiety in
the child. If a particular coping strategy with stress, called high sensitisation,
is preferred, than more anxiety is expected to be reported by the child than if
sensitisation is low. It is further hypothesised that supportive behavior of one
parent may decrease the consequences of inconsistent behavior of the other
parent. A direct relation between the coping strategy and the personality
characteristic anxiety is assumed, while for a prediction of sensitisation the
supportive behavior of a parent is considered to be not directly relevant.

One translation of parts of these expectations into a graphical chain model
is given with Figure 6. Unfortunately, no computer programs are available
yet to estimate and test all parameters in this model. Also, more research is
necded on easily interpretable measures of association.

We have proceeded to analyse only undirected relations and found the
structure displayed in Figure 14 to be well-fitting. Whether a sensible subject-
matter interpretation coresponding to this structure may be found still needs
to be discussed with psychologists.

The decision on the good fit was based on the usual tests for variable
pairs (compare Table 22) and on the more detailed analyses in terms of
studentised interactions (compare Table 23). The latter reveal that a good fit
to indirect relations can at most be assumed for two variable pairs, for (A,B)
and for (B,Y). All other pairs have at least one relatively large studentised
interaction, one with value larger than two.

Qualitatively similar results on the association of pair (A,B) are obtained
in an analysis of anxiety (X) as response and A,Y, and B as influences within
the context of a linear regression with indicator variables. Such an analysis
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=[A’X] b=(Y,B]

Sensitisation, Inconsistency,
C;’ﬁ;l 1sation, - o < Y mother
Trait anxiety - Su
: ’ pport,
child X B father

Figure 13: A research hypothesis for the educational styles defined with a
graph having chain C = (a,b), implying A || B|(X,Y) or Il;jy; = Iz,

a={A,B XY}
Sensitisation, Inconsistency,
child A Y mother
Trait anxiety, Support,
child X B father

Figure 14: A structure present in the data on educational styles, reflected in
the undirected graph, implying B || (A,Y) | X or Hjjzyi = 1112

is possible since the test for homogeneity of the residual variance of X given
A,Y,B (Table 24) indicates a reasonable agreement with this homogeneity,
i.e. with an essential assumption in regressions with indicator variables. In
this regression the interactions ABY and AB can be set to zero while the
interactions AY and BY cannot be set to zero . This implies for a cor-
responding joint CG-distribution that the interactions involving pair (A,B)
are zero while the three-factor interactions AXY and BXY are nonzero.
The observed summary statistics displayed in Table 21 as well as the ones
obtained after assuming conditional independence just for the pair (A,B) (no
direct dependence of the coping strategy sensitisation on support), displayed

in Table 25, show an amazing agreement to the hypothesised strengths and
directions of associations.
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Table 21: Simple correlation coefficients and further summary statistics for the data on edu-

(1988)

cational styles, n=117; Data from Kohlmann et. al.

Supportive behavior father

B:=

high
Sensitisation, child

low
Sensitisation, child

A=

A=

high

low

high

low

Continuous variables

Anxiety, child

X:=

.25

.80 .54 A48

Inconsistency, mother

YZ:

42

21.20 30.81 23.48

4.43

33.62 25.41 26.10

28.35 23.36

8.15

Mean

4.30

6.98

Standard deviation

Count

27
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Table 22:

Corresponding
fractile
or p-value

Degrees
of
freedom

Value of
chi-square
statistic

Concurrent
variables

pairs, n
Pairs

6 < .001

23.22

ABXY
ABXY
ABXY
ABXY
ABXY
ABXY

(A,X)
(A,Y)

.270
.616
< .001

7.58
4.46
45.09
10.61
2.78
8.03

(Sens,Sup)

(A,B):

4
6
6

(X,Y)
(B.X)

LTT=U ‘s3]£3S [RUOIIRONDa UO BYRP 10} [9pOW

.101
.837
.018

(Sup,Inc)

Il

(B,Y):
(B,Y)

BY

.625

7.12
14.30
22.42

ABXY
ABXY
ABXY

(A,B)&(B,Y)

12
11

(A,B)&(B,Y)&(A,Y)
(A,B)&(B,Y)&(B,X)

44
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Table 24: Tests against the saturated model in regressions
with indicator variables for educational styles data with X:=
Anxiety as response and with influences: Y:= Inconsistency,
mother, A:= Sensitisation, child and B:= Support,father

= Hxl:y!
high
23
30.21 2291
4.839 5T
29.25

high
Sensitisation, child

21.64
4.82

Supportive behavior father
A=
low
.56
26.37
5.05

high

.52
34.27 25.98

6.39 6.613

36.75

Coeflicient of ~ Value of  Degrees
GLIM-notation determination chi-square of

for model R? statistic  freedom

B:
low
Sensitisation, child
58

6.

AxBxY 482 5.35!

3
AxB+AxY +BxY 481 5.61 4
AxY + BxY 481 5.65 5
AxY + B 455 11.53 6
BxY + A 458 10.68 6

A:
low

.78
7.47

28.92 22.69
24.25

1) The value of the test statistic for variance homogeneity is
5.35, the value for any other model (M) is obtained as: 5.35 +
nlog {(1 — R%,)/(1 — Ry g.y)} with n = 117
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Inconsistency, mother

Anxiety, child

117

Table 25: Estimated correlations and other summaries under the hypothesis Iijjzy

Continuous variables
Standard deviation

n

X

Y:
Mean
Count

n
t—=
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A TIllustration for the derivation of block-
recursive linear regression equations

Let the positive definite covariance matrix £ of the random vector X and
its inverse, the concentration matrix £~!, be partitioned according to the
definition of the chain elements in C = (a, b, ¢)

EM Eab Eac yaa Zab Sac
E - Eba Ebb Ebc 3 E-] = Eba Ebb Ebc .
Eca Ecb ch Pea ECb Yee
Note known relations (see, e.g., Wermuth, 1988b) such as

be,a — (Ebb,c)—]
with
Ebb,a = Ebb _ Ebu(zaa)-lzab’
Booe = Zo— EpeZ e

For the given order (a,b,c) there exists a unique block-triangular decom-
position of E7!:

S =ATT !4
with
Saa 0 Ia (Zuu)—lzab (2“)—12“
T~1 — 0 Ebb‘a 0 , A= 0 Ib (Ebb.a)—lzbc.a .
0 0 yecab 0 0 I

Block-recursive concentration equations are defined (Wermuth, 1988) as

B(X-p)=¢ (1)

Yaa 2ab Sac Ha he
B = T—IA — 0 Ebb'a Sbe.a , B* Lo - tha
0 0 Srecab e hc.ab
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with

where for instance h®® are the linear canonical characteristics obtained after
having marginalised over the variables in set a. These equations imply

E(e) = B*(E(X)-p)
=0 (2)
var(e”) = T7'A var(X)ATT™!
= T\
Then, block-recursive linear regression equations are obtained by dividing

each of the concentration equations by a precision, more precisely, by the
corresponding diagonal element of B*. This gives

B(X —p) = ¢, 3)

where B contains partial regression coefficients and By intercepts of regres-
sion lines
Example 1: Fora = {X,Y}, 6={2,U}, c=90

O,II U:y azz O.:u l‘; hI
. gy oW gV oy ow hy
B = 0 0 oIy gAY ’ B B = Ry
0 0 guzTy  guu.Ty ™ hu.:y
1 —b23s —Brzze —Puaas Q1.234
B = O—ﬁm‘a«a é i‘ﬂza.u —ZZ:.IS , Bu= 2134
- Q34
0 0 —PBaz 1 ag3

Example 2: For a = {X,Y}, b= {Z,U} and ¢ = {A}, the saturated
block-recursive concentration equations are given by

or:(ig az‘y(i) 0:2(2') azuzi; /“1‘ :.‘rgzg

ooy | o¥E() a¥(2) o¥ (1)  o¥(: " BT v(z

B (l) - 0 0 o.zz.zy(i) a.zu.ry(z') ’B s - hz.zy(i)
0 0 ouz‘:y(i) a‘"‘"“(i) ™ huxu(i)

This is also a saturated model belonging to the hypothesis of Figure 8. The
block-recursive linear regression equations corresponding to the hypothesis
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of Figure 8 are then given by

1 —',Bty.zu ”',B.tz.yu 0 Az yzu

N "',By:.zu 1 0 ",Byu.:z _ Ay z2u
B =1 4 0 L g | PR ant)
0 0 —Bu.(1) 1 a, (1)

In contrast to traditional structural equations (Goldberger, 1964) no over-
parametrisation occurs in block-recursive linear regression equations. The
reason is that the particular definition of B* (compare Equation 1) and hence
of B completely determines the covariance matrix of the residuals ¢ (compare
Equation 2). Also, as a consequence no problems of identification can occur
if ¥ and the observed covariance matrix are positive definite. Maximum-
likelihood estimates of structural regression equations can, in general, not
be found by minimising residuals in each equation, separately. Instead an
iterative algorithm (Frydenberg and Edwards, 1988) is needed.
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