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ON THB INTERPRETATION OF CHAIN GRAPHS

Nanny Wermuth, Psychological Institute, University of Mainz
D-55099 Mainz, Germany

1. Introduction

Chain graphs provide a flexible tool for representing complex relations among
variables. These relations are marginal or conditional independencies and di-
rected or symmetric associations. The graphs can be used to aid in the analysis
of data from observational studies (Cox & Wermuth, 1993,1995), to update in-
formation in expert systems (Lauritzen k Spiegelhalter, 1988) and to represent
alternatives in decision trees and decision networks (Smith, 1989).

Each variable in a chain graph is represented by u node and some pairs of
nodes are connected by edges which indicate dependencies of subject-matter
interest whenever it represents a substantive research hypothesis (Wermuth
& Lauritzen (1990). Each edge missing in the graph means that the corre-
sponding variables are conditionally independent, the precise conditioning set
depending on the type of edges of the graph and on an order of the variables
specified such that no variable is explanatory for itself. In thede aspects chain
graphs contrast with graphical representations of general simultan@us equa-
tion models (Bollen, 1989) and with so-called reciprocal graphs (Koster 1993;
Spirtes, 1993).

We propose a two step modification of a special type of chain graph, namely
a directed acyclic graph, to study its implications for a conditional distribu-
tion of a selected subset Y5 given another subset Ys, that is, to construct the
covariance and the concentration graph in any conditional distribution of in-
terest. The concentration graph gives the information on which variable pairs
are conditionally independent and which may be associated given all remaining
variables of ^9 and the covariance graph gives the information on which variable
pairs are marginally independent and which may be marginally associated in
the conditional distribution of Y5 given Y6.. We illustrate the procedure with
variables from an observational study on university drop-outs. Thereby we
utilize separ,ration criteria of Pearl (1988), Lauritzen et al. (1990) and of Fry-
denberg (1990), as well as results on induced associations by Wermuth and
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X,
motivation

Y,
expected
achievement
z,
integration
into student
group

c,
integration
into high
school class

D,
high
school
class
repeated

E ,
change of
primary
school

F,
education
of father

Figure 1: A first ordering of the variables with A, drop-out at university (box a),
as the response variable of primary interest and with, for instance, B, change of

high school (box c), as an intermediate variable being potentiall 'y explanatory to

dropping out at university (box a) and to the student's attitudes towards his study
situations (box b) and being a potential response to the other school career and

demographic variables (boxes d, e). Several variables in a box indicate variables

treated on equal footing, since we are at this stage not prepared to specify a single

direction of dependence (boxes b, d) or since we consider them as purely explanatory

variables (box e).

Cox (1995) .
We suggest that the possibility of deriving consequences of a given chain

graph model and checking them against observations means that the general
principle of making a hypothesis elaborate (attributed to Sir Ronald Fisher by
William Cochran (1965)) can be applied to these multivariate structures.

2. A motivating example

For the variables shown in Figure I we shall illustrate which questions may
arise regarding conditional distributions of subsets of variables. Figure 1 shows
nine variables ordered in a chain of boxes which reflects our knowledge and-
judgement in this context about responses, intermediate variables and purely
explanatory variables.

To study risk factors for dropping out from university, data for 3500 German
high-school students were collected (Giesen et al., 1981; Gold 1988) one year
before their graduation in years 1973 to 1975. Responses were recorded to a
number of psychological questionnaires and tests and to questions regarding
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A:  Y*Z*D ,  Y :  X*2 ,  X ;2 ,  Z :  X+B

B:D*E*F ,  C :D ,  D :C+E  EF

Figure 2: A well f i tt ing chain graph model for the variables of Figure l; variable C

has been deleted, since it is only related to another joint response, to variable D

school career and demographic background. About 73% (25aa) of the stu-

dents enrolled in university degree programs. They received questionnaires
and tests as second and third year students and after having either success-
fully completed their studies or dropped out of university. The data collection
ended in 1984 with 2375 students still in the study. For the analysis presented

here we used data of 2162 students having complete records on nine variables
to investigate developments which might increase the risk that a student stops
studying without having received any university degree.

There are six binary variables variables: A, university drop-out (y.t, L5.3%);
B, change of high school (y"r, 21.0%); C, integration into the high school
class (poor, 9.9%)i D, a high school class repeated (y"t, 33.6%); E, change
of primary school (yes, 19.8%); F, education of the father (at least 13 years

of formal schooling,, 42.8%) and three questionnaire scores: Y, achievement,

the student's expectation of his achievement in the field of study (y^rn - 0,

Umoo : 8, y : 6.16, sy _ 2.08)1 X, motivation, the student's motivation
towards high achievement in the field (**tn _ I0, x^o, _ 60, c _ 35.27,
so : 8.67); Z, integration, the student's perceived integration into his student
group at  univers i ty  ( r* rn:0, ,  z^o"  :  9 ,  Z - -  6 .49s sz :2 .42) .

After checking for outliers, nonlinear and interactive effects (Cox & Wer-
muth, 1994) and after combining the results of separate logistic and linear
regression analyses the chain graph in Figure 2 was taken to be well compati-
ble with the given observations.

The model notation for generalized linear models (McCullagh & Nelder,

1989) below Figure 2 shows that the regression components of this chain are

main effect regressions; no higher than two factor interactions or nonlinear
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relations are needed to describe the relations. The predicted drop-out rate is
at 65% highest if the student's expectation of own achievement (Y) is low, his
integration (Z) poor and he had already repeated a high school class (D). BV
contrast in the corresponding most favourable case the drop-out rate is as low
as 6%. The most important of the three predictors is expected achievement,
followed by integration and high school class repeated. This is reflected in the
studentized regression coefficients, ordered correspondingly in absolute values
a^s lt l: 7.59, 5.91,3.39. For a description of further details of this and similar
analyses see Streit (1995); Cox & Wermuth (1995).

In addition to the separate regression results the chain graph representation
shows a number of indirect paths to the response of primary interest and
permits additional interpretations, which are compatible with the observed
structure. For instance, the path from X to A via Y is consistent with the
following interpretation: motivation for high achievement (X) is likely to to
increase the confidence in high achievement in the field (Y), which in turn
reduces the risk of dropping out from university (A). The path from E to
D to B to Z to A could be interpreted as follows: change of primary school
(E) increases the risk that a high school class will have to be repeated (D),
which in turn increases the risk that the student will change the high school
at least once during his school carecr (B). Once a high school change has been
experienced it becomes less likely that a student integrates well into his later
student group (Z) and this in turn is a direct risk factor for dropping out from
university (A). However the overall effect of a change in primary school on
university drop-out will not be strong because the path from E to A is fairly
long and because some of the dependencies along the path are rather weak.

Since none of the binary variables has levels which occur only with very
low probabilities (below .05), the logistic regression may be well approximated
with the linear in probability representations (Cox, 1966) and the whole sys-
tem of relations can be regarded as havin g quasi-Iinear dependencfes which
means that any dependency present has a linear component. Then vanishing
of least squares coefficients does imply an independence statement and any lin-
ear component of an overall effect is the product of the correlation coefficients
along the path; see Wermuth & Cox (1995) for some further discussion of this
notion.

As we shall show in this paper, it is possible to work out the implications,
that is the consequences of a chain graph model, for conditional distributions of
selected subsets of variables. Such consequences are independence statements
implied by the graph and, provided the graph describes a generating process of
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of a quasi-linear system (see Wermuth and Cox; 1995), such consequences can

be statements about conditional associations, in addition.

Typical questions that can arise for a model as the one of Figure 2 are as

follows:
- if this structure holds, which relations should we expect among the remaining

variables in a different study of only academics, that is after conditioning on

variable A, when there is no information on the self-judgements of the students,

that is after marginalizing over variables Y, X, Z? Or,
- if this structure holds, but information on the background of Jhe students

prior to taking up their studies (on variable B to F) is not available, what

changes in the relations among the remaining observed variables. should result?

Answers to such questions can be helpful in gaining confidence in a hy-

pothesized model. A model is more likely to be a good description of the

investigated relations if predictions derived from it for results of different stud-

ies or for results of different analyses of the same data are consistent with what

is observed.

3. Components of chain graphs

Nodes V : {1, .  .  . ,p} in un i . ,d"pendence graph represent variables yl, .  .  . ,Yo;

each pair is connected by at most one edge. We assume in this paper that

each edge that is present in a given independence graph represents a particular

nonvanishing (conditional) association. This means that for the purpose of this

paper the distinction between an independence graph drawn without boxes

and with boxes is dropped. Usually, in a statistical model represented by the

for,mer, an edge that is present corresponds to a free paramter, like for example

to a regression coefficient, which may take any value including zero, the value

for a particular independence.

Quantitative variables are modelled by continuous random variables and are

represented by nodes which are circles; qualitative variables are modelled by

discrete random variables and drawn in the graphs as dots. If one variable is

considered to be a response to another, then the edge is an arrow pointing to

the response from the explanatory variable; for symmetric associations edges

are lines. Symmetric asociations are of interest among variables considered to

be on equal footing, like for instance among symptoms of a disease, among

personality characteristics or among different strategies employed by a person

to cope with stressful events.

A path between nodes i and I is a succession of edges connecting the two
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nodes, irrespective of the orientation of the edges. A graph constructed from
a given independence graph by keeping the edges within a selected subset
of nodes and by deleting edges to nodes outside the set is called an induced
subgraph. Induced subgraphs are complete if all nodes within it are joined by
an edge.

Three types of nodes t along a directed path can be distinguished among
consecutive nodes i, t, 1, that is for nodes i,yr having node t as a conlnlon
neighbour. From a source node I two arrows point to i and j; a transition node
t has an incoming arrow from J, say, and an outgoing arrow to i; and a sink
node I has two arrows pointing at it from each of i and j. If the paths shown in
Figure 3 are subgraphs of an independence graph induced by the three nodes,
then they are called a souree node oriented, a transition node oriented and a
sinle n o d e o ri ent ed v - co nf, g urati o n, resp ecti vely.

i - t + j

a)

Figure 3: Types of common

node; b) a t ransi t ion node; c)

i . - t . - j i + t . - j

c)

neighbour nodes t in a directed graph: a) a source

a sink or col l is ion node

b)

Il lustration to a): An independence graph as in Figure 3a) is obtained for
variables Y,, ag.; Y;, diastolic blood pressure; Yi, body mass, that is weight
relative to height, observed for healthy female adults.'The reason is that the
risks for higher blood pressure and for larger body mass both increase with age,
but for groups of healthy persons of the same age knowledge of body mass does
not improve prediction of the diastolic blood pressure. If age is not recorded
there is an association betvreen body mass and diastolic blood pressure. o

Illustration to b): An independence graph as in Figure 3b) is obtained for
variables X, job offer for an academic in Germany; yr, field of study (engineer-
ing or home economics); Yi, gender. The arrow to I from, means that almost
only males tend to choose engineering as their field of study while almost only
women tend to choose horne economics as their field of study. The arrow from
t to i means there are many more job offers in engineering than in home eco-
nornics. The unjoined nodes i,7 mean that given the field of study males and
females have equal chances for getting a job offer. If the field of study is not
recorded it appears as if there were discrimination against women on this job

market, that is after marginalizing over Y1. o
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Illustration to c): An independence graph as in Figure 3c) is obtained for

24 postwar years in Germany and variables Y1, growth rate in capital gain;

Y;, growth rate in consumption; Yi, growth rate in exports. The arrows to f

from i and Jr mean that the increase in capital gain growth rates are larger

the larger the growth rates in consumption and in exports are, respectively.

The unjoined nodes i, j mean that changes in consumption within Germany

could at that time not be predicted from changes in export growth rates.

There is a substantial negative partial correlation between growth rates in

consumption and export given the growth rates in capital gain, that is X and

Yi are associated after conditioning on Y1. o

Because two arrows meet head-on at a sink node it is also called a collision

node. A path containing a collision node is a collision path and a path is said

to be collisionless, otherwise. A path with on{y transition nodes and arrows
leading to i from 7 is called a direction preserving path, where node i is called

a descendant of node 7 and node.? an ancestor of. i.

In a directed acyclic graph,, GY,, all edges are directed, i.e. they are arrows,

and there is no direction preserving path from a node back to itself. The nodes

can be numbered 1,.. .rp, possibly in more than one way, without changing

the independencies implied by this type of graph, so that the variables form a

system of univariate recursive regressions. Typically the order of the variables

is specified from subject-matter knowledge. Given such an order each edge

present in the graph corresponds to a particular conditional association and

each edge missing to a conditional independence statement in one of Y1 re-

g ressed  onY2r . . . , ,Y r ;  Y2  regressed  on  Y t , . . .Y r ; . . . ;Yp t  reg ressed  onYo;  thus

to an independence of the form YLYtlYp+t,...n]\U)), for i < j. If the system

of univariate recursive regressions is regarded as describing a process by which

the data are generated then the corresponding directed acyclic graph is called

a generating graph.
The concentration and covariance graphs of a subset of variables Ys of. Yy

satisfying the independencies of a given directed acyclic graph GY", may be

considered conditionally given another subset Y6'. Such a couariance graph

wil l  have an (undirected, dashed l ine) edge i ,  j  i f  and only rtYi l lYj lYc,is not

implied by the generating graph and such a concentration graph will have an

(undirected, ful l  l ine) edge i , i  i f  and only rtYl lYi lYrrr\{r, i1 is not implied py

the generating graph. These graphs may be derived directly from a separation

criterion for directed acyclic graphs or with the help of the modified directed

graphs described in the next section.

A general chain graph has both directed and undirected edges, like the graph
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I
I

Cr<-

(d) (e)

Figure 4:  Two dist inct  smal l  chain graphs, the lef t  graph (d) speci f iesY l lWlZ
and X l l  Z IW and the  r igh t  g raph (e ) :  .4 ,  l l  Ao  |  (B" ,Au)  and Bo l l  aa  l (A" ,Ba)

of Figure 2, and it may have dashed arrows pointing to nodes connected either
by undirected full lines or by undirected dashed lines and it may have full
arrows pointing to nodes connected by undirected full lines. It does not contain
any directed cycles in the following sense: if we start at a node f and move
along a path in the graph respecting the directions of the arrows we cannot
come back to node i after having passed an arrow. This implies that the
set of nodes V can be part ioned into subsets a.,b,c,,d,, . . .  such that the graph

can be arranged in a sequence, i.e. a chain of boxes such that there are only
undirected edges within each box and only arrows betwen boxes. As has been
described for Figure 1 the chain order has to be specified from subject-matter
considerations.

Two small chain graphs are shown in Figure 4. For these the independence
structures cannot be represented in terms of a directed acyclic graph.

Illustration to d)' An independence graph as in Figure 4d) is obtained
irr a particular study of healthy female adults and variables Y, log (ryr-
tolic/diastolic) blood pressure; X, log diastolic blood pressure; Z,body mass
(weight in kg relative to height in cm) , W, age in years. The body mass is
likely to be higher the older a person is and the two blood pressure measures
rernain correlated after regression on body mass and age. High body mass but
not high age is a direct risk factor for a low ratio of systolic to diastolic blood
pressure and, similarly, high age but not high body mass is a direct risk factor

for a high level of diastolic blood pressure. o
Illustration to e): An independence graph as in Figure 4e) is obtained in

a study of 350 children selected so that there were roughly equal numbers
of children with organic and psychosocial risk factors at the time of birth.
Two variables are recorded at age four years (a) and at age two years (b).
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These are A, psychic disorder (y*r, no) and B, motoric handicap (yes, no). At
age two years the two developmental aspects Au, Bu are associated marginally.
If psychic disorder at age four years is to be predicted from the other three
variables, then the information about motoric handicap at age two years does
not improve prediction given the information on the remaining two variables.
Similarly if motoric handicap at age four years is to be predicted from the
other three variables, then the information about psychic disorder at age two
years does not improve prediction given the information on the remaining two
variables. o

In a general chain graph the interpretation of any pairwise relation of nodes
within a box is conditionally on variables in all boxes to the right for dashed
(undirected) lines and, in addition, given the remaining variables within the
box for full (undirected) lines. A pairwise relation of nodes between boxes
means a regression of the response variable (to which the arrow points) on
variables in all boxes to the right for dashed arrows and, in addition, on the
remaining variables within the box of the response variable for full arrows. In
case each box contains only a single variable a chain graph is a directed acyclic
graph and in case there is only a single box the chain graph is degenerated to
a concentration or a covariance graph for all variables.

4. Constructing condit ional covariance and concentrat ion graphs

We assume first that the joint distribution of variables Yy, satisfies the inde-
pendencies of a given directed acycl ic graph GY", where V : {  1,. . . ,p} are the
nodes of the graph and that each edge present corresponds to a substantial
regression coefficients. Frorn such a graph we construct the covariance and
the concentration graph in the conditional distribution of Ys given Y6'. The
selected set ^9, the conditioning set C and the set M of variables, over which
we imp l i c i t l y  marg ina l i ze ,  pa r t i t i on  V , i .eV  -  SUCUM. I f .Yv  has  a  jo in t
normal distribution these two graphs reflect the implied pattern of zeros in the
conditional covariance matrix of Y5 given Ys,in Ess.c, and in the conditional
concentration matrix of Y5 given Ys,in (Xss.c)-r, where in the usual notation
for matrices X and E-I, partitioned with respect to S, C, M we can write

E s s . c - X s s - X s c E " b E " t ,

(xr r .c) - t  -  Dss.M -  xss -  t t t ( tuu1-rD",

and Xss'M denotes the concentration matlix of.Ys obtained after marginalizing
over variables Y,1a.
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In order to study such derived structures more generally we begin by mod-

ifying a directed acyclic graph. A directed graph modified at node t, Gv't is

obtained from G[" in the following way. Within the subgraph of all ancestors

At of. t we join any sink-oriented v-configuration, that is any pair (", t) of. At

which is unjoined but has a collision node as common neighbour in 41. By

repeating this for each node of a given set l{ the directed graph modified on a

set of nodes N, G''*, is obtained.
(1) The covariance graph G:,, given C implied by G[,is a graph of dashed lines
in nodes of S. It has an edge i, j if and only if in Gv'c there is a collisionless
path from i to j outside C.
(2) The concentration graph G:"^ given C implied by G[" is a graph of full

lines in nodes of S. It has an edge i, j if and only if in Gv'c's there is an edge
i,,j or a collisionless path from i to j in M, that is outside C U S.

Emmple 1: If the directed acyclic graph is as given in Figure 5, the se

lec ted  se t  i s  S_  {3 ,4 ,5 ,6 }  and  the  cond i t i on ing  se t  i s  C_  {1 } ,  then
M - 

{2,,7,8,9, 10, 11}, the generating graph is modif ied in two steps to give

Gv'c and Gv'cus of Figure 6

Figure 5: A given directed acyclic graph in 11 nodes

E+2

(a)

Figure 6: The modified directed graphs (a) Gv'c and

graph o f  F igure  5 ,  where  C =  $ ,8 )  and $  =  {3 ,4 ,5 ,

424

a+,<1:l),
, r /  \ '' \ 6  

e  22 "
il

T-'\.0+-'<
L , z)''

(b)

(b) 5;v'cus obtained from the

6)



4
tl

f .

l l
/  l q

I  . 2 "
g Q '

t : $

(a)
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(b)

and concentration graph (b) of Yg

implied by the generating graph of

and the desired conditional covariance and concentration graphs are as given

in Figure 7. Bach has in this case more edges than the subgraph induced by

nodes ,S in the generating graph.
Erample 2: If. the directed acyclic graph is again as given in Figure 5, the

selected set is S : {2,3,4,5,6} and the condit ioning set is C - 
{10, 11}, then

M - 
{1,7,8,9}, the modified directed graphs Gv'c and Gv'c's are in Figure

8 and the desired conditional covariance and concentration graph are as given

in  F igu re  9 . '

\u

t^
(a) (D)

Figure 8: The modified directed graphs (^) G''c and (b) 6v'cus obtained from the

graph  o f  F igu re  5 ,  where  S  =  {2 ,3 ,4 ,5 ,6 }  and  C =  {  10 ,  l 1 }

Erample 3: The directed acyclic graph of Figure 5 implies as covariance
graph for S : {7,,8,9} marginally, that rs with an empty conditioning set, C -

0, a path from unjoined nodes 7 and 9 via node 8 and a complete concentration
graph for this trivariate distribution.

Erample l: The directed acyclic graph of Figure 5 implies as concentration
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(a) (b)

Figure 9: The conditional covariance graph (a) and concentration graph (b) of Yg

g iven Y6: ,  where ,S =  {2 ,3 ,4 ,5 ,6 }  and C -  
{10 ,  11} ,  as  imp l ied  by  the  genera t ing

graph of Figure 5

graph for S : {4,5,6} conditionally given all remaining variables a path from
unjoined nodes 4 and 6 via node 5 and a complete covariance graph for this
trivariate distribution.

These results are direct consequences of the separation criterion for directed
acyclic graphs (Pearl, 1988). There are two quite different routes of general-
izing them. Either, the more general separation criterion for a full-edge chain
graph (Frydenberg, 1990) could be adapted to obtain modified graphs with the
necessary information on implied covariance and concentration graphs or, one
may attempt to reinterpret a chain graph with the help of a directed acyclic
graph.

For the former the notions of an ancestor, of a collision node and of an edge.
inducing path would have to be generalized appropriately. In general however,
stronger assumptions on a corresponding joint distribution are necessary to
derive statements about implied associations from a graph containing undi-
rected edges than from a fully directed graph; see Wermuth & Cox (1995) for
a discussion.

For the latter, it follows for instance from results on the Markov equiva-
lence of independence graphs (Frydenberg, 1990) that the set of independen-
cies implied by a full-edge chain graph remains unchanged if each (partially)
undirected v-configuration in it can be oriented to have a source or a transi-
tion node configuration and no directed cycle results. More general results are
available but will not be given here.

For instance, if in Figure 2 the undirected edge XY is replaced by an arrow
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pointing to X from Z and the undirected edge FB is replaced by an arrow
pointing to E from F and the boxes are removed, then the resulting graph is

fully directed and acyclic; it implies the same independence structure for the

eight variables as the chain graph of Figure 2.
After modifying this directed acyclic graph in the way described above it

follows that in the conditional distribution of B,D,F,E given A the covariance

and the concentration graph are complete, i.e. all edges are present, and in the
marginal distribution of A,,Y,X,Z the covariance graph is complete but in the
concentration graph edge AX is missing, that is, the edges present in it coincide

with the edges present in the subgraph induced by A,Y,X ,Z in Figure 2. Thus,

for instance, an observed strong association between A, drop-out rate, and
X, student's motivation, given Y, expected achievement, and 2,, integration
into student group, would be evidence against the structure of Figure 2 and,
similarly, were the associations for any edge present in the graph or for an

edge present in one of the implied covarianbe or concentration graphs weak
this would need an explanation.
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Summary

In observational studies a general principle of empirical research is 'to make
a hypothesis elaborate', that is, to study implications of a hypothesis under
systematically varied conditions. We show that this principle can be applied
to multivariate structures represented by chain graphs since some of the con-
sequences of such a hypothesized structure can be derived for any joint condi-
tional distribution of a subset of variables.
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R6sum6

Dans des 6tudes d'observations un principe general consiste i "l'6laboration
d'une hypothlse', c'est-b-dire d'6tudier I' implications d'une hypothbse dans

des conditions vari6es systematiquernent. Nous d6montrons que ce principe
peut btre appliqu6 i des structures multivariable, lesquelles on peut repr6senter
avec des images des chainesl c'est parce que on peut d'eriver les cons6quences-
d'une telle structure pour chaque distribution conditionelle d'un subgroupe des
variables.
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