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Moderating Effects in Multivariate
Normal Distributions *)

Nanny Wermuth

Psychological Institute, University of Mainz

Abstract: For jointly normal variables, conditional independence graphs are used to present
necessary and sufficient conditions for the lack of, what has been termed in social science
literature as. a moderating cffect. Variables have no moderating effect on a given measure
of association, dependency. or variability, if this measure remains unchanged after marginal-
ising over or after conditioning on these variables in a stepwise fashion. The results are
applied to studying the association structure of certain personality characteristics, perform-
ance, and socioeconomic background of preschool children. In addition, it is shown that with
the so-called moderated regression equations, a frequently recommended technique, it is
impossible to deduce the lack or the presence of a moderating effect of a quantitative variable
on a regression coeflicient.
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1. Introduction

The concept of a moderating variable has received an immense attention
in the social science literature as documented in a survey by Zedeck (1971)
and in recent articles (see, e.g., Baron and Kenny (1986), Dalbert and
Schmitt (1986)): however, its operationalisation has remained unsatisfac-
tory until today.

Interest in this concept is strongest in nonexperimental research situa-
tions. For example, anxiety as a personality characteristic is known to be
more likely to develop, the more a child perceives the parents as behaving
inconsistently (Krohne, Kohlmann and Leidig (1982)). One then wants to
determine conditions, under which this known relationship is intensified,
reduced or, more generally, will change. This is an example, in which one
wishes to establish moderating effects of further variables and to under-
stand when such effects cannot occur.

*) I want to thank Carl-Walter Kohlmann, whose scepticism towards the moderated
regression technique has led me to construct counterexamples which show the tech-
nique to be inappropriate for quantitative moderator variables.

Author’s address: Nanny Wermuth. Psychologisches Institut. Universitit Mainz. Postfach
3980, D-6500 Mainz.
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Related statistical tasks include the following: to estimate the bias intro-
duced on a measure of association if a moderator variable has been left out
of a model; and to state conditions, under which a measure remains
unchanged, or, to put it differently, under which a moderating effect is
lacking. Even though these aspects are well understood for linear regres-
sion coefficients (see, e.g., Goldberger (1964), chapter 10), they have, so
far, not been discussed in connection with the concept of moderator
variables. Furthermore, inappropriate techniques for establishing the lack
of a moderating effect (Zedeck (1971), equations (1) to (3) and their
interpretation on page 304) continue to be recommended in statistical
textbooks (see, e.g., Cohen and Cohen (1983). chapter 10), and in recent
articles (Cleary and Kessler (1982), Baron and Kenny (1986), Roos and
Cohen (1987) and others).

In this paper we will summarise facts for various measures of associa-
tions in a joint normal distribution (section 2) which permit an easy
derivation of moderating effects and of necessary and sufficient conditions
for the lack thereoff. The techniques needed in that situation differ consid-
erably from those used for only qualitative variables (Bishop (1971), Whit-
temore (1978), Wermuth (1987)), or for mixed variables (Wermuth (1989);
the resulting conditions, however, are analogous and expressible with the
help of conditional independencies.

We will define and discuss moderating effects on regression coefficients
(section 3), on precisions and concentrations (section 4), on variances and
covariances (section 5), and on standardised measures (section 6). Condi-
tions for the lack of moderating effects are expressed as restrictions on
parameters and as conditional independence statements. To simplify the
communication of the obtained results, these are summarised, whenever it
is possible, in terms of recursive conditional independence graphs. The
latter are known to characterise associations structures of recursively
factorised distributions and have been used previously for models with
conditional Gaussian distributions (Lauritzen and Wermuth (1984),
(1989), Wermuth and Lauritzen (1983), (1989), Edwards and Kreiner
(1983)).

A set of data is presented (section 7) to illustrate the results. Finally, it
is proven (section 8) that a zero regression coefficient of the constructed
vartable in a moderated regression is neither a necessary nor a sufficient
condition for the lack of a moderating effect on a regression coefficient.

2. Notation and facts

In nondegenerate joint normal distributions of p variables with X as
covariance matrix, the inverse X ' is called the concentration matrix
(Dempster (1969), p. 126). The elements a;; of X are covariances (i # j)
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and variances; the elements of 3 ™' are concentrations (i + j) and preci-

sions. Covariances and concentrations are measures of association; vari-
ances and precisions are measures of variability. Measures of linear depen-
dencies are regression coefficients in linear regressions of response
variables (regressands) X, (i € a) on the influencing variables (regressors)
X;(j eb), where a and b partition {1, 2, ..., p}, the index set of the vari-
ables. The symmetric matrices ¥, 2~ ' may be partitioned accordingly as

Sol T Faa| yab
Z=|:*_I__ Z“lz[__r__ .
Zba! be Zba! be

The regression coefficient matrix in a regression of X, on X, is
I, = 2,20 ., consisting of regression vectors [)’ﬂb fori=1,..., |a].

Three basic facts from section 4.3 of Dempster (1969) must be extracted
to derive moderating effects. Two are properties of the sweep-operator;
the last is the special form of the triangular decomposition of a positive
definite matrix in the case the latter is a concentration matrix.

Fact 1. SWP[b] ¥ = RSW[a] (— X~ 1) for disjoint a, b which partition
{1, ...p}.

This says that sweeping 2 on all rows and columns i € b and resweeping
(— 27" on all rows and columns i € a yield identical results shown with
the following two symmetric matrices:

Zow | Zun Doy O e O A
-——|————}= e . (1.1)
| _Zl;bl | _be.a

This identity may also be proven by standard results on inverting parti-
tioned matrices and it immediately gives different representations of the
regression coefficient matrix (I1,,), as well as of the partial covariance
matrix (2,, ), and of the partial concentration matrix (2°°%)

(i) na|b = Zabzl;bl = - (ZMY1 2e°
(D) 2,0 =2, — Zpp Ty 24y = (2% 7! (1.2)
(111) be.a — be _ (Zab)T (Zaa)fl Zab — Zl;bl .
Note that X, , and 2*" are the covariance matrix and concentration

matrix in the conditional distribution of X, given X, = x,, while X,, and
P are the corresponding matrices in the marginal distribution of X,,.

Fuct 2: SWP[c, d] 2 = SWP[c] (SWP[d] 2) = SWP[d] (SWP]c] 2) for ¢, d
any disjoint nonempty subsets of {1, ..., p}.

This commutativity property gives - for b = (c, d) — the following rep-
resentation of the regression coefficient matrix:

na|b = [Zac.dzc;.ld : Zad‘czdidi (1-3)
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with e.g., 2, 4. Zcc.q Deing submatrices of the conditional covariance ma-
trix (2}, .4) of X, and X, given X,.
To make this evident, the two sweeping steps are written out:

Swa | i | ]

SWPAIZ=| | M -
S
O
SWPl 2= | | =% [ My
| | Zad

where e.g., IT,q = 2,4244" -
By letting a = (g, 1), b = (j, d) and (a, b) = (1, ... p), one obtains from
(1.3) and (1.2) the coefficient of X in the regression of X, on X, as

/fij,d = ‘Tjj.d(‘)'ij.dyl = —Gij'g(ﬂii'gyl . (1.4)

It is identical to the coefficient of X; in the regression of X; on X, alone
and called a partial regression coefficient of X;.

With d = (k. 1) in addition to a = (g, 1), b = (j, d) the partial regression
coefficient f3;; 4 is — with the help of Fact 2 — seen to be related to other

partial regression coefficients as

:Bij.d = /))ij‘kl = :BijJ - /))ik.jl/))kj.ls (1-5)

where, for instance, f3;;, and f3;, are both coefficients of X in regressions
with regressors X;, X, but with different response variables: X; and X,

respectively.

Fuct 3: If ATD ' A = X~ 1 is the upper triangular decomposition of £ !,
then A is an upper triangular matrix containing ones on the diagonal, and
— Bijaw With d(i) = {i + 1.... p}. is the right off-diagonal part of row i.
Furthermore, D™ ! is a diagonal matrix with reciprocal values of partial
variances as elements: d;; = Gﬁ.égi)-

This says, for example for £~ = 2*¥*"_ that A contains in line 2 nega-
tive values of the regression coefficients in the linear regression of Y on Z
and U; the matrix D contains precisions such as d,, = ¢*"* = 1/g, ...

By using Fact 3, one obtains the following simple expression for
the determinants of ¥ and X!, which by the positive definiteness of X
are known to be positive. Since |2~ = |AT||D !||A| and |A| =1, it
follows that |[X7!| =|D™'| is a product of partial precisions, and
|2 =1/|27 | =|D] is a product of partial variances. For instance we see
that
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(l) |2xyuz| = XX GYY X GELXY qUUAYZ () .

(i) |= T > 0. (1.6)

ag g

xyzu| - Jxx.yzu yy.zu Y zz.u

Another well-known fact then becomes obvious. For positive definite X,
all (partial) precisions and all (partial) variances are positive, since the
order of variables in (1.6) can be permuted.

The definition of a recursive conditional independence graph and two
more facts are needed for deriving and visualising conditions for the lack
of moderating effects.

Fact 4. Given a joint normal distribution, one stays in the family of
normal distributions after marginalising over a subset of variables X, and
after conditioning on X, (compare ¢.g., Anderson (1958), section 2).

A conditional independence graph provides the information for the pic-
ture of an association or dependence structure defined with the help of
conditional independencies of variables pairs. A recursive conditional inde-
pendence graph (G') has been used for a more general family of distribu-
tions by Lauritzen and Wermuth (1984), (1989). The graph consists of p
vertices, and at most one edge for each pair {i. j} of distinct vertices. This
graph is an undirected one if it is to characterise an association structure
without response variables. Otherwise the type and the direction of all
edges are determined by a dependence chain 4 = (C,...., C;), with
T > 1. This chain partitions the vertex set and defines T sets of so-
called concurrent variables. The sets are C, u...uUCy, Cy,u ... UCy.
Cyu...uCq....Cq. Concurrent means that the variables are to be
analysed simultaneously. Exactly one of three possibilities holds for each
pair of vertices.

For a pair {1, j} with ie C,, je C, one has:

(1) the edge is missing, or
(it) the edge is a line if i and j are in the same chain element (t = 1), or
(iif) the edge is an arrow pointing from j to i if X; is an influence to
response X, (t < 1).

A missing edge implies that X; is to be conditionally independent of X
given the remaining concurrent variables, the variables X, with
d={C,....Cy}\ {i,]j}. A chain element (C) is drawn as a box. A miss-
ing edge means an only indirect relation while present edges denote direct
relations.

Fuact 5: If the distribution of a system of variables given by a conditional
independence graph G' is jointly normal, then a missing edge for {i, j}
withie C,je C,, t <1, is equivalent to a zero partial concentration of X,
and X; partialled over the nonconcurrent variables, over X, with

ke{Cy,....C_}.
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To make this evident, note (e.g. from Anderson (1958), section 2.5) that
in an unconditional joint normal distribution of variables (X, X;, X,), X;
is conditionally independent of X; given the remaining variables
X (X, AL X1 Xy, ifand only if ¢;; 4 = 0. By using (1.4) and (1.5) it follows
that the following statements are equivalent:

(1) XL XXy,
(i) ol =0,

1.7
(i) o;,=0. (a.7)
(iv) /))ij.d =0,
where g = {C,,....C,_,! denotes variables not concurrent to X;, X. and

g= 14 s M-y -5 | ¢ in N
d={C,....,Ci}\ {i,j} denotes the remaining variables concurrent to
X.. X.

i’ N

We are now equipped to derive and describe the moderating effects for
different parameters. In order to keep the notation simple, we restrict our
arguments to an unconditional joint distribution of four variables. This
situation is complex enough to see the possible extension to cases that are
more general.

3. Moderating effects on regression coefficients

Given a joint normal distribution containing variables X, Y, U, Z, the
moderating effects of variable U alone and of variables U and Z jointly on
the regression coefficient of response Y on the influencing variable X are
the changes introduced by moditying the regression from one without U
and Z as regressors, to one with U alone added, and to one with both U
and Z included.

For an unconditional joint density fxy,. this means to move from fyy
to fyyy and to fyjy,y, and to register the changes in the first element of
the regression vectors fi, . B, and B,,,,cin B, f,, .. and f,, ..

Result 1.1 The moderating effects are of

(i) U alone on fi: — Bruy Buy -

(i) U and Z on By — BeuyBuy + Pryu By i) -

Result 1.2: There is no moderating effect of

(i) U alone on f3,, ifand only if X L U|Y or Y LL U,

(i) UmnorofUand Zon f,, ifandonlyif X1 UJY or Y 1l U]
and [X L Z|(Y,U)or Y 1 Z|U].

Proof: With1and j asindices of X and Y, Result 1.1 (i) follows from (1.5)
with k as index of U and {I} = 0; Result 1.1 (ii) follows from (1.5) with k
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as index of Z, I as index of U and by use of Result 1.1 (i). Result 1.2 is
obtained with (1.7) from Result 1.1.

Proposition 1: Let X, Y, Z, U have a nondegenerate joint normal distribu-

tion then 8, = f,, , = B,, .. if and only if the joint density is such that (i)

and (i) are satisfied:

(i) fxyzy can be characterised as in Figure 1 by a conditional indepen-
dence graph with chain 4 = ({X}. {Z}. {U. Y}) having at least one
of the marked arrows (/) missing;

S N e — T >

Figure 1: Yor B, = f,,, = Py, one of the two marked relations has to be
indirect (condition (1))

(i1)  the marginal density fyy can be characterised as in Figure 2 with a
least one of the marked arrows missing.

O‘;

x\ ////?

X\f;/

Figure 2: For i, = ., = By, one of the two marked relations has to be
; indirect (condition (ii))

Proposition 1 follows with Result 1.2 and Fact 4 from the definition of the
recursive conditional independence graph.

4. Moderating effects on precisions and concentrations

In a joint normal distribution containing variables X, Y, U, Z, the moder-
ating effects of variable U alone, and of variables U and Z jointly on the
precision of X, or on the concentration of X, Y are the changes introduced
by marginalising over U alone, and over both of U and Z.

For an unconditional joint distribution with density fyy,. this means
to move from fyy,; to the marginal distributions fyy, and fyy, and to look
at the relevant submatrices of 2**", X**% and X**", Since precisions and
concentrations do not change by conditioning (see (1.2 (i1)), one compares
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at the same time the concentration matrices in fyy ., fxyz. and fyy.
which are (X, ,,) ' (2,,,) ', and (Z,,)”". The conditional independence
graphs in Figure 3 depict these situations.

(a) (b) (©

X u X X

. "~
o

Y z v Y

Figure 3: Dependence structure with the meaning of the edge for (X, Y) being ¢
in {(a), %" in (b) and ¢*"* in (¢)

Result 2.1 The moderating effects are of

(i) U alone on o%: f,, ., ¢,

(i) Uand Zona¥: B, 0" + B, 0"

Results 2.2 There is no moderating effect

(i) of U alone on ¢ if and only if X 1L U[(Y, Z), or Y 1L U|(X, Z),

(i) of U alone nor of U and Z on ¢ if and only if [X 1L U|(Y, Z) or
Y L U|X,Z2), and [X ILZ|Y or Y 1 Z|X].

For the proof of Result 2.1 note from Fact 3 and (1.4) the form of the
triangular decomposition of Z=' = ATD 1 A as

—o'! 0 0 0
- 12 o221 0
ATD™ ! = 13 g231 53312
| o' g2 gIt12 4423
[ 1 — B3 —Pi324 — Braas
A = 0 1 —Basa — Pras
0 O 0 _[j34
| 0 0 0 1

Next, write out the matrix product [ATD '] A, fix the order of the
variables to give 2, then (i) can be read off from position (3.2), while
(i1) follows from position (4.3) in X,,,. Result 2.2 follows with (1.7) from
Result 2.1.

Proposition 2: Let X, Y, Z, U have a nondegenerate joint normal distribu-
tion, then ¢ = ¢™* = ¢®*" if and only if fyy,, can be characterised as
in Figure 4 with a conditional independence graph having chain
% = ({U}, {Z},{X,Y}) and at least one arrow marked "/ and another
marked "//" missing.
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u (-———7['/71/ ="
R e VA

Figure 4: For ¥ = ¢¥* = ¢""™ one of the relations marked / and one of the
relations marked // have to be indirect

Proof: Proposition 2 results from Result 2.2 and Fact 4.

Result 3.1 The moderating effects are

XX

(i) of U alone on ¢™: 3, ,,0™.
(i) of Uand Z on ¢™: f3,,,0™ + Bs,, 0.

Xu.yz Xz.y

Result 3.2 There 1s no moderating effect

(i) of U alone on ¢ if and only if X 1L U|(Y, Z),
(i)  of U alone nor of U and Z on ¢** if and only if X 1L U|(Y, Z) and
X1 Z|Y.

Proposition 3: Let X, Y, Z, U have a nondegenerate joint normal distribu-
tion. Then ¢ = ¢**" = ™7 if and only if fyy, can be characterised by
a conditional independence graph as in Figure 5 with at least the two
marked lines missing

/
X 7 4

XX.u

Figure 5: For ¢ = ¢™" = ¢"*"* both of the marked relations have to be indirect
Proofs of the Results are analogous to those of Results 2.1 and 2.2 and are
left to the reader. Proposition 2 follows from Result 3.2, and Fact 4 and
after noting that X 1L U|(Y,Z) and X 1L Z|Y taken together imply
X 1 (U, 2)]Y.

5. Moderating effects on variances and covariances

In a joint normal distribution containing variables X, Y, U, Z, the moder-
ating effects of variable U alone and, of variables U and Z jointly on the
variance of X or on the covariance of X, Y are the changes introduced by
conditioning on U alone, and on both of U and Z.
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For an unconditional joint distribution with density fyy,, this means
to move from fyyzy, to the conditional distributions with densities fyyz(,
and fyy zy. and to look at the relevant submatrices of X, 2., . and
2\y.2u- Since variances and covariances do not change by marginalising
(see (1.2)(1i1)), one simultaneously compares the covariance matrices
Xy Zyw-and X ot f 0 cand £, as well as the variances in

and f

x|uz*

x|u

Result 4.1 The moderating effects are

(i) of Ualone on a,: — fB,,0,,.
(11) of U and Z on ny: - (/))xu Oyu + ﬁxz.uayz.u) .

Result 4.2 There is no moderating effect

(i) of Ualoneong, if and onlyif XL UorY 1L U,

(i) of U nor of U and Z on ¢,, if and only if [X 1L U or Y 1L U and
X1 Z|UorY 1 Z|U].

For the proof of Result 4.1, note from Fact 3 and (1.4) the simple form
of the triangular decomposition of ¥ = A"'D(AT)™! with

[ 011234 01234 0134 014
0 o o o
A D= 22.34 0234 024
0 0 0334 O34
| 0 0 0 Oaq
[ 1 0 0 0
- Biaaa 1 0 0
(A l)T: 3
Biza Pazal 0O
L fia Paa Bia

Next, write out the matrix product [A~ ' D] (AT) !, fix the order of the
variables to give X, . then (i) can be read off from position (2, 3), while
(ii) follows from position (1. 2) of 2, ,. Result 4.2 follows with (1.7) from
Result 4.1.

Proposition 4: Let X, Y, Z, U have a nondegenerate joint normal distribu-
tion. Then o, = o, , = 0,,,, if and only if the joint density is such that
(1) or (i1) are satisfied:

(i)  marginalising over Ve (X,Y) leads to the density fy,, with
W = {X, Y} \ V., which can be characterised by a conditional inde-
pendence graph as in Figure 6 having at least the two marked ver-
tices missing
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/ ‘ i

Figure 6 If the two marked relations are indirect then o,, = 0¢,,, = 0, ,,
(condition (1))

U

(i) marginalising over Ve {X,Y} and marginalising over Z and
W = {X,Y}\V leads to the densities fy,, and fy,, which can be
characterised by conditional independence graphs as in Figure 7
having at least the marked vertices missing

w oV
\O We{X,Y}
and
f Ve (XYW}
z u
Figure 7. 1f the two marked relations are indirect then ¢,, = 6,, , =0,

(condition (ii))

Proof: After noting that W 1L U and W 1L Z|U implies W 1L (Z, U)
and that the remaining possibilities in Result 4.2 (ii) can be repre-
sented as W UL Z|U and V IL U for We {X, Y} and Ve {X, Y}\{W],
Proposition 4 follows from Result 4.2 and Fact 4.

Result 5.1 The moderating effects are

(i) of Ualoneon o,:— p2,6,,.
(11) of U and Z on Oxxt — (/jfuguu + ﬁ)%z‘uo-zz.u) .

Result 5.2: There is no moderating effect

(i) of U alone on a,, if and only if X 1L U,
(i) of Unorof Uand Z on o, if and only if X 1L U and X 1L Z|U.

Proposition 5: Let X, 'Y, Z, U have a nondegenerate joint normal distribu-
tion. Then g,, = 0,,, = 0, 1If and only if the marginal density fy,, can
be characterised by a conditional independence graph as in Figure 8 hav-
ing at least the two marked vertices missing
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X
u
] /
Figure 8 For o,, = 0., , = 04, ,, the two marked relations have to be indirect

Proofs of the Results are analogous to those of Results 4.1 and 4.2 and
are left to the reader. Proposition 5 follows from Result 5.2 and Fact 4
after noting that X 1L Z|U and X 1L U implies X 1L (Z|U).

6. Moderating effects on the correlation coefficient
and on standardised regression coefficients

Correlation coefficients are standardised measures of linear associations.
Let T,,. T,, 4 be both diagonal matrices, the first with elements (o)~ '/
and the second with diagonal elements (g;; )~ '/%, then P,, = T,, %, T,, and
Pod = T,a2ud Laa denote the matrices of marginal and of partial corre-
lation coefficients, respectively. The partial correlation coetficient o

does not relate in a simple way Lo ¢,,. the marginal, or simple one:

Xy.u

Xy
2 —
Qxy.u = (Qxy — Oxu Qyu)/[(1 - qu) (1 - Q}%u)] 12 .

They coincide in the trivial case (X, Y) 1L U, but a moderating effect of
U on g,, can be lacking under conditions that are unrelated to independen-
cies. This fact is illustrated with the following correlation matrix in which
Q12 = 0133, but no variable pair is marginally or conditionally indepen-
dent:

1066 057! 2.3624 — 1.3780 — 0.9055
1 0.2 = 1.8455  0.3199
1 1.3888

Standardised regression coefficients or beta coefficients are standardised
measures of linear dependencies. They are obtained as common regression
coefficients by starting with the correlation matrix P instead of the covari-
ance matrix X. They have traditionally been used in the social sciences as
an aid in determining the relative importance of the different regressor or
influencing variables. It is known that this is done only at the cost of
ignoring possible differences in variability (see e.g., Weisberg (1980),
p. 168).
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Let Ty, be a diagonal matrix with diagonal clements (o)~ " forieb.
Then the standardised regression coefficients matrix /T, and the residual
matrix 27, relates to the nonstandardised one as

-1
H;klb = Taa na]bTbb ” Z;ka.b = Tuuz

This leads to well-known relations like

1/2 1/2 1/2
pr o= T £ = p Txx B — Txx
xy — Hxy o * Pxy.u T Mxy.u o * Pxy.uz = FMxy.uz o ’
yy yy yy

from which it follows, in turn, that the conditions for the lack of a
moderating effect have to coincide for standardised and unstandardised
regression coefficients.

aa.b “aa:

7. Judging moderating effects on a set of data

We illustrate judgements on moderating effects on a set of data taken from
Hodapp (1984), p. 72). Self-concept (C) is regarded as a response to the
potential influences intelligence (1), performance (P), and socioeconomic
status (S). Available are data for 303 boys attending classes in kinder-
garten. The observed correlation matrix shows an excellent fit to the one
estimated under a hypothesis characterised here with the conditional inde-
pendence graph in Figure 9.

Performance

// Intelligence

Self-concept

~~O Sociceconomic status

Figure 9. Well-fitting dependence structure to self-concept data

Expressed in words: self-concept depends directly on performance and
socioeconomic status, but only indirectly on intelligence. The association
between intelligence and socioeconomic status disappears if one controls
for the relationship of performance to either variable.

Since the regression structure in Figure 9 does not contain a con-

figuration of the type O/r , it 1s equivalent to the following symmetric
5 .
association structure (Wermuth and Lauritzen, (1989))
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Performance

~ Intelligence
Self-concept O Socioeconomic status

Figure 10: Well-fitting association structure to self-concept data

We know for this type of structure, how to read directly off the
graph all independencies; in particular I 1L (C, S)|P as most con-
densed description of this structure (for proofs and motivations, see,
Kiiveri, Speed and Carlin (1984), or Lauritzen and Wermuth (1984),
(1989)).

The oberserved marginal correlations are displayed in Table 1 (a), as
well as the corresponding precisions and concentrations, while the estimat-
ed marginal correlations ¢;;. the estimated precisions ¢, and concentra-
tions ¢V are in Table 1 (b). The likelihood-ratio chi-square statistic for the
hypothesis in Figure 9 against the saturated, i.e. the observed association
structure is

n log (det (P)/det (R)) = 55 log (0.1675/0.1673) = 0.30,

on two degrees of freedom. It is evident from the test results given in
Table 2 that no additional independencies may be assumed.

Figure 10 and Proposition 3 indicate that C and S have no moderating
effect on the precision of [ if the hypothesis in Figure 9 is satisfied.

Figure 9 and the first picture of Proposition 1 when used repeatedly
show that under the hypothesis fep s = Beps and fesp = Pesp. This
means that up to random variation | has no moderating effect on the
regression coefficients of C on P and S as estimated from the observed
correlations:

Pépis = 0753, pé&s=0.777
Bésp = 0479, P& p = 0.479.

Similarly, one finds that the moderating effect of S on the re-
gression coefficient f&,; is not lacking. From (1.5) it is: — B p - P,
and is estimated from the observed correlations as (— 0.470)
(—0.423) = 0.20.
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Table 2 : Liklihood-ratio test results

Conditional inde- Concurrent

pendence of pair  variables Chi-square value  Degrees of freedom
(C,P) CPIS 115.54 1
., D CPIS 0.28 1
(C,S) CPIS 101.97 1
(I, P) 1PS 228.36 1
1L'S) IPS 0.02 1
(P.S) IPS 26.68 1

8. Discussion

The results in this paper make it plain that moderator effects depend
strongly on the type of the relationship investigated between two variables.
A variable can have no moderating effect on a measure of dependency, but
at the same time have such an effect on a symmetric measure of association
and vice versa.

A moderating effect also need not be symmetric in the following sense:
if Z has no moderating effect on the regression coefficient of Y on X, it
is still possible that X has a moderating effect on the regression coefficient
of Y on Z. This is, in fact, the case if X and Z are marginally dependent
and Y 1L Z|X, but not Y Il X|Z (compare Proposition 1).

If one knows the necessary and sufficient conditions for the lack of
moderating effects summarised in this paper, it is easy to perform a
goodness-of-fit test to decide on the lack or presence of moderating effects.
In what follows, it is shown that the technique of so-called moderated
regressions is not suitable for this purpose. Following Saunders (1956)
Zedeck had recommended the following procedure (Zedeck (1971),
p- 304). Compute

“three regression equations
[1] y=a+bx,
[2] y=a+b,x+b,z,
where 7 is the potential moderator but is treated as an independent predictor, and
[3] y=a+bx+byz+byx-z
(moderated regression equation). If Equations 2 and 3 are significantly different from Equa-
tion 1. but not from each other. then the variable is an independent predictor and moderator
variable.”

This claim is proven false with the set of variables Y, Z, X in Table 3 (a),
which have the covariance and concentration matrices, including the vari-
able W = X - Z displayed in Table 4.
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The regression coefficients for the above equations are derived from
these as

[1]  y=(—0.101) + (0.862) x; R2 =0.489,
[2] y=(0.000) + (0.600) x + (0.600)z: R2 =0.616.,
[3] v =(0.000) + (0.600) x + (0.600)z + (0.000) x - z; R?=0.616.

Thus, by = 0, but Z has nevertheless a moderating effect on b(= f,,).
This effect is — f3,, . f5,x = 0.262 (compare Result 1.1 (i)). This shows that
the vanishing of the regression coefficient of the constructed variable
W = X - Zin [3] is not a sufficient condition for the lack of a moderating
effect.

Conversely, it has been claimed that the regression coefficient of the
constructed variable (b; in [3]) has to be zero if Z has no moderating effect
on the regression coefficient in the linear regression of Y on X (b in [1])
(Steyer (1983), Cohen and Cohen (1983), Borkenau (1985), Dalbert and
Schmitt (1986), Baron and Kenny (1986), Roos and Cohen (1987)). A
counterexample is given with the variables in Table 3 (b). The covariance
and concentration matrices of these variables and W =X -Z are in
Table 5. The regression coefficients and the coefficients of determination
for the three regression equations are obtained as

[1]  y=(=0.029) + (1.152) x; R?=0.292,
[2] 'y =(0.089) + (1.152) x + (1.075)z; R? =0.511,
3] 'y =(0.005) + (1.481) x + (0.532) + (1.889) x - z; R? = 0.828.

Tuble 3. Two sets of variables, which give counterexamples to the moderated
regression technique

(a) Counter example to sufficiency (b) Counter example to necessity
Y X zZ Y X Z
—2.9482 —1.7203 - 0.6522 2.0864 0.6357 0.2910
- 04704 —0.2976 —0.9510 —0.9641 —1.0646 — 0.4447
0.4827 — 0.0411 0.5867 — 2.2103 0.6225 —1.6365
1.2208 1.3734  —0.3243 —0.7476  —0.1389  — 1.1891
— 04263 —14257 —0.5514 1.4917  —0.4424 0.6972
—0.1742 2.0462  — 0.0564 —0.7415  —-0.2823 —0.1918
— 19735 - 0.8563 —2.3751 1.7414 0.8237 0.6519
— 22837 —1.3858 —1.0777 —3.7389 — 1.4988 0.3146
0.7962 —0.0168 —0.0134 0.2537  —0.6213  —0.4409
0.5078  —0.1891 0.1523 0.3474 2.3227 —0.6539
1.2930 1.7987 0.1447 — 1.5766 0.6171  —1.1882
—0.5129 —0.8934 —0.7651 —2.5020 —1.1147 0.3594
—1.5520 0.0293 0.8194 0.1239 —0.7265" —1.5912

2.6078 1.4496 1.7027 — 0.6660 0.6225 —0.4128
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Table 3: (continued)

(a) Counter example to sufficiency (b) Counter example to necessity
Y X Z Y X Z
0.6155  —0.5828 0.3903 4.0091 0.7163 1.5748

—0.0309 0.2132 0.3068 1.8579 0.3618 — 0.3873

—0.3413 - 0.5022 — 0.6057 49534 1.6456 0.5523

—1.3402 —0.9463 —1.7889 1.0457 0.2957 1.6746

—0.0330 —0.8767 0.2110 0.2615 1.5857  —0.5250
0.1638 0.0743 0.2651 —0.9870  — 0.3600 0.3656

Here, Z has no moderating effect on b(= f,,) since g,, = 0 (compare
Proposition 1 (ii)), but the regression coefficient of the constructed vari-
able is nonzero. This shows that the vanishing of the regression coefficient
of W =X-2Z in [3] is also not a necessary condition for the lack of a
moderating effect.

The moderated regression equations seem to stem from a false analogy
to a result in analyses of variance. For these analyses it is known (compare
Snedecor and Cochran (1967), chapter 16) that a vanishing interaction
effect is a sufficient condition for the collapsibility of a main effect in
two-way classifications, provided the numbers of observations in subclass-
es are equal or at least proportional.
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