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 Summary

 The main purpose of this paper is to clarify relations and distinctions between
 several approaches suggested in the statistical literature for analysing structures in
 correlation matrices, i.e. of relations among observable, quantitative variables ha-
 ving exclusively linear associations. Block-recursive regression equations are derived
 as the key to understanding the relation between two main approaches, between
 graphical chain models for continuous variables on the one hand and linear struc-
 tural equations discussed in the econometric and in the psychometric literature on
 the other hand. Their relations to other model classes such as covariance selection,
 multivariate linear regression, and path analysis are discussed.

 Key words: Conditional independence; covariance selection; decomposable model;
 graphical chain model; linear structural equations; multivariate regression; nonde-
 composable independence hypothesis; 'path analysis.

 1. Introduction

 The first suggestions of how to describe and study structures of correla-

 ted variables were given by Wright (1921, 1923, 1934) and called path analysis.
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 2 REBRAPE, VOL 6, 1992

 He defined what we would now call reduced models (Cox and Wermuth, 1990),

 with the help of zero restrictions on parameters of linear equations and pro-

 posed methods for estimating path coefficients and implied correlations, i.e.

 for estimating the equation parameters and the correlation matrix under the

 assumptions of the reduced model. Furthermore, he suggested to evaluate the

 goodness of fit of a reduced model by judging how much the correlations im-

 plied by the model deviated from those actually observed. However he did not

 state conditions under which his proposed estimates of equation parameters

 and of the correlation matrix could be derived from general principles.

 Tukey (1954) established that Wright's estimates of equation parameters

 can be justified by the method of least squares if applied to a single multiple re-

 gression equation expressed in standardized variables, i.e. to a linear equation

 having residuals which are uncorrelated with the explanatory variables and

 having observed variables which all have mean zero and variance one. The

 same holds for a recursive sequence of such equations (Wold, 1954). They in-

 volve a set of variables {Yi , . . . , Yq} in which Yr is specified by linear regression

 on {Vļ+i, . . . , Yq} for r = 1, . . . , q - 1, error terms in the different equations

 being uncorrelated. Wermuth (1980) showed that Wright's proposed estimate

 of the correlation matrix is not, in general, a maximum likelihood estimate

 for recursive regressions of jointly normal variables, but only for those which

 define a decomposable correlation matrix. These are arguments for viewing

 Wright's path analysis as the first description of univariate recursive regressi-

 ons and of decomposable covariance selection models (Dempster, 1972). In the

 latter class of models the joint association structure can be decomposed into

 structures of several proper subsets of variables so that complex tasks - like

 describing its features - can be made simpler by splitting them into several
 smaller ones.

 Any model defined in terms of univariate recursive regressions combines

 several advantages. First, it describes a stepwise process by which the data

 could have been generated and in this sense it may even 'prove the basis
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 WERMUTH: BLOCK RECURSIVE LINEAR EQUATIONS 3

 for developing causal explanations' (Cox, 1991). Second, each parameter in

 the system has a well understood meaning since it is a regression coefficient,

 i.e. it indicates for unstandardized variables by which amount the response is

 expected to change if the explanatory variable is increased by one unit and all

 other variables in the equation are kept constant. As a consequence, it is also

 known how to interpret each additional zero restriction: each added restriction

 introduces a further conditional linear independence; and it is known how

 parameters are modified if variables are left out of a system (Wermuth, 1989).

 Third, general results are available for interpreting structures, i.e. for reading

 all implied independencies directly off a corresponding graph (Pearl, 1988;

 Lauritzen et. al., 1990) and for deciding from the graphs of two distinct models

 whether the corresponding models are distributionally equivalent (Frydenberg,

 1990), i.e. whether they specify the same joint distribution and the same set of

 restrictions. Fourth, the analysis of the whole structure can be achieved with

 the help of a sequence of separate univariate linear regression analyses. Fifth,

 an algorithm exists (Pearl and Verma, 1991, Verma and Pearl, 1992) which

 decides for an arbitrary list of conditional independence statements whether it

 defines a univariate recursive system and, if it does, a corresponding directed

 acyclic, graph is drawn.

 There are, however, substantive research questions - like the one dis-

 cussed by Haavelmo (1943) and like the one described below in Section 6 -

 which require to look at linear equations simultaneously. In that case some of

 the nice features of univariate recursive regressions are necessarily lost. The

 common feature of such more complex models is that they do not prescribe

 a recursive process from which the data could be generated. If independen-

 cies hold simultaneously of a form which cannot be conveniently formulated by

 zero restrictions on individual parameters of any system of univariate recursive

 regressions we name them nondecomposable independencies.

 The simplest three distinct types of nondecomposable independence hy-

 potheses occur for four variables. For Ví, V2, V3, Y4 they can be written in the
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 4 REBRAPE, VOL 6, 1992

 notation for independencies introduced by Dawid (1979) as:

 (0: yij_r4|(r2,r3) and r2jļ_r3|(yļ,r4),
 (ii): Y1JY4'Y3 and Y2±Y3'Y4i
 (iii): Y1JY4 and Y2J_Y3.

 The first hypothesis (i) states conditional independence of pairs (YÍ, V^) and

 (Yļļ Yi) given all of the remaining variables. The second hypothesis (ü) pos-

 tulates conditional independence of (Yi,!^) given Y3 and of (V2, V3) given Y4.

 The last hypothesis (iii) just means marginal independence of both pairs, of

 (Fx, V4) and of (Y2,Y3). None of these hypotheses can be formulated in terms

 of zero restrictions on a univariate recursive system, but each of them results

 most conveniently as a zero restriction model in one - but not in the other

 two - of the following model classes: hypothesis (¿) as a graphical chain model

 (Lauritzen and Wermuth, 1989), hypothesis (n) as a linear structural equation

 model (Goldberger, 1964; Jöreskog,1973), and hypothesis (Hi) as a covariance

 matrix with linear structure (Anderson, 1973).

 To see this and to clarify more general distinctions and similarities bet-

 ween different approaches to studying such nondecomposable independence

 hypotheses we summarize a number of known facts about regression and cor-

 relation coefficients in Section 2 and introduce systems of block-recursive re-

 gressions in Section 3. In Section 4 relations of block-recursive regressions to

 graphical chain models, to path analyses, and to covariance selection (Demps-

 ter, 1972) are discussed, while Section 5 treats relations of block-recursive

 regressions to linear structural equations. Finally, in Section 6 a research

 question corresponding to the nondecomposable independence hypothesis of

 type (i) is described and results for some data are reported.

 2. Notation and facts

 We assume a multivariate normal distribution for a g-dimensional random

 vector X = (Fx, . . . , Yq)T partitioned into three subvectors Xa,Xļ, Xc and let
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 WERMUTH: BLOCK RECURSIVE LINEAR EQUATIONS 5

 the mean fi, the positive definite covariance matrix E and the concentration

 matrix E-1 be partitioned accordingly

 ( f.' /£.. Kt S.c' /S" S"' S«'
 p = In , S = E„ Elt , E"1 = E»- E" E>< .

 V n ) ' Erf Ecc j Ī™ Ed E» )
 Diagonal elements of E are called variances (<r,-,), those of E-1 precisions ( a ").

 Off-diagonal elements of E are covariances those of E-1 are concentrati-
 ons

 From Dempster (1969, Chapter 4) we derive all of the following facts. We

 know that E^ is the covariance matrix of Xb in the marginal distribution of

 Xķ, while E 66 is the concentration matrix of Xļ in the conditional distribution

 of Xb given Xa = xa, Xc = xc. The partial covariance matrix of both of Xa

 and Xb given Xc = xc and the partial concentration matrix of Xb and Xc in

 their joint marginal distribution are, respectively,

 ( Eaax So6.c ' ( Efct o Ekc a '
 I, sfea.c E66.c ) ' ^ Scfc-° Ecc-a )

 where

 aa.c

 V v* V r-lr vcc.a v*cc vca/' Vaa'"""l Vac
 ^ V bb.c - v* ^bb V ^bc^cc "c6? ^ vcc.a v*cc vca/' ^ Vac ,

 ab.c

 Furthermore, the conditional covariance matrix Xa given both of Xb =

 Xb, Xc = xc and the concentration matrix in the marginal distribution of Xc
 are

 aa.bc

 respectively.

 Known relations between (partial) covariance and (partial) concentration
 matrices are

 Eoa.6c = (Eaa)-' E66.c = (Ew'°)-1,- Ecc = (Ecc-at)-1. (2.1)
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 6 REBRAPE, VOL 6, 1992

 and parameters in regressions can be expressed in terms of either covariances
 or concentrations as follows.

 If we take a multivariate linear regression of Xa on both of X', and Xc

 = n.* ( ) + v.
 with

 E(K) = 0, Cov{K(X6tXct)} = 0, Var(K) = saa.6c,

 where each variable is measured in deviation from its mean, then the equation

 parameters II0|jc can be written as

 no|6c = (^ab.c^bb.c ^ac-b^cc.b)

 = -(Zaa)-1ÇLab Eoc).

 Similarly, the equation parameters ĪI^ic in a multivariate regression of Xf, on

 Xc alone can be written as

 n6|c = SfccS"1 = - (E66'a)-1E6c'0. (2.2)

 The matrix ITt|c has elements ßij,d where the index i 6 b refers to a regressand,

 i.e. to a response variable AT{,}, the index j E c refers to the regressor, i.e. to the

 explanatory variable Xyj, and the set d = c'{j} to the remaining regressors X¿

 in a univariate linear regression of on Xc. Thus, each matrix of regression

 coefficients from a multivariate linear regression contains as elements partial

 regression coefficients which are identical to equation parametèrs in separate

 univariate linear regressions.

 Each partial regression coefficient ßij.d can be expressed in terms of co-
 variances or concentrations as

 CT' ' J (T^'9

 Pua = ^ Vjj.d CT' ' J = a 9 (2.3) Vjj.d a 9

 where d = c'{j} is again the index set of the remaining regressors and g =

 {1, . . . ,?}'{{í} U c} is the index set of variables being neither regressand nor
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 WERMUTH: BLOCK RECURSIVE LINEAR EQUATIONS 7

 regressor in the univariate regression. Note that the apparent similarity in the

 dot-notation does not imply a similar interpretation: in a partial covariance

 the variables to the right of the dot are the variables conditioned upon (in

 (2.3): Xj), while in a partial concentration the variables to the right of the

 dot are those over which one has marginalized (in (2.3): Xg).

 Similarly to (2.3) we have for the partial correlation coefficient

 pij.d = Vij.d = -<yX3 a (<t" V"-3)-1/2.

 For saturated models discussed so far, i.e. for unrestricted regressions,

 relations completely analogous to (2.1), (2.2), and (2.3) hold for observed quan-

 tities. More precisely, let xl = (y[, . . . , ylq)T be column I of the q by n matrix of

 n observations on the random vector X. Then E = (5Z"=1(x' - x)(xl - x)T)/n

 with X = (]£"=1 xl)/n is the observed unrestricted covariance matrix. If, for
 A A

 instance, ITļ,ļc is defined in terms of submatrices of E just as IIfe|c in (2.2) is defi-

 ned in terms of submatrices of E, then its elements coincide with least squares

 regression coefficients obtained from separate univariate linear regressions of

 X{,-} for i G ò on Xc.

 A similar result holds for reduced multivariate regression models defined

 in terms of zero restrictions of the type

 na|6c = (0 na|c) = -(EBO)_1(0 Eac),

 i.e. those which have been called 'general linear hypotheses'. To obtain ma-

 ximum-likelihood estimates under such a hypothesis, again, just separate uni-

 variate least squares regression analyses are needed (Anderson, 1958, p. 210),

 those of X{,} for i G a on Xc.

 Some other reduced multivariate regression models require simultaneous

 analyses. The simplest one is the nondecomposable independence hypothesis

 (ii) of Section 1, i.e. YiJ^I^ and With Xb = (Yx Y2)T, Xc =
 (Vá Yļ)T it is equivalent to restricting the equation parameters:

 TT _ ( ^13.4 ß'4ä '
 fc'C _ ' 023.4 $24.3 /
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 8 REBRAPE, VOL 6, 1992

 to satisfy ß'4,3 = ßiz.A - 0, since in multivariate normal distributions a variable

 pair is conditionally independent if and only if its corresponding conditional

 covariance is zero, i.e.

 X{t}J_X{i> I X{dy if and only if <nj.d - 0.

 It follows from (2.3) that the variable pair (^{«}, ^{j>) is conditionally indepen-

 dent given if and only if the corresponding partial regression coefficient

 (ßij.d) or the corresponding concentration (<x,ja) is zero.

 3. Block-recursive linear regression equations

 In this section, model classes are derived which consist of systems of

 linear block-recursive equations. First, saturated or complete equations of

 block-recursive concentration equations are defined as one-to-one transforma-

 tions of a concentration matrix, i.e. of the inverse covariance matrix (Section

 3.1). Second, saturated or complete block-recursive linear regression equations

 are obtained by one-to-one transformations from block-recursive concentration

 equations (Section 3.2). Third, two equivalent classes of reduced models are

 defined by imposing sets of zero restrictions on the equation parameters of

 either complete system (Section 3.3). Finally, it is shown (Section 3.4) that

 any set of zero restrictions - of the type described in (3.4) below - on the pa-

 rameters of a complete block-recursive system can be partitioned into subsets

 of zero restrictions affecting separate components of the concentration matrix

 of all variables. This property assures for each reduced model in these model

 classes that the number of the degrees of freedom coincides with its number of

 zero restrictions on equation parameters.

 3.1 Complete block- recursive concentration equations

 We take again a ^-dimensional random vector X = (Yj, . . . ,Yg)T to be

 partitioned into three subvectors Xa,Xi,,Xc. We thereby assume that in an
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 WERMUTH: BLOCK RECURSIVE LINEAR EQUATIONS 9

 application a dependence chain C = (a, 6, c) has been prespecified from subject

 matter considerations. It gives an ordered partitioning of {1, . . . , 9}. The chain

 elements a, 6, and c define with a U 6 U c, 6 U c, and c three sets of concurrent

 variables which determine, in particular, how an equation parameter is to be

 interpreted: each is a partial association given all of the remaining concurrent

 variables. In general there may of course be more than three chain elements.

 To each positive definite covariance matrix S of A" there exists - for a

 given order on the variables specified with the dependence chain C = (a, 6, c)

 - a unique upper block-triangular decomposition of the concentration matrix
 E"1 as

 E"1 = AtT~xA (3.1)

 with

 / Saa 0 0 ' / Iaa (E#a)-1Ea6 (E00)"^ '
 T"1 = I 0 E66a 0 , A = 0 Ibb jS66.a)-lS6C.a

 ' 0 0 scc a6 ) , V 0 0 7cc /
 This is a direct extension of results on successive orthogonalisation discussed

 by Dempster (1972, Chapter 4.2). The diagonal block matrices of T-1 relate to

 (partial) covariance matrices as stated in (2.1). The diagonal block matrices of

 A are identity matrices, while the upper off-diagonal blocks relate to matrices

 of regression coefficients as stated in (2.2).

 From (3.1) a complete system of block- recursive concentration equations

 is defined by taking

 B*(X - fi) = W * (3.2)

 with

 (£ 0 0 aa 0 Efr6° Sa6 Efcca £ac Ecc ofc ' /
 0 Efr6° Efcca , n = E(X).
 0 0 Ecc ofc /

 From this definition together with (3.1) the mean and variance of the residuals

 W* are obtained as

 E(W*) = £T(E(X) - fi) = 0,
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 10 REBRAPE, VOL 6, 1992

 Var(W) = T~XA Var(X)ATT~1 = T~x.

 Thus, the q variances and the q(q- 1)/2 distinct association parameters of

 the complete system of equations (3.2) are the diagonal and upper off-diagonal
 elements in B*.

 3.2 Complete block-recursive regression equations

 A complete system of block-recursive regressions results from (3.2) af-

 ter dividing each single equation in the system by its corresponding diagonal

 element of B*. This gives

 B(X -n) = W (3.3)

 with

 I -^oU6Uc'{i}) ^{'} ' î € Ö,

 = E(A{,} I A"{,Uc'{t-}) + , i G 6,

 = E(^{ť} I Xc'{i}) + W{.'} , «Éc,

 where the expectations in each equation are conditional given all of the remai-

 ning concurrent variables.

 It follows from the definition of a partial regression coefficient as a quo-

 tient of a concentration to a precision in equation (2.3) that each equation

 parameter in (3.3), that is each element of B, is in fact a partial regression
 coeffficient.

 For instance, with a = {1,2}, 6 = {3,4}, c = 0 we have

 / <rn <r12 a13 <714 '
 <r21 <r22 cr23 <r24

 ** ~ 0 0 <x3312 a3412 '
 0 0 a4312 a4412 J

 f 1 - /?12.34 /^13.24 ~ß'A.n ' / «1.234 ^
 D _ - &1.34 1 - /?23.14 -^24.13 r>.. _ a2.134

 o 0 1 -ßM ' afí~ _ a3.4
 ' o 0 - /?43 1 / ' a4.3 y
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 WERMUTH: BLOCK RECURSIVE LINEAR EQUATIONS 11

 where the a's are intercepts.

 3.3 Incomplete block-recursive regression equations

 An incomplete system, of block-recursive regressions is a complete sys-

 tem (3.3) with some of the equation parameters restricted to be zero. More

 precisely, zero restrictions on elements brt of B are defined with any set

 / Ç / = {(r,s) I 1 < r s < q) (3.4)

 such that for (r, 5) £ I we have bra = bar = 0 if (r, 5) is à position in one of

 the block-matrices of B along the diagonal and we have only bT3 = 0 if (r, 5)

 is a position in one of the off-diagonal block-matrices of B. An example is the

 hypothesis (t) of Section 1, which translates for jointly normal variables into

 ßu.%3 = /?23.14 = 0.

 Similarly, an incomplete system of block-recursive concentration equations

 is a complete system (3.2) with some of its equation parameters restricted to

 be zero. From the definitions of B , B* together with equation (2.3) and the

 positive definiteness of E it follows that to each incomplete system of block-

 recursive regression equations there is a corresponding incomplete system of

 concentration equations such that zero restrictions on B* coincide with those

 on B, and conversely.

 3.4 Implications of incomplete block-recursive regression equations
 for the covariance matrix

 Each set of zero restrictions (3.4) having k elements introduces exactly k

 restrictions on E. This follows from the recursive parametrisation <¿>6, ipc}
 of E"1:

 s-1 = V.(E")- vr + vr (3.5)
 with

 / E»° ' / 0a6 ' / 0ac '
 v. = s'° , V» = , y>„ = 0k ,

 V E" / ' EAa / ' E"®" /
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 12 REBRAPE, VOL 6, 1992

 which gives E-1 as the sum of three q by q matrices, of

 / Eoa Eok Eac '

 E6a E6o(Eoa)_1Eoi E6a(Eaa)_1Eac ,
 ^ Eco Eco(Eao)_1Ea6 Eca(Eaa)_1Eac )

 ( 0aa Oak 0ac ' / 0aa 0a(, 0ac '
 Oba Zbb-a Z'*' ° , 06o 066 06c

 v 0ca Ec6 a scb-a(E66'a)_1E6c-a ) ' 0ca 0ct Ecc-°6 /

 To each E-1 there corresponds one set {¡pa, <£>(,, ¥><:} and each set {<pa, ipb, </>c}

 defines one E-1. The distinct elements of the <¿?'s coincide with the distinct

 elements of the matrix B* in the block-recursive system of concentration equa-

 tions (3.2) and zero restrictions on concentrations in one of the <¿>'s do not affect

 the elements in another (p. Therefore, we call the elements of {<¿>a, <£>(,, <pc} the

 separate (p- components of E-1.

 The considerations in this section can be extended to dependence chains

 with more than three elements by introducing an appropriate more complex

 notation. This leads to the following proposition.

 Proposition 3.1. For a given dependence chain any positive definite covari-

 ance matrix E can be represented uniquely in terms of the coefficient matrix

 B of X and the covariance matrix Cov(VF) of residuals in a system of block-

 recursive regressions and conversely. Each set of zero restrictions (3.1) on the

 regression coefficients in such a system can be partitioned into sets of zero res-

 trictions affecting the separate if -components of the concentration matrix E-1 .

 4. Relations to path analysis, to covariance selection, and to graphi-
 cal chain models

 4.1 Path analysis

 If one disregards Wright's suggestions for estimating parameters and for a
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 WERMUTH: BLOCK RECURSIVE LINEAR EQUATIONS 13

 causal interpretation of equation parameters then the key ideas of path analysis

 for observable variables (Wright, 1921, 1923, 1934) are

 • to represent a system of linear relations in terms of graphs containing

 vertices for variables, lines for symmetric associations and arrows for

 directed associations;

 • to specify a hypothesis about the system by assuming certain relati-

 ons between variable pairs to be only indirect, corresponding to missing

 direct connections between pairs of vertices in the graph and to zero

 restrictions on linear equation parameters;

 • to assess the goodness-of-fit of a hypothesis by comparing observed cor-

 relations with those implied by the hypothesis;

 • to evaluate the relative importance of the direct relations in terms of

 appropriate standardised measures of association.

 The derivation of block-recursive equations with the help of a block-

 triangular decomposition of the concentration matrix is a direct extension of a

 method used previously (Wermuth, 1980) to justify univariate recursive equa-

 tions, i.e. as obtainable by a triangular decomposition of the concentration

 matrix. Univariate recursive systems, i.e. Wright's path analysis can be vie-

 wed as a special case of block-recursive systems when each block contains just

 a single variable.

 For these reasons a complete equation system (3.3) can be called a sa-

 turated block-recursive path analysis model. The term saturated reminds us

 that just a reparametrisation of but no hypothesis on the covariance matrix is

 of interest. A dependence chain, prespecified from subject-matter considerati-

 ons, determines which type of regression coefficients are the parameters in the

 system. An incomplete equation system (3.3 ) and (3.4) having 7^0 can be

 called a reduced block-recursive path analysis model.

This content downloaded from 134.93.178.69 on Fri, 28 Sep 2018 11:57:02 UTC
All use subject to https://about.jstor.org/terms



 14 REBRAPE, VOL 6, 1992

 Though Wright's rules for computing estimates of equation parameters

 and of correlations do, in general, not apply to the block-recursive models his

 important concept of 'indirect relations' has exactly the same meaning as in

 the recursive univariate case: each indirect relation implies a particular zero

 partial correlation (compare (3.4), (3.3), and (2.3)). The other key ideas are

 closely adhered to as well (Wermuth and Lauritzen, 1990).

 4.2 Covariance selection

 Covariance selection has been proposed by Dempster (1972) as an ap-

 plication of 'the principle of parsimony in parametric model fitting, which

 suggests that parameters should be introduced only sparingly, and only when

 the data indicate that they are required'. In block-recursive regressions covari-

 ance selection plays two quite different roles: it is used to justify the parameter

 estimates - originally obtained by maximum-likelihood estimation for jointly

 normal variables - in a distribution-free context by minimizing the genera-

 lized residual variance (Wilks, 1932) and it gives a class of models which is

 equivalent to degenerate block-recursive regressions, i.e. to those in which the

 dependence chain has just one element.

 Dempster showed how to derive the maximum-likelihood estimate S for

 the covariance matrix of a multivariate normal distribution from the observed

 covariance matrix Ê subject to restricting a subset of concentrations in E-1 to

 be zero. More precisely, a zero pattern in E-1 is specified with a set

 J Ç j = {(r, 5) I 1 < r 5 < q}

 such that for (r, s) € «7 we have ara = <rsr = 0. The maximum was shown to be

 unique if it exists and to be obtained when the determinant of the concentration
 A 1

 matrix E-1 1 is minimized and when, at the same time, the determinant of the
 A

 observed inverse correlation matrix P is minimized. The

 Det(Ê-1) = (ô-11<T22...ô'?í)Det(P"1)
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 WERMUTH: BLOCK RECURSIVE LINEAR EQUATIONS 15

 and that in the estimation procedure of covariance selection the variances are

 kept fixed at their observed levels. Furthermore, all covariances corresponding

 to unrestricted concentrations are kept fixed at their observed levels so that

 that the maximum-likelihood estimate has the property

 ãra = ãST = 0 for (r, 5) € «7

 àr3 = ã3r = âra for (r,s) G J' J.

 The convergence of several iterative algorithms to solve the likelihood equa-

 tions has been proven by Speed and Kiiveri (1986). One of these algorithms

 is available as a Fortran routine (Wermuth and Scheidt, 1977), another is im-

 plemented in a program for more general models, introduced as hierarchical

 mixed interaction models, by Edwards (1990).

 With covariance selection the problem of minimizing the generalized re-

 sidual variance, i.e. Det(Var(iy*)) and Det(Var(VT)) in incomplete block-

 recursive equations is solved. To see this consider first systems consisting of a

 single block. Then (3.1) to (3.3) give directly

 Det(Var(W*)) = ( pup 22 . . . pqqf Det(Var(H^)) = De^E"1),

 where />"' s are the diagonal elements of P~l and where we have deleted hats

 to simplify notation. Next, take systems consisting of three blocks. Then it

 follows from the special triangular form of A in (3.1) that Det(A) = 1 and that

 therefore the determinant of the residual covariance matrix Var(VT*) = T~x

 equals the determinant of E-1. Furthermore, the block-diagonal form of T and

 (2.1) give

 Det(E-1) = Det(Eao)Det(E66o)Det(i:cco6)

 = DetíE-^JDetíE^JDetíE"1)

 so that the minimum of Det(E-1) subject to restrictions (3.4) is reached when
 the determinants of the three inverse conditional covariance matrices are mini-

 mized separately - provided the restrictions (3.4) can be partitioned to affect

 exactly one of the conditional matrices.
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 16 REBRAPE, VOL 6, 1992

 Two arguments are needed here. First, since the association parameters

 of the block-recursive concentration equations (3.2) are elements of

 (2o° s„c^ ^c.o^ (ECC,aft),

 the restrictions (3.4) can be partitioned correspondingly into three sets of res-

 trictions. The first set of restrictions affects concentrations involving just va-

 riables in a of the concurrent variables given by a U b U c, the second affects

 concentrations involving just variables in b of the concurrent variables given

 by b U c, and the third affects concentrations of variables given by c. Second,
 to mimimize the determinant of the concentration matrix of a set of concur-

 rent variables subject to having zero concentrations involving only response
 variables is to mimimize the determinant of the inverse conditional covariance

 matrix of the responses given the remaining concurrent variables. For instance,

 for &Uc, the response variables are X{,} with i G b and concentrations involving

 only response variables are the concentrations of and Xyy with i 6 b and
 j € b U c, then the last claim follows since

 Oet ( £ j =Det(S¿)Det(E-')
 and the elements of Ecc remain fixed with no restrictions on the corresponding

 concentrations, on those in Ecc o.

 The arguments in this section can be directly extended to dependence

 chains with J elements, which specify corresponding J sets of concurrent va-

 riables and J sets of concurrent influences: for the chain C = (C', . . . ,Cj) the

 concurrent variables are = Cj U . . . U Cj for j = 1 , . . . , J while the con-

 current influences for C ^ are except for C^J' where it is the empty set.

 This leads to the following proposition.

 Proposition 4.1. The generalized residual variance in incomplete block-

 recursive regressions equations (3.3) and (3-4) with J blocks is minimized with

 J separate covariance selections on covariance matrices of the corresponding
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 WERMUTH: BLOCK RECURSIVE LINEAR EQUATIONS 17

 J sets of concurrent variables: for each given set of concurrent variables no

 zero concentrations occur for pairs in which both variables are concurrent in-

 fluences.

 In the case where the variables have a joint normal distribution, the esti-

 mates of equation parameters obtained by minimizing the generalized residual
 variance coincide with maximum-likelihood estimates.

 4.3 Graphical chain models for continuous variables

 Graphical chain models were introduced by Lauritzen and Wermuth

 (1984, 1989) as a class of models for the analysis of relationships among varia-

 bles, some of which are qualitative and some quantitative. They are sometimes

 called CG- chain models to remind us that conditional Gaussian regressions are

 assumed for the conditional distributions of the response variables in the chain.

 The investigated relations are dependencies, i.e. directed associations,

 or symmetric associations taking into account that for many substantive re-

 search questions some variables are regarded as responses, some as potential

 explanatory variables, i.e. influences, some as being intermediate, i.e. playing

 the role of both influences and responses and some as being on equal footing

 so that symmetric associations are of interest. In a model with a dependence

 chain C = (a, ò, c), Xa contains responses, Xb intermediate variables and Xc

 influences; variables within each of the subsets a, 6, c are viewed as being on

 equal footing.

 For CG-chain models with only continuous variables the joint distribution

 is multivariate normal. Its density / can be written in terms of so-called

 canonical characteristics ( g , h , K) as

 l°g f(x) = 9 + hTx - ±xtKx, (4.1)

 where

 h = £~V> K = E-1, g = a normalising constant.
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 18 REBRAPE, VOL 6, 1992

 Corresponding to the chain C = (a, 6,c), and to the three sets of concur-

 rent variables, those with indices in a U b U c, 6 U c, and c, the joint density is

 factorized into (joint) conditional and (joint) marginal normal densities as

 f - fa'bc fb'c fc

 Each reduced model results from restrictions specified with a set

 Ì ÇÏ = {(r,s)) I 1 < r ^ s < q} (4.2)

 such that for (r, s) G I we have X{r} conditionally independent of X{sy given

 all of their remaining concurrent variables. Such a model has been called a

 graphical chain model since the set / can be interpreted as a set of missing

 edges in an associated chain graph.

 The relevant canonical parameters in a graphical chain model for only

 continuous variables having dependence chain C = (a, 6, c) are identical to the

 parameters of a block- recursive system of concentration equations (5). This

 can be seen from the canonical parameters of the former, from

 Saa v*a6 v*ac 2J w x^bb.a '^bc.a 2J LÒ.a. M '^cc.ab ^ ic.ab 2 ^ v*ac 2J } ) w ^ 2J 9 ) M ^ ^

 obtained from the canonical parameters in joint normal distributions of the
 three sets of concurrent variables where

 ' I ) =e"' ( « ) • ( £ ) ■ ( £ £ )(":)• •
 as well as from the parameters of the latter being

 (Soo 0 o o Sa6 ^bb.a £ac Ebc.a scc a6 ' / £> = V / hcab hba ¿a ' / (Soo 0 ^bb.a Ebc.a £> = hba . o o scc a6 / V hcab /

 Thus, a graphical chain model with / ^ 0 just gives an incomplete system

 of block-recursive concentration equations with 1 = 1, and conversely. From
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 WERMUTH: BLOCK RECURSIVE LINEAR EQUATIONS 19

 such considerations the following result can be derived for dependence chains

 with any number of elements.

 Proposition 4.2. The class of block-recursive regressions for variables having

 a joint normal distribution is equivalent to the class of graphical chain models

 for continuous variables.

 Important general results are available for this class: as for univariate

 recursive systems it is known how to read off a graph all independencies implied

 by a reduced model and how to judge from the graphs whether two distinct

 models are equivalent (Frydenberg, 1990). This permits, in particular, to

 decide from the graph of each reduced model whether it is equivalent to a

 univariate recursive system or not.

 5. Linear structural equations

 5.1 Derivation from multivariate regression equations

 After the need for simultaneous analyses in some economic applicati-

 ons had been demonstrated (Havelmoo, 1943) linear structural equations were

 developed to deal with such situations and discussed mainly within the econo-

 metric literature (see, e.g., Goldberger, 1964).

 In order to relate linear structural equations to block-recursive regres-

 sion equations we describe first their formal relation to multivariate regression

 equations for X¿ given Xc = xc , where Xc may be fixed or random

 Xd = n«ļļca:c + Vd. (5.1)

 Linear structural equations can be viewed as resulting from (5.1) by premulti-

 plying the residual matrix Vd with an arbitrary nonsingular matrix Tdd (com-

 pare with Goldberger, 1964; p. 297) giving

 rdd(Xd - nd'cxc) = u*d.
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 20 REBRAPE, VOL 6, 1992

 In this context the multivariate regression equations (5.1) are called the reduced,

 form of the linear structural equations - not to be confused with the notion of

 a reduced model.

 It is common to use a normalized version obtained by dividing each of the

 equations by the corresponding diagonal element of r¿d. This defines a matrix

 r ¿d having ones along the diagonal and gives the linear structural equations

 Tddxd + rdcxc = Ud (5.2)

 with equation parameters

 r<w, Tdc = - r^n^ic

 and covariance matrix

 Var (Ud) = ftdd = F dd^dd.c^dd-

 5.2 Properties of some linear structural equations

 It is well known (Goldberger, 1964, p. 316) that without further restricti-

 ons the equations (5.2) are over-parametrized so that not all of its parameters
 can be estimated from the observed covariance matrix. In the econometric

 literature such systems are called 'not identifiable'. We prefer to say that they
 do not define a statistical model.

 Concern had been voiced early (Liu, 1960) that the necessity to introduce

 restrictions on the structural equations (5.2) to remove overparametrization

 could lead to misspecifications with all the undesirable consequences. In parti-

 cular, the interpretation of equation parameters and of association structures

 defined with linear structural equations depends crucially on the chosen set of
 restrictions.

 To elaborate on this in relatively simple situations we consider just two

 equations in four variables, i.e. the case with Xd = (Vi Yļ)T and Xc =
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 (V3 Yi)T . The equations (5.2) can then be written as

 Vl + 712Î/2 + 713^3 + 7^4 = «1, (5.3)

 2/2 + 7212/1 + 723Î/3 + 724V4 = «2,

 with equation parameters

 r«=f' V 7,! 1 V ^ V ( 713 7l< ) V 721 1 / V T23 7« /
 and with covariance matrix

 Var ( ">) = ("» "»V V «2 J V • ^22/
 Two appropriately chosen restrictions are necessary to express the nine

 distinct parameters of (5.3) uniquely in terms of the seven free parameters of

 the unrestricted covariance matrix S. Thereby the three distinct elements of

 the covariance matrix of Xc are taken as given in this conditional model.

 A saturated statistical model, i.e. a complete system of linear structural

 equations results from (5.3) if restrictions have been specified which remove

 over-parametrization but do not introduce restrictions on the covariance ma-

 trix. Such systems are referred to as being 'both identifiable and simple' in

 the econometric literature (Malinvaud, 1966; p. 561).

 As examples for possible different saturated models and associated dif-

 ferent meanings of equation parameters in linear structural equations three
 different cases are discussed.

 Case A: Saturated multivariate regression equations result from (5.3)

 with the restrictions 712 = 721 = 0. The equation parameters are then

 r ( ^ ® ^ T" r = ( ~ @X3A - ^14-3 Ì
 V 0 1 J • T" r = { -fe, -A,., ) ■

 Case B: Saturated univariate recursive regression equations result from

 (5.3) with the restrictions 721 = W12 = 0. The equation parameters are then

 r /1 -ß'2M Ir I ~ /?13.24 -ßl4.23 ' = /1 ^ 0 1 Ir I -ft« J'
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 22 REBRAPE, VOL 6, 1992

 Case C: A further set of saturated equations results from (5.3) with the

 restrictions 714 = 723 = 0. The equation parameters are then

 (5.4)

 This is a saturated model with parameters which are difficult to interpret

 and which are defined only for covariance matrices having 024.3 ^ 0 and <713.4 7^

 0. But, it has further undesirable features.

 One is that a single zero restriction on an equation parameter can intro-
 duce more than one restriction on the reduced form and hence on the covari-

 ance matrix. For instance, setting 724 = 0 in (5.4) implies /?i4.3 = ß24.z = 0.

 Another is that the interpretation of a reduced model can remain ambiguous

 until more is specified about the system. An example is the reduced model

 obtained from setting 721 = 0 in (5.4). In the econometric literature such a

 model is referred to as being 'identifiable but not simple', since its parameters

 can all be estimated but it implies restrictions on S. For this particular redu-

 ced model the equation parameters expressed in terms of regression coefficients
 are

 Hi rfcî)-r- (o_Am %,<,)•
 while the coefficients in a regression of X¿ on Xc expressed in terms of the

 structural equation parameters are

 Mo7- )■
 The latter shows that /323.4 = 0, i.e. that one restriction implied by this reduced

 model for the covariance matrix is <723.4 = 0.

 An interpretation of this structure depends on the value of one of the
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 unrestricted parameters in the system, on 712. More precisely, we get

 (I) *14.3 = *23.4 = 0 for 712 = 0,

 (II) 0"l4.23 = 023.4 = 0 for 7i2 = - <Ti2.34/<T22.34ļ

 (III) 023.4 = 0 otherwise.

 The first (I) follows directly from the reduced form parameters expressed in

 terms of the structural parameters, i.e. from ßn.z = 712724* while the second

 (II) follows from the recursion formula for regression coefficients, from /814.23 =

 ßi4.3 - fii2340243i from 712 = -{ßw.z/ßu.z) and from ßu.M =

 Now (I) and (II) specify structures which are disjoint for all covariance

 matrices having 012.34 ^ 0 and 024.3 ^ 0. Consequently, for such cases the

 change in the interpretation from (I) to (II) means a change between two

 mutually exclusive hypotheses.

 No such problem occurs if the value of 712 is known, but then we are

 back in one of the subclasses (Cases A or B) of linear structural equations,

 having well-defined parameters since (I) can be seen as a reduced multivariate

 regression model, (II) as a reduced univariate recursive regression model, (III)

 can be specified as a zero restriction model within either one of these two
 subclasses.

 The two examples to Case C suggest that it may be difficult to judge for

 any given substantive research question, whether a linear structural equation

 model provides an appropriate framework: unless one has extremely strong

 prior knowledge or the model belongs to a well-studied subclass like univariate

 recursive systems or multivariate regression the interpretation of its parameters

 and of the whole structure has to be derived from scratch in each application.

 Interesting theoretical questions are in general unanswered for linear

 structural equations as well, such as:

 • Are there other subclasses of linear structural equation models than uni-

 variate recursive regressions and multivariate regressions in which the

 parameters' relate in a simple way to regression coefficients?
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 • When are two linear structural equation models equivalent?

 • Which moderation effects are to be expected for single parameters and

 for the interpretation of a structure if one marginalises over a variable in

 the structural equations or if a variable is not observed?

 5.3 Distinctions and relations to block-recursive equations

 Block-recursive linear regression equations can be derived from the multi-

 variate regression model (5.1) in a similar way as the linear structural equations

 (5.2). Block-recursive concentration equations result from (5.1) by premulti-

 plying the residual matrix V¿ with a positive definite matrix B¿¿ being deter-

 mined from a block-triangular decomposition of the concentration matrix of

 the residuals V¿, i.e. from a block-triangular decomposition of EjJc.

 More precisely, let d = a U 6, then the unique upper block-triangular

 decomposition of Ej¿c corresponding to the partitioning (a, b ) of d is

 s;L = (5.5)

 with ,

 T-i_( , V" 0 ' Add Iaa (S00)"^06 ' Ud - y o eW o ; ' Add ~ ^ o ibb )'
 Then the equations obtained from B¿dVd with B}d = are identical

 to the equations for Xi with i € d in (3.2). This follows with

 = ( f )(*;) + ( ) X.
 since

 -B-u n,|c = (T^ Aii)(ZM)-"Z'c = = A-JY?*

 and

 *2* = ( Í-SHS-)-. /„)(!-) = ( ) •
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 The total set of concentration equations in (3.2) is then obtained by simply

 adding a complete system of one block for Ecc if Xc is random and regression

 equations result from (3.2) as described in Section 3.2. Thus, block-recursive

 regressions can be viewed as linear structural equations in which a particular

 meaning is attached to the equation parameters.

 Considerations of this type lead to the following proposition.

 Proposition 5.1. Linear structural equations are equivalent to block-recursive

 regression equations if and only if both of the following conditions hold:

 (1) the structural equations can be reordered to get Y to be of upper block-

 diagonal form so that the blocks define sets of concurrent variables and

 (2) each nonzero off-diagonal element in row i and column j ofTjd is the

 partial regression coefficient of Xj in a linear regression of X¡ on Xj and on

 all of their remaining concurrent variables.

 To summarize some of the distinctions and similarities between structural

 equations and block-recursive equations we note first that both

 • can be viewed as extensions of Wright's path analysis to study structures

 more complex than univariate recursive equations;

 • contain univariate recursive systems as a subclass;

 • permit to formulate different types of nondecomposable independence

 hypotheses;

 • can be extended to include latent variables.

 We note further that for block-recursive regression equations

 • there is no overparametrization and, consequently, there are no problems

 of identification;

 • each equation parameter is a regression coefficient and hence interpre-

 tations of a structure in terms of linear independencies can be directly
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 26 REBRAPE, VOL 6, 1992

 derived and general results are available to read directly off the graph of

 a model which independencies are implied;

 • covariance selection models form a subclass, but multivariate regressions

 with nondecomposable independence hypotheses have no simple equiva-

 lent formulation as block-recursive equations, i.e. they cannot be con-

 veniently expressed in terms of zero restrictions on parameters of any

 block-recursive equations.

 Similarly, we note that for linear structural equations

 • multivariate regressions form a subclass but covariance selection models

 with nondecomposable independence hypotheses have no simple equiva-

 lent formulation as linear structural equations;

 • no general results are available which help in the interpretation of struc-

 tures defined with linear structural equations unless the equations are

 at the same time either univariate recursive regressions or multivariate

 regressions.

 For characterizations of nondecomposable independence hypotheses

 within the classes of covariance selection, block-recursive regressions and mul-

 tivariate regressions and for discussions of how they could have been generated

 by univariate recursive equations in the observed variables and some appropri-

 ately chosen latent variables see Wermuth and Cox (1991).

 6. A substantive research question

 A research question from psychological research requiring a simultaneous

 analysis of linear equations concerns emotions as a disposition or trait of a

 person and emotions as a state evoked by particular situations. These notions

 are central to research on stress and on strategies to cope with stressful events.
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 Questionnaires with which state and trait of the emotions anxiety and anger

 are to be measured have been developed by Spielberger et al. (1970, 1983).

 Associations of a linear type are considered to be appropriate descriptions

 of pairwise relations between the variables Yí := State anxiety, Yļ := State

 anger, Y3 := Trait anxiety, and Y' := Trait anger. Expectations regarding the
 correlation structure of the four variables are as follows:

 - all marginal correlations are positive and of moderate size, while no partial

 correlation is negative;

 - emotions in particular situations (states) are influenced by the dispositions

 (traits) of a person and not conversely;

 - if either state variable is predicted in terms of the other three variables then

 there is no direct dependence on the other trait variable.

 The hypotheses concerning only indirect dependencies can be stated in

 terms of conditional expectations as

 E(Yi I ^2 = 3/2» ^3 = î/3> Yļ = Î/4) = «1.234 + /?12.34Î/2 + /?13.24Î/3 + /?14.23Î/45

 E(^2 I Yí = Vu Yì = ļj3, Y* = Va) = <*2.134 + /?21.34Î/l + /523.14Î/3 + /?24.13Î/4

 with

 ß'4.2Z = /?23.14 = 0.

 From C. Spielberger we obtained data displayed in Table 6.1 on 684

 female college students for the state-trait versions of the variables anxiety and

 anger. They show an excellent fit of the observations to the hypothesized

 structure: the partial correlations of (V^, Y4) and (Y2, Y3) have observed values

 close to zero, while they are fixed to be zero under the reduced model. The

 marginal correlations except for the two pairs (Ví , Yì) and (Yļ, Vá) are - under

 this reduced model - forced to agree with the observed ones. For the two pairs

 where deviations between the observed and estimated correlations can occur,

 these deviations are small, i.e. we have observed pu = .39, P23 = .47 and we

 have estimated under the model p'4 = .42, P23 = .45.
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 Table 6.1

 Observed marginal correlations (lower half) and observed partial correlations

 given all remaining variables (upper half), and further data summaries, » = 684

 Variable Yx Y2 Y3 Y4

 Fi := State anxiety 1 .45 .47 -.04
 Yļ'.= State anger .61 1 .03 .32
 Y3:= Trait anxiety .62 .47 1 .32
 Y' := Trait anger

 Mean 18.87 15.23 21.20 23.42
 Standard Deviation 6.10 6.70 5.68 6.57

 Table 6.2

 Test results for zero partial correlation of each variable pair given all of its

 remaining concurrent variables

 Indices Indices of Value of Degrees Corresponding
 of concurrent chi-square of fractile

 pairs variables statistic freedom or p- value

 (1.2) 1234 153.90 1 <.001
 (1.3) 1234 171.51 1 <. 001
 (1.4) :=(S-anx, T-ang) 1234 1.22 1 .268
 (2.3) :=(S-ang, T-anx) 1234 0.33 1 .572
 (2.4) 1234 78.04 1 < .001

 (3,4) 34 189.73 1 < .001
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 These impressions are supported on the one hand by the overall likelihood-

 ratio test for the goodness-of-fit since the value of likelihood ratio chi-square

 statistic on 2 degrees of freedom is 2.1 and on the other hand by the tests

 statistics reported in Table 2 for tests of zero partial correlation of each pair

 taken separately. The conclusions about the association structure of these four

 variables were confirmed by very similar unpublished results for a sample of

 588 male college students and they could not have been formulated convenien-

 tly by zero restrictions on individual parameters of traditional linear structural

 equations.
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 DISCUSSION

 Gerhard Arminger

 Bergische Universität Gesanthochschule Wuppertal
 Wuppertal - Germany

 Ms. Wermuth is to be congratulated on clarifying the similarities and

 distinctions of two important models used in statistical analysis, that is bet-

 ween graphical chain models for quantitative variables on one hand and the

 linear structural models on the other hand. The central contribution is the in-

 troduction of block recursive regression equations and showing that the block

 recursive structure can be obtained from a linear structural equation system

 by restricting the matrix of the structural equation system to be positive

 definite and to be a function of the covariance matrix Yldd.c °f the residuals V¿.

 Consequently, she can derive the conditions under which one or the other mo-

 del may be more meaningful in applications. Altogether I have found the paper

 quite stimulating and it has given me a new outlook on the many possibilities

 of modeling a covariance structure.

 I will first consider some of the differences between the approaches which

 are more of a philosophical nature but may also help in understanding when

 one should use one or the other approach. Second, some of the statistical

 assumptions that seem to me overly restrictive in the graphical chain model

 for estimation purposes are discussed.

 The basic approach of linear structural models written as

 y = ã + By + tx + ê ,
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 is to concentrate on modelling the effects of the endogenous variables ý on

 each other, captured in the matrix B and the effects of x on ý, captured in

 the matrix f. The disturbances are supposed to have Et = 0 and V(e) = Û

 and to be uncorrelated with x. (The notation is used to avoid confusion

 with Wermuth's notation). Of course, if B = 0, the model corresponds to

 multivariate regression and if B is lower triangular, it corresponds to a recursive

 system, that is, path analysis. However, certain hypotheses in economics and

 other fields, often derived from a dynamic equation system equilibrium, make

 the formulation of B as a general matrix where (I - B) is invertible and

 meaningful. The estimation of à, B, T and fi can only be based on the reduced
 form:

 y = (I - È )"1ã + (I - B)-1 r + (/ - Ě)l = a* + ITx + e*

 with

 y(e*) = (I - 5)-1fì(7 - B)~iT = Ž .

 Given the information by the mean structure E(y'x) = a* + II*a* + IT*i

 and the conditional covariance structure V (t/ļa?) = V(ť) = S, the parameters

 ã, B, r and Û have to be restricted in one way or the other; these restrictions

 are called identification restrictions. The restrictions actually used will of

 course depend on substantive issues, but one should note that restrictions on

 any of the parameters â, B, f and Cl can be used. In applications, one is usually

 interested in what happens in y¡, if ýj or x¡ changes by one unit. Hypotheses

 about Ù or about the joint unconditional covariance matrix of ý and x are

 usually not of interest. Therefore restrictions are typically placed on ã, B and

 r rather than on Õ or on V(y).

 Also, if one uses structural modelling, one is usually not interested in

 independence or conditional independence of variables and one is not willing

 to assume that the variables in x or in t are (multivariate) normal. The focus

 in estimating simultaneous equation systems is therefore to estimate ó, B, f

 under the weakest possible assumption about t which turns out to be that
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 E(t'x) - 0 given first order identification, that is E(y'x,0') = jE(y|x,02)

 implies 01 = 02 for all x, where 0' and 02 are two parameters vectors. This

 can be achieved for instance by using the pseudo ML method of Gourieroux,

 Monfort and Trognon (1984).

 The goal of graphical modelling is quite different. The central idea is not

 the estimation of a multivariate mean structure under certain hypotheses as in

 econometrics but the idea of (conditional) independence which in the multiva-

 riate normal distribution is the same as zero (partial) correlation. Hence, the

 modeler is concerned with structures defined with respecto to the inverse of

 the covariance matrix of all variables that are considered. The interesting fact

 is, however, that path analysis can be derived from the linear structural model

 as well as the graphical chain model, although the distributional assumptions

 are weaker for the estimation from the structural model yet. The identifica-

 tion issue that arises in the linear structural model also arises in the graphical

 chain model but it is solved in a prescribed way. This is immediately seen

 from the derivation of the matrix B¿d from the unique upper block- tri angular

 decomposition of Ylďd.c which is equal to (/ - B)TÛ~1( I - B) in the linear
 structural model. While in the linear structural model B,T and Ù are first

 modelled independently of each other and then restrictions are used to achieve

 identification, the matrix Bdd in the graphical model is a bijective function of

 the unique decompositon of JZdd.c anc^ therefore identified.

 In Wermuth's paper the estimation issue is not discussed. Judging from

 the introduction, section 4.2. and section 4.3 and the example, the estima-

 tion is based on the assumption that the joint distribution of all quantitative

 variables in the model is normal. Such an assumption, however, would be unac-

 ceptable for econometrics and many other fields. However, if one is willing to

 give up the assumption of normality and instead of looking at (conditional)

 independence considers zero (partial) correlation one can estimate graphical

 chain models using either pseudo ML methods for mean and covariance struc-

 tures (Arminger and Sobel, 1990) or a minimum distance estimator (MDE)
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 for covariance matrices discussed by Shapiro (1986).

 Here, I will consider only briefly the minimum distance estimation. Let

 S the empirical covariance matrix of a vector y and let s be the vectorized

 lower triangular of S. For samples of size n, it is assumed that s is asymptoti-

 cally multivariate normal, that is y/n(s - <r(9)) ~ -V(0, W) where <r(9) is the

 vectorized form of the expected covariance matrix ^2(9) and 9 is the vector of

 model parameters of £. The matrix W is the variance-covariance matrix of

 ^/ñs. The parameter vector 9 is estimated in such a way that the Mahalanobis
 distance

 Q(Q) = n(s - <t(9))tW~1(s - cr(9))

 is minimized. 'V is a consistent estimate of W which can be obtained from

 the first four empirical moments of y. As shown by Shapiro (1986), Q{9) is

 asymptotically x2 distributed with p - q degrees of freedom if ^2(0) is cor-

 rectly specified; p is the number of elements of s and q is the number of free

 parameters in 9. The asymptotic distribution of the MDE 9 is then:

 To embed the block recursive models discussed by Wermuth we note that

 hypotheses formulated in B of equation (3.3) are equivalent to hypotheses for-

 mulated in B* in equation (3.2) and that hypotheses about B* can be formu-

 lated as hypotheses about £-1 as shown in equation (3.1) or (3.5). Hence,

 one can define a vector of parameters 9 as the vectorized lower triangular of

 52-1 and write a{9) as a possibly fairly complicated function of the elements

 of 5Z-1 which may be restricted.

 Programming such a function is much simplified of one uses a powerful

 matrix language such as GAUSS. In fact, a general program for mean and

 covariance structure analysis like MECOSA (Schepers and Arminger 1992)

 which is written in GAUSS may be used directly to estimate and test block

 recursive equation models such as the one used in the example.
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 Traditional multivariate analysis of continuous variables is largely based

 on means and covariance matrices, i.e. to some extent implicitly or explicitly

 on the multivariate normal distribution. There are broadly at least three

 limitations to such methods, two of them somewhat opposing one another.

 First the methods are frequently invariant under rather large families of linear

 transformations of the component variable, and this may be in conflict with

 specific information about the nature of the individual variables preservation

 of whose identity is important. The second limitation is that, especially when

 the number p of component variables is large, the specification in terms of

 p + |p(p +1) parameters may be too highly parameterized, i.e. any structure
 in the covariance matrix may be hard to discern from among so many entries.

 Finally, somewhat, by contrast with the previous point, the methods do

 not allow for interdependencies that are nonlinear or "interactive", for example
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 for the possibility that the slope of the relation between Yļ and Yļ depends

 on the levels of other variables. (Of course we can study such effects by re-

 gression analysis but that requires a separation into response and explanatory

 variables).

 Professor Wermuth's paper addresses the first and second of these points

 and I know that in other work she is concerned about the final one, the possi-

 bility of nonlinerarity and other such effects.

 One value of the paper lies in establishing the relation between important

 families of models that are at least partly substantively based and further in

 the results towards the end of the paper which show clearly the difficulties that

 can arise in interpreting the parameters in linear structural systems.

 The use of the more substantively based models described in the paper

 is likely in general to be preferable to other more empirical ways of dealing

 with an over-abundance of parameters. A more empirical approach involves a

 search for such regularities as (a) sets of essentially zero correlations, (b) blocks

 of variables with essentially equal correlation within each block and essentially

 equal cross-correlation between all pairs of variables in two given blocks, (c)

 simplifications based on the inverse covariance matrix, corresponding particu-

 larly to (a), the detection of zeros. This isolates zero partial correlations of

 pairs of variables given all other variables, the covariance-selection method of

 Dempster. While at first sight the use of the inverse matrix is less direct than

 the use of marginal correlations, i.e. the correlation matrix itself, the inverse

 has the advantage of being linked with notions of conditional independence

 and therefore is often more likely to point towards specific models with a subs-

 tantive interpretation, in particular via the class of graphical chain models,

 and hence to the whole range of ideas discussed in this paper.
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 Jan de Leeuw

 Departments of Mathematics and Psychology
 University of California
 Los Angeles - U.S.A.

 Graphical Models, etc.

 The theory of hierarchical models, decomposable models, graphical mo-

 dels, chain models, or path models, has changed, and will continue to change,

 the face of multivariate statistical analysis. The accomplishments so far have

 been impressive. There are important and convincing systematizations of early

 work by Wright, Goodman, and Dempster in the writings of Wermuth, Speed,

 Lauritzen, and Cox. The contributions of Pearl, Shafer, Glymour and others

 provide rich connections with the field of artificial intelligence, and with com-

 putational philosophy of science.

 Of course such a glowing introduction must necessarily be followed by

 words of criticism and/or caution. We concentrate on the practical usefulness

 of graphical model techniques in actual data analysis.

 Weak Spots

 The theory developed so far is not complete. First, the connections with

 econometric simultaneous equation theory, and with the related LISREL/EQS

 systems in psychometrics and sociometrics, have not been worked out in detail.

 Graphical chain models correspond with (block-)recursive path models with

 uncorrelated errors. The errors are the only latent (unobserved) variables. In

 the simultaneous equations models in the Haavelmo tradition there is no longer

 simple recursiveness. Wermuth's paper, the one we are discussing here, makes

 an attempt to close this first gap. Her point of view is that block recursive
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 regression equations are the key to understanding the relationship between

 the approaches. She only discusses "errors-in-equations" models, and we shall

 argue that these models are not the most interesting generalization of simple

 path models. It also seems to me that quite a few of the attractive properties

 of block models get lost in the generalization. This means that the theory is

 not very robust.

 Second, one of the satisfactory aspects of these models is that categorical

 and numerical variables can be dealt with in one and the same formulation.

 But this can only be done by assuming multivariate normality for the nume-

 rical variables, and then translating conditional independence into vanishing

 partial correlations: Although parts of the theory can be based on partial

 correlations only, we lose the connection with maximum likelihood, which re-

 quires a full specification of the model. Unfortunately, real variables are not

 either multinomial or multinormal. They are most often, in my experience,

 somewhere in between these extremes. Multinomial allows for too many para-

 meters, multinormal for not enough parameters. We shall come back to this
 below.

 Thirdly, there is a gap between theory and practice. In quantitative gene-

 tics, in econometrics, in educational science, and in sociology, path models and

 simultaneous equation models have been, let's say, disappointing. The collec-

 tive works of David Freedman illustrate this more forcefully than I ever could.

 Having graphical models is technologically a big step ahead, but we should be

 careful not to fall into the LISREL trap. A generation of social scientists has

 been misguided by an appealing metaphor, wrapped in an authoritarian black

 box, decorated with forbidding equations. As far as I can see, the outcome has

 been, let's say, disappointing.
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 Linear Structural Equations

 The material in the first four parts of Wermuth's paper is an excellent
 and useful review of the various facts and results that are known about block

 recursive path models. The fifth part is an original comparison of block re-

 cursive models with general simultaneous or structural equation models. This

 part we shall discuss somewhat more in detail.

 In the full model, not all parameters can be identified from the first and

 second order moments. Wermuth (p. 18) seems to equate "not identifiable"

 with "not defining a statistical model". But this is misleading, because the

 model defines a unique manifold in the space of covariance matrices, even if this

 manifold is not described with a minimal number of parameters. Here, as in the

 linear case, it helps to think of the parametrization as just incidental, and of the

 subset of the covariance cone as the model we are trying to estimate. This also

 takes away the fear that identification could lead to misspecification. If it does,

 it is by definition not just identification. Identifying a model means describing

 it in terms of the smallest number of parameters possible. Also, giving the

 impression that identification problems come from oVerparametrization (p.22)

 is somewhat misleading. They tend to come from underparametrization, of
 course.

 I am not an econometrician, but were I one, I would be somewhat

 unhappy about Wermuth's account of simultaneous equation modeling. The
 modern econometric literature on identification is not even mentioned. Hsiao

 (1983) gives a fairly recent overview, while even more recent material is revi-

 ewed in Bekker and Pollock (1986) or Bekker and Dijkstra (1990). There are

 now symbolic computation methods to investigate identification and equiva-

 lence of simultaneous equation models.

 Block recursive models were already used as basis for discussing indenti-

 fication by Fisher in his classical book (1966). There have also been interesting

 discussions in the econometric literature (between Wold and Bassman, for ins-
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 tance) about causal interpretation of coefficients in non-recursive models, as

 compared to block-recursive models. This anticipates some of the distinctions

 mentioned on page 22-23. While it is true the LISREL framework has been

 accepted quite uncritically by many social scientists, it is also true there has

 been a great deal of critical discussion of the algebraic and methodological pro-

 perties of simultaneous equation models in the econometric research literature.

 This is not obvious from Wermuth's paper, because she mainly refers to some

 excellent, but quite ancient, textbooks.

 Latent Variables

 Wermuth does not mention latent variables, but it is difficult to see how

 any discussion of linear structural models can be complete without them. In

 the situations in which such models are typically applied (with some exceptions

 in theoretical population genetics) there are errors in variables that cannot be

 ignored. This is even true in engineering and systems theory, where there

 currently is a lot of interest for latent variable models. I happen to think that

 factor analysis, with the closely related models of true score theory, errors in

 variable theory, and latent trait theory, are the most interesting contributions

 of the social sciences to data analysis. The fact that these techniques have

 been misused almost to extinction does not take away this basic fact.

 Related to the idea of latent variables is the idea of optimal scaling. A

 latent variable only exists because of its position in the path diagram. In

 factor analysis, for intance, we say that there exists a variable z such that the

 observed y¿ are independent given z. We do not observe z, it is missing, but

 we can still test the consequences of our assumptions. If we want to, we can
 also "estimate" z.

 One step further along the road is the basic indicator idea, which is
 that we never observe the variables we are interested in. The variables in
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 the path model are theoretical constructs, we only observe indicators for these

 constructs. The indicators are related to the constructs by small factor models.

 This is the seductive metaphor I referred to earlier. It seems the only sensible

 way to model errors-in- variables, and potentially it is a great way to link theory

 and observation. Unfortunately, in many applications the theory component is

 missing, and theories are "constructed" by heuristic search over path models.

 This is the nightmarish part of latent variable modeling. It is a reasonable

 class of techniques, much more reasonable than block recursive modeling of

 the observed variables, but I have not seen many convincing applications, and

 I have seen quite a few hair-raising ones.

 Nevertheless I agree with Goldberger (1972), Griliches (1974), Wold

 (1982), and Aigner et al. (1984) that there is no way around errors-in-variables,

 and that the errors-in-equations models in the Haavelmo tradition are simply

 too narrow to be of interest in most social science situations. It is perhaps true,

 that block-recursive models are more basic and "a key to understating". They

 are elegant, they are simple, but they have little practical relevance because

 of the omnipresence of measurement error. In a sense this means that the

 vanishing tetrad is of more importance than the vanishing partial correlation
 coefficient.

 Between Multinomial and Multinormal

 Relationships between variables can be pictured as arrow diagrams.

 These qualitative diagrams can be translated into quantitative statements

 about the joint distribution of the variables in various ways. One translation

 uses conditional independence, another uses vanishing partial correlations.

 In the path diagrams some variables are quantitative, some are qualita-

 tive, some are latent and some are manifest. In a number of special cases we

 know how to integrate all four types of variables into a single model, and large
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 steps have been made towards a general approach. I think, however, that in

 order to build realistic models we need intermediate types of variables. Inter-

 mediate both between continuous normal and discrete multinomial, but also
 intermediate between latent and manifest.

 Some of these intermediate types have been studied in probit and logit

 models, in which binary variables are regressed on continuous latent variables

 for which they are indicators. If we generalize these ideas, which is done in

 LISCOMP (1982), then we have a kernel with a path model for the theoreti-

 cal constructs, and we have nonliner regressions relating the constructs to the

 indicators. Indicators now can be nominal, ordinal, numerical, binary, trunca-

 ted, censored, and so on. The basic idea of having conditional independence of

 the indicators given the construct still applies, and the basic inheritance from

 factor analysis is that constructs are continuous variables.

 Building the likelihood function for such models is not very difficult. A

 fairly complete review is in the book by Bartholomew (1988). But maximizing

 the likelihood can be very costly and pratically impossible. New developments

 (such as Gibbs sampling) continue to make the boundaries of computability

 wider and wider, but in the end the empty cell problem and the complicated

 integrals that are bound to appear in the likelihood function often defeat us.

 If we want to avoid going to a fully specified model, using likelihood

 methods, then we can use the alternatives proposed by Gifi (1991) or De Le-

 euw (1988), (1986). These optimal scaling techniques can perhaps be best
 understood by using the concept of linearizable regressions. Variables can be

 of mixed type (nominal, ordinal, numerical). We do not make specific distri-

 butional assumptions, only that the variables can be transformed in such a

 way that all bivariate regressions become linear. We then apply an optimal

 scaling technique (any reasonable one will do), which will recover the lineari-

 zing transformations. And we fit the errors-in- variables model to the optimally

 scaled variables. Statistical theory for this two-step approach is developed in

 De Leeuw (1988).
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 Summary

 Wermuth's paper limits itself, quite appropriately, to a class of statistical

 models about which we can say a great deal mathematically. It is unfortunate,

 but significant, that these models may have considerable normative value but

 little descriptive value. The example analyzed in Section 6 of the paper is

 not typical for the types of problems analysed with path analysis. But even

 for this tiny example the blunt statement that "associations of a linear type

 are considered to be appropriate descriptions of pairwise relations between the

 variables" gives rise to many doubts. "By whom ?", for instance. Or, "In

 what sense ?" In social science applications of this sort there is no royal road

 around measurement error, around ordinal variables, and around nonlinear

 regression. If one does not know how to model these (and generally we don't),

 then descriptive techniques should be used.

 Block recursive models have great advantages over LISREL type models.

 Both are elegant in their formulation, but LISREL rapidly takes you into

 a swamp of identification, interpretation, and computation problems. Block

 recursive models are not only elegant in their formulation, they are elegant

 in the analysis. My thesis is that here, as everywhere, elegance comes at a

 terrible price. They will only be applicable to small, selected data sets, in

 which we refuse to look at some of the basic assumptions. As far as I can

 see, the robustnes properties which have saved the t-test from oblivion, do not

 apply here. The most surprising result of the paper, for me, is the brevity of

 Section 5, indicating how few results carry over from the block recursive case.
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 Arthur S. Goldberger

 Department of Economics
 University of Wisconsin
 Madison - Wisconsin, USA

 By focusing on algebraic manipulation rather than scientific substance,

 Wermuth presents a misleading picture of the linear structural equation models

 used in economics.

 Readers who have had a course in economics will recall the textbook

 description of the market's determination of the quantity and price of a good.

 On one side of the market, the quantity of the good that consumers will buy

 is a decreasing function of its price. On the other side of the market, the

 price that producers will charge is an increasing function of the quantity. The

 intersection of the demand curve and supply curve determines an equilibrium

 quantity and price.

 Elaborating this story to allow for other determinants of demand and

 supply, an economist might arrive at a model like this:

 y' = <*1 V2 + «2 Xi+Ui
 (1)

 V2 = oc3yi + aA x2 + u2.

 Here y' = quantity, y2 = price, Xļ = income, x2 = wage rate, iii = demand

 shock, u2 = supply shock. The first equation says that household demand

 depends on. price and household income (which are observable) and an unob-

 served factor. The systematic part of this equation, ct'y2 + a2x i, may be

 interpreted as the expected quantity demanded if y2 and X' were fixed. So the

 ati and a2 parameters have natural meaning for the economist. Similarly for

 the second, supply, equation. The exclusions of x2 from the demand equation

 and of X' from the supply equation reflect the economist's understanding of

 household and producer behavior.
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 The point of this model is the same aus the point of the classroom dis-

 cussion: the endogenous variables quantity and price are not fixed, but rather

 are jointly determined by the two sides of the market, a determination that

 becomes explicit in the solved, or reduced, form of the model:

 yi = 7Ti a?! + ir2 «2 + "i
 (2)

 Î/2 = *3 Xļ + 7T4 X2 + V2,

 with 7Tj = $a2 , 7t2 = Oaia4 , 7t3 = Oa2a3 , 7t4 = 0a4 , 6 - 1/(1 - «103),

 i>i = 0(uļ + Ofi«2)5 ^2 = + «2)- The shocks ux and u2 are assumed
 independent of the exogenous variables Xi and x2.

 Now the structural model (1) above is, apart from notational changes,

 Wermuth's system (5.3) with 714 = 723 = 0, that is her Case C. (The normality

 assumption she adopts is not relevant here, nor is it needed in many economic

 settings). And yet Wermuth announces that its parameters are difficult to

 interpret, and that the model has further undesirable features related to res-

 trictions on observable covariances. The difficulties, as far as I can see, arise

 from her failure to pay attention to the substance of the phenomenon being

 modelled by the economist.

 It is fair to ask why economists like to formulate structural models in

 this manner rather than starting with a multivariate regression. The answer is

 developed in a book that she cites, Goldberger (1964, pp. 380-388), and at a

 more elementary level in Coldberger (1991, Chapter 31). For the perspective

 of a statistician, see Anderson (1991).

 One will not get far by imagining that (1) is obtained by an arbitrary

 algebraic rearrangement of (2), as Wermuth suggests in Section 5.1. I should

 add that she misrepresents my position, by citing Goldberger (1964, p. 297)

 as the source for the idea that linear structural equations (like (1)) can be

 viewed as resulting from an arbitrary nonsingular linear transfomation of the

 reduced form (multivariate regression like (2)). Goldberger (1964, p. 297) says

 nothing of the kind, indeed makes no mention of arbitrary linear transforma-
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 tions. On page 383, the notion of linear transformations is introduced, and is

 soon disposed of:

 "In formulating a structural model, the econometrician, after all, does

 not take arbitrary linear combinations of endogenous variables. Rather he

 attempts to construct operational counterparts of the behavioral and techno-

 logical equations of economic theory." (p. 386)

 It is possible that I have misunderstood Wermuth's article. Perhaps she

 had no real objections to the use of linear structural models where appropri-

 ate, but merely wished to persuade readers that there are research topics and

 research hypotheses (such as that in her Section 6) that do not fall in that

 category. If so, I would agree.

 References

 Anderson, T. W. (1991). Trygve Haavelmo and simultaneous equation models.
 Scandinavian Journal of Statistics, 18, 1-29.

 Goldberger, A. S. (1964). Econometrie Theory. New York: Wiley.
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 Steffen L. Lauritzen

 Institute for Electronic Systems
 The University of Aalborg
 Denmark

 First I wish to congratulate the author for having made this detailed

 analysis of relations between different parametrizations of a multivariate nor-

 mal distribution and, in particular, the various interpretations associated with
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 these.

 My favourite aspect of the paper is concerned with the connection bet-

 ween graphical chain models, defined by conditional independence restrictions,

 and models based on demanding zero restrictions in structural equation mo-

 dels. Usally, however, I prefer to argue about this in a manner which is slightly

 different from the arguments given in the paper. Below this argument is given

 in the hope that some readers could find it illuminating. For simplicity I as-

 sume that the means are equal to zero and that we are considering equations

 for a system without pure exogenous variables such that the entire system only

 involves two groups of variables a and 6, using the notation from the paper.

 As described in Section 5 of the paper, a system of linear structural

 equations for the variables is given by

 A Y = U

 where Y is the vector of variables, partitioned into groups Y - (V0, Yf,) (cor-

 responding to the dependence chain associated with the system). In general

 the system of equations is heavily overparametrized since the distribution of Y

 is determined by its covariance matrix alone, whereas the system of equations

 above, as stated so far, both have the covariance matrix of the 'residuals' U

 and the elements of the matrix A as varying parameters.

 Uniqueness can be obtained by requiring A to be upper diagonal with

 all diagonal elements equal to one, and simultaneously insisting on a diagonal

 covariance matrix of U. As also pointed out in the paper, the parametrization

 becomes unique with this convention, the off-diagonal elements of A turn out to

 be partial regression coefficients in a univariate recursive system of regressions,

 and U is the vector of residuals from this regression.

 It is in no way obvious whether a similarly elegant parametrization exists

 that reflects a block-structure (a, 6) - rather than a complete ordering - of the

 variables Y. The key to this parametrization is given in Section 3. Demand A
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 to be upper block-triangular, such that A&0 = 0 in the partioning of A as

 A = ( *aa * A ab ) . ' Aft«, A u /

 Demand further that the covariance matrix $ of the 'residuals' U be block-

 diagonal, in the special case studied with two blocks. Finally - and this is the

 surprising bit - assume the blocks in $ to be equal to the corresponding blocks
 S

 in A - in particular implying that the diagonal blocks of A are symmetric. In

 this way, A and the covariance matrix J2 of Y are one-to-one correspondence

 and, by choosing this special parametrization, the author obtains that any

 zero-restriction in the parameters of the equation system can be interpreted by

 conditional independence, essentially leading to Proposition 4.2 of the paper.

 What has here been called A is B* of the paper. To identify the equations

 as regression equations, it is convenient to divide each single equation by the

 corresponding diagonal element of A, thereby making the remaining elements

 equal to partial regression coefficients and obtaining B. But note that one

 could not just multiply each block with the inverse of the corresponding block

 in A. This would mess up any pattern of zeros in the off-diagonal elements in

 an uncontrollable way.

 I find the identification of this relation between block-recursive struc-

 tural equation systems and conditional independence models interesting and

 illuminating and congratulate the author with a fine piece of work.

 REPLY TO DISCUSSION

 More than twenty years ago Arthur Dempster suggested as a possible

 topic for a Ph.D. thesis that I look into the relations of his covariance selection

 to path analysis and to structural equations. Because I didn't think I could

 say anything sensible within reasonable time I didn't choose this topic. And,
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 I am glad that I didn't, otherwise I would still be waiting for my degree now;

 some answers are included in the present paper.

 The hardest and the most fascinating part of this paper was for me to see

 why one has to worry about identification with linear structural equations but

 not with graphical chain models, i.e. Sections 3 and 4. It is nice that David

 Cox, Steffen Lauritzen and Gerhard Arminger appear to agree that the results

 concerning the relations of these two model classes are the most important

 aspect of the paper. Though block-recursive equations had been singled out

 before by Fisher (1966) to point at simplifications of the identification problem

 and for instance by Anderson (1991) to point at simplifications in estimation it

 appears to not have been observed previously that a particular choice of block

 parameters leads to a unique parametrization and to systematic parts of the

 equations which are special conditional expectations (3.3) or simple multiples

 thereof (3.2).

 In my view this interpretation of each equation parameter as a regression

 coefficient is the main common feature of block-regressions, of multivariate re-

 gressions, of univariate recursive regressions and of chain models defined from

 these elements (Cox and Wermuth, 1992a). It is a feature not shared by ge-

 neral structural equations, for instance by the model described as (1) below.

 This distinction explains, why a statement like 'discarding of structural mode-

 ling as a research method can hardly be taken seriously, for this would require

 eliminating all of its special cases as well' (Bentler, 1987; p. 155) is invalid:

 multivariate regression and univariate recursive regressions are special cases

 of general structural equations but they have important properties which dis-

 tinguish them favourably from the general structural equations. A different

 evaluation of this fact is given by Jöreskog and Sörbom (1978, p.l), who say

 that 'because each equation in the model represents a causal link rather than a

 mere empirical association, the structural parameters do not, in general, coin-

 cide with coefficients of regressions among observed variables. The structural

 parameters represent relatively unmixed, invariant and autonomous features
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 of the mechanism that generate the observable variables.

 I am primarily concerned about interpretations and about possibilities

 for integration of substantive knowledge into model formulations. This le-

 ads to a major concern that parameters have a clear interpretation and that

 restrictions placed on parameters also have a clear meaning. If no general

 results are available we may need detailed algebraic manipulations to arrive

 at the interpretation and to see, for instance, that the equation parameters

 (ai, i = 1, ... ,4) in Arthur Goldberger's saturated structural equations (1):

 ( yi - <*iy2 - <*2*i ' _ ( i -on V y' ' + / -«2 o
 V y* - «3yi - «4*2 / _ ' -<*3 i )'y2j + ' o -a4 )'x2 ) '«2/'

 (i)
 i.e. in Tay + T,¡cx = u do not have the meaning he attributes to them unless
 there are further constraints.

 More precisely, his claim that the systematic part 'ori 1/2 + <*2*1 > may

 be interpreted as the expected quantity demanded if y2 and were fixed' is

 inconsistent with his specification that (1) are saturated equations (Case C in

 the paper), i.e. that they have the same number of independent parameters

 (four equation parameters and three parameters in the covariance matrix of the

 u's) as there are free parameters in the covariance matrix of the variables (four

 variances and six covariances minus the three parameters itì the covariance

 matrix of the variables conditioned upon, the z's) and that therefore (1) also

 does not place restrictions on the reduced form equations (2).

 The latter are obtained from (1) after premultiplication by TjJ and they

 are multivariate regression equations:

 y' = *"1*1 + 7r2x2 + vi = E(Vi I Xļ = Xļ,X2 = x2) + i>i

 y2 = 7r3X! + 7r4x2 + v2 = E(y2 | X' = zj, X2 = x2) + v2. (2)

 That is, if the specification of (1) is completed by taking (i>j, t>2) in (2) as

 random variables of zero mean, covariance matrix S, and each of the u,- as

 uncorrelated with (xļ,x2), then we may calculate the expected quantity de-
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 manded if y3 and X' are given and it is not in general aij/j + a2xi. In fact, if

 we start with the reduced form equations (2) and write

 f C0v(t>|,v2) c _ c_ c __ c_ /o'
 ®1 =

 var(vj) V

 then is known to define the partial regression coefficient of jfc in the regres-

 sion of Y' on y 2, xi, x2 and

 I Y2 = Î/2, X' = ZU Xļ = = ¿1Î/2 + ^2*1 + ¿3®2» (4)

 since

 H" - E(yí I Xi - Xļļ X% = Z])

 = Eya |Xi =XJ )X2=X3 E( Yi I Yi = ya» ^1 = Xi, X2 = Xļ)

 - (¿2 + £l*3)*l + (^3 + S'ir4)Xļ.

 After writing further

 E(Xa I Yļ = ya, X' = xj) = cy? + ¿Xi

 we obtain by taking expectations in (4) over Xj given y2, xx that

 E(yi I Yļ = y2, X' - xi) = (Äi + 5zc)y2 + (¿2 + f>3d)xi (5)

 Ž Oiy2 + or2Xj.

 For instance, the coefficient of x' in (5), i.e. in the expected quantity demanded

 given y2 and xi, is

 ¿2 + &3<1 - (*1 - ¿1*3) + ("*2 - $l*4)d

 = {<*2(1 - ¿103) + "«¿(ai - ¿i)}/(l - aiOr3).

 This will equal a3 only if there are very special restrictions on the parameters,

 so we have a contradiction. We have shown that if (2) are unrestricted reduced

 form equations then the parameters in (1) cannot have the meaning Arthur

 Goldberger claims they have.
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 One possibility to obtain equations with his interpretation is to demand
 that

 E(n I Y2 = y2iXx = = x2) = E (Y1 ' Y2 = y2,Xl = *a)

 E(Y2'Yl=yuX1=x1,X2 = x2) = E(Y2 ' Yi = Vl,X2 = x2), (6)

 but this leads to a nondecomposable block- regression with blocks (yi, y2) and

 (xļ,x2) and places two restrictions on the corresponding reduced form equa-

 tions, i.e. if we have equations (1) with the desired interpretation then the

 corresponding reduced form equations are restricted. For instance, the sys-

 tematic part in one of these block-regression equations is (4) with 0 = 63

 or 7t2 = ¿1 7t4 and ¿1, the coefficient of x2, is not an indépendent parameter;

 compare (3). There is an analogous argument for the second equation in the

 block-regression corresponding to (6). Thus a model with Arthur Goldberger's

 interpretation of the parameters is a special graphical chain model, a nonde-

 composable block-regression with five independent parameters and hence two

 restrictions on the reduced form equations. This has consequences for the
 estimation.

 Efficient estimates of the equation parameters in such a block-regression

 are not directly obtainable with software for linear structural equations, but

 they can be obtained for instance with David Edward's program MIM or by

 adapting any program for covariance selection. They are maximum-likelihood

 estimates if the four variables have a joint normal distribution and they mini-

 mize Wilks' generalized residual variance (compare Section 4), otherwise. It

 will be interesting to see how - if a.t all - they differ from the pseudo maximum-

 likelihood and minimum distance estimates discussed by Gerhard Arminger.

 Jan de Leeuw mentions desirable future results for graphical chain mo-

 dels. Some of these have been obtained but have not yet or only recently

 appeared in print. For instance, models with both qualitative and quan-

 titative responses have been compared regarding different distributional as-

 sumptions (Cox and Wermuth, 1992b) including, in particular, various probit
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 and logit models. Methods for detecting and modeling nonlinear relations in

 chain models for quantitative variables have been provided (Cox and Wermuth,

 1992c, d). Results in several applications with six and more variables have been

 described (Wermuth and Cox, 1992). In each of these graphical chain models

 helped to integrate substantive knowledge into the analysis and permitted to

 split the analysis of all component variables into analyses of sequences of small
 sets of variables.

 Chain models with latent variables are important though not yet far de-

 veloped. This is one of our next goals. The starting point will not be general

 linear structural equations, but models with parameters that are regression

 coefficients, i.e. in particular univariate recursive regressions, multivariate re-

 gression chain models, and block-regression chain models.

 I thank the discussants warmly for their comments, and Arthur Gold-

 berger for providing an example from economics in which structural equations

 give a false, but graphical chain models a correct specification of the desired

 interpretation.
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