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Abstract: A technique (Cox and Wermuth, 1992) is reviewed for finding linear combinations of a
set of response variables having special relations of linear conditional independence with a set of
explanatory variables. A theorem in linear algebra is used both to examine conditions in which the
derived variables take a specially simple form and lead to reduced computations. Examples are
discussed of medical and psychological investigations in which the method has aided interpreta-
tion.

1. Introduction

In situations in which the dependencies of several response variables
Y, Y,,...,Y, on explanatory variables X, X,,..., X, , are under study, it may
be difficult to describe concisely the type of the dependence structure even if
there are only linear relations. However if the joint responses are similar, in the
sense that they are measured on comparable scales and they are thought of as
capturing different aspects of an underlying phenomenon, then useful interpre-
tations may be possible with new responses derived as linear combinations of
the original response variables in such a way that each new response Y;* has
linear conditional independence of all explanatory variables except one, i.e.
Y*u(Xy,..., Xy, X;iq5..., X,)| X,. Typically, all variables are quantitative,
but the explanatory variables may include binary indicator variables.
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We review first the relation of such derived variables to canonical variables,
we then give conditions under which derived response variables are likely to be
ineffective in the sense of having weak relations to the explanatory variables and
conditions under which they take on particularly simple forms. Finally we
describe analyses of several sets of variables.

2. Some characteristics of derived variables

Let Y and X be p X 1 and g X 1 vector variables measured as deviations from
their means, p>g then their covariance matrix Cov(Y, X)=2 and their
concentration matrix 3 !, assumed to be positive definite, can be written as

Yy’ yx’ 2, 2 o3
2 = E = ’ = >
)O(T Exx Exx
and the matrices 7, , and 7, which contain regression coefficients obtained

by linear regression of Y on X and X on Y, respectively, are
(s | x =2yx2;xl = _(2”)_12”’ 7T)cly =2xyzy_y1 = __(Zxx)—lzxy‘ (1)

New variables defined with a p X p matrix F and a g X g matrix G by linear
transformations as F7Y and G'X then have covariance matrix
FTY F F'3 G
Cov(FTY, GTX) = 7 . (2)
. G'3,.G
If p=g a fairly direct argument determines the new vector Y* via the
requirement that the matrix of regression coefficients of Y* on X is the identity
matrix, so that in particular the regression of Y¥;* on X involves only X,. This,
via (1) and (2), can be shown to imply that

Y*=m;lYy=3, 3. 3)

If however, p > g, Y* cannot be uniquely determined in this way. A unique
solution, 'in a reasonable sense optimal, is achieved by first reducing Y to the
g X 1 vector of variables in the canonical regression of Y on X before applying
(3.

In defining canonical variables (Hotelling, 1936) nonsingular matrices F and
G are chosen for (2) so that two new sets of uncorrelated variables Y and X are
obtained in which all variables are standardized to have unit variance and each
variable X has maximal correlation with a single variable Y This implies in
particular that the covariance matrix coincides with the correlatlon matrix and
can be written as

0
Cov(Y, X)=| . I, A[, (4)
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where I, denotes a s Xs unit matrix and A is a diagonal matrix with the
so-called canonical correlations along the diagonal.
Some calculation then shows that
~ -1
Y*=m;l¥=53,,(CT5,,) CTY, (5)

Vlx

gives the new derived responses while explanatory variables remain untrans-
formed because they are assumed to have strong individual identity. The matrix
C used to define Y* can be be viewed essentially as that part of the matrix
F=(F, C) for (4) which corresponds to the g X g matrix A of canonical
correlations, i.e. each column of C agrees with one of C up to a factor of
proportionality, the standard deviation of a derived response Y;*. The covari-
ance matrix of C’Y and X can be expressed with (2) and (4) as

Cov(CTY, X) =C"3,, = diag(|of; ..., oy JAG ™,

and it is invertible whenever all canonical correlations are nonzero, i.e. it is
possible to obtain g derived responses if and only if all canonical correlations
are nonzero. :

The expression via the matrix C, i.e. in terms of canonical variables, is
valuable, in particular because a check that all ¢ canonical variables are indeed
nonzero is very desirable. For some purposes it is, however, simpler to use the
equivalent expression

Y*=53,(5,5,5,.) 5,5 (6)

There will be one or more zero canonical correlations whenever there is a
linear combination of the responses which is uncorrelated with all of the
explanatory variables. From knowledge of the covariance matrix of the variables
under study it may be possible to predict when such a case is likely to occur.
One instance of a zero canonical correlation is if all responses have zero
marginal correlations, zero regression coefficients, or zero concentrations with
one explanatory variable, i.e. if one of the columns of ¥, of 7, or of DR
contains only zeros. Another instance of a zero canonical correlation is if the
dependence of all responses on two explanatory variables agrees in the sense
that two columns of ¥, of 7, , or of 3** are identical or are multiples of each
other. On the other hand, g effective derived responses can be defined when-
ever all ¢ canonical correlations are sizeable, i.e. have values larger than 0.1 say.

When p = ¢ and there is the same number of sizeable canonical correlations
then the form of the derived responses (3) depends just on the structure of Ty |25
the regression coefficients in the regression of Y on X. In particular, the
derived response Y* will coincide with Y if 7, can be permuted to be in
diagonal form; a single derived response Y;* will coincide with a single response
Y, if row i of m,, can be permuted to contain just one nonzero clement in
position (i,i) and subsets of derived responses will depend only on correspond-
ing subsets of the original response variables if T, . Can be permuted to be in
block-diagonal form.

X
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When p > g and there are g sizeable canonical correlations the form of the
derived responses (5) depends instead on the structure of 3, (C'3,)7'C7, the
inverse of m; ,, i.e. the regression coefficients in the regression of the (unstan-
dardized) canonical variable Y on X. In that case g effective derived variables
may still be obtained without actually computing the eigenvalues and eigenvec-
tors of the p X p matrix = ], which give A’ and F, respectively, since at
most an eigenvalue analysis of a possibly much smaller g X ¢ matrix wyTl x'zrley is
needed (compare Rao, 1973) and sometimes even closed form solutions can be
given. Such results have been shown to hold for all symmetrizable matrix
products (Wermuth and Riissmann, 1993) and are restated here in a slightly
specialized form without proof.

Let A=M,L, B=1LM,, where L is a g X p matrix of rank ¢, M, a g Xq
positive definite matrix and M, a p Xp positive definite matrix. Further, let
H(M) denote the matrix of normalized eigenvectors corresponding to the
nonzero ordered eigenvalues of a matrix M, then
(i) the diagonal matrix K of eigenvalues of B74 has only positive diagonal
elements which coincide with the nonzero eigenvalues of BA” and of AB7,

(ii) a matrix of eigenvectors of B4 is determined by the matrix of eigenvectors
of BAT or of ABT as

H(B'A)K*=M,L"™M ,H(BA") =M,L"H( AB"),

(iii) matrices of eigenvectors of BA” and ABT can be found such that the
product H7(BAT)H(ABT) is a diagonal matrix.
Applied to ) m]  with A=x] =37!5  and B=m, =3 3 ! (ii)

gives for the matrix C =H(7TXT| ywyT,x) needed to compute the transformation

matrix C of the derived responses
CA=3,15, S UH(m, m, ) =23, H(w] 71, (7)

i.e. column j of C is proportional to column j of the matrices on the right-hand
sides. If for instance m, 7, , is a diagonal matrix of distinct elements then its
diagonal elements are the squared canonical correlations and H (wxl y”'ylx) is the
identity matrix 1,

The advantage of expression (7) may be computational if the number of
responses is much larger than the number of explanatory variables, but mainly it
is conceptual in that it permits study of the conditions under which the derived
variables take on a form which possibly leads to simple interpretations. Some
examples are as follows.

Two situations in which the rows of the transformation matrix C7 in (5) for
the derived responses are proportional to the rows of , |y can be characterized
as: (a) the explanatory variables are uncorrelated, i.e. their covariance matrix
2., is a diagonal matrix and all canonical correlations are distinct; (b) the
product of the regression coefficient matrices is a diagonal matrix with identical
diagonal elements, i.e. 7, m,, , = A>=cl_ where c is some constant.
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Examples are the following two covariance matrices with p =4 response
variables and g =2 explanatory variables for which the squared canonical
correlations are (0.4, 0.8) and (0.4, 0.4), respectively.

1 02 02 02 04 0.4
1 02 02 04 -04

s@_|- - 1 02 04 04
... 1 04 -—o04)

1 0

1

1 02 02 02 12 04
1 02 02 12 04

so_|- - 102 04 12
1 04 12

6 0.2

6

The relevant corresponding matrices of regression coefficients are

@ _ (025 0.25 0.25 0.25) (b)_(l 1 0 0)
ey = alo) =
*ly 71050 -050 050 —050) 7y {0 o0 1 1)

so that the derived responses in these examples are just sums of sums or sums of
differences of the variable pairs (Y,, Y;) and (Y3, Y,). It is conceivable that in
some applications subject matter knowledge about the covariances of the
variables under study is so strong that it can be judged directly whether
conditions are likely to be satisfied which permit such a simple interpretation of
the derived responses.

Different extensions for obtaining derived responses are possible if substan-
tive knowledge suggests a chain of dependencies, for instance of the type where
U-variables may depend on both Y- and X-variables and Y-variables only on the
X-variables. We shall not explore this further here.

Table 1
Observed marginal correlations (lower half), observed partial correlations given all remaining
variables (upper half), means and standard deviations for 44 patients.

Variable Y, Y, X, X,
Y,: Log diast. bp 1 0.723 0.321 —0.239
Y,: Log syst. bp 0.732 1 —-0.101 —0.094
X;: Log weight 0.283 0.165 1 0.483
X,: Log height —0.094 —-0.034 0.430 1
Mean 4.29 4,74 4.142 5.123

Standard deviation 0.132 0.112 0.164 0.034
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Table 2
Observed marginal correlations (lower half), and observed partial correlations given all remaining
variables (upper half), means and standard deviations for 40 patients awaiting an operation

Variable Y, Y, Y, X, X, X3

Y,: Log palmitic acid 1 0.07 0.73 0.20 0.14 ~0.03
Y,: Log oileic acid 0.90 1 0.58 0.05 0.53 0.10
Y;: Log linoleic acid 0.95 0.92 1 -0.26 -0.40 0.04
X;: Blood sugar -0.25 ~-0.27 -0.32 1 -0.01 -0.10
X,: Gender 0.28 0.43 0.23 -0.03 1 0.05
X,: Anxiety 0.35 0.39 0.37 -0.21 0.20 1

Mean 491 4.26 4.88 80.93 0.05 41.75
Stand. dev. 0.37 0.47 0.40 9.05 1.01 11.22

3. Some examples

In all situations where we considered computing derived variables we checked
first that the reported marginal correlations were sensible summaries of the
relations under study, in the sense that neither theory nor empirical evidence
suggested some strong form of nonlinearity, and that there were no extreme
outliers in the data.

Tables 1 and 2 give summaries for two sets of data, in which inspection of the
marginal correlations s;;//s;;s;; and of the partial correlations given all of the

remaining variables —s / Vs"“s/ suggest that one canonical correlation will be
close to zero. Here s;; and s” denote elements of S and $~', the observed
covariance and concentration matrix. In Table 1 diastolic and systolic blood
pressure are regarded as potential responses to weight and height, all measured
in the logarithmic scale for 44 patients (Slangen et al., 1991, the raw data are
given in the Appendix), and in Table 2 three kinds of free fatty acids, measured
in the logarihmic scale for 40 patients on the morning before an operation on
the jaw (Krohne et al. 1989), are seen as potential responses to anxiety, blood
sugar and gender (coded by —1 for males and 1 for females). The data in Table
1 suggest that (Y, Y,) are marginally independent of X, since the marginal

Table 3
Observed marginal correlations (lower half), observed partial correlations given all remaining
variables (upper half), means and standard deviations for 44 patients.

Variable Y, Y, X, X,

Y,; Log diast. bp 1 0.657 0.186 0.098
Y,: Log syst. bp 0.732 1 -0.241 0.300
X,: Body mass 0.336 0.188 1 0.572
X,: Age 0.510 0.492 0.608 1
Mean 4.29 4.74 37.94 29.52

Standard dev. 0.13 0.11 5.98 10.59
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Table 4
Observed marginal correlations (lower half), observed partial correlations given all remaining
variables (upper half), with derived responses for the data of Table 1

Variable Y Y5+ X, X,
Y¥f=Y,-Y, 1 —~0.566 —-0.241 0.300
Y=Y, —0.544 1 -0.107 0.491
X,: Body mass —-0.253 0.336 1 0.572
X,: Age —0.131 0.510 0.608 1
Mean 0.453 4.29 37.94 29.52
Standard dev. 0.091 0.132 5.98 10.59

correlations (—0.094, —0.034) are near zero and those in Table 2 suggest that
(Y,, Y,, Y;) are conditionally independent of X, given (X, X,) since the third
column in S$”* and hence in ﬁylx contains values near zero. Consequently, there
is one of the corresponding squared canonical correlations (0.0006, 0.15) and
(0.004, 0.19, 0.39) near to zero. For the further analyses shown in Tables 3 and 4
the two explanatory variables in Table 1, weight and height, are replaced by the
single explanatory variable weight relative to height, i.e. body mass, which is
known to be more relevant to blood pressure levels. The explanatory variable X,
is deleted before computing the derived variables in Table 5.

In Table 3 correlations of diastolic and of systolic blood pressure are shown
for the same collective of 44 patients but for two different potential explanatory
variables: body mass (weight relative to height multiplied by 100) and age. The
derived responses are Y*=Y,—-Y, and Y,"=Y, as approximations to the
precise weights of (1, —0.95) for Y;* and (1, .26) for Y,*. The approximation is
judged to be well compatible with the desired independencies since a test
statistic comparing S$* with the matrix 3+ estimated under the hypothesis
Y¥uL X, | X; and Y5 1 X, | X,: —n log{det($*)/det(2*)} has a value of 0.17
on 2 degrees of freedom. Under the assumption of normally distributed vari-
ables this is the likelihood-ratio statistic and can be tested as chi-squared, but
more generally, being much smaller than its expected value, it is an indication

Table 5
Observed marginal correlations (lower half), observed partial correlations given all remaining
variables (upper half), with derived responses for the data of Table 2

Variable Y Y X, X,
YE=Y -7, 1 0.04 0.32 0.06
Yi=Y,-Y, 0.09 1 0.02 0.57
X,: Blood sugar 0.32 0.01 1 —0.06
X,: Gender 0.08 0.57 —0.03 1
Mean 0.03 —0.62 80.93 0.05

Stand. dev. 0.12 0.19 9.05 1.01
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Y; Q«-I— QX Y; O=—T7O0x
! !
I

Y, O*j-"OXz Y;O< 0 X,

(a) (o)
Fig. 1. Graphical representation of the independencies to which correlations with the derived
responses are close: (a) for the data of Table 4 we have the typical structure for two derived
responses with Y;* 1L X, | X, and Y1 X, |X,, (b) for the data of Table 5 satisfying nearly
X, L X, we get (Y*, X)u(YS, X,).

for a satisfactory fit. The matrices of observed standardized regression coeffi-
cients of Y on X compare with those of Y* on X as:

2 —( 0.040 0.486) . =(—0.275 0.037
yix T\ —0.177 0.600) “yTix 0.040 0.486)

These derived variables suggest a plausible interpretation: diastolic blood
pressure increases with age after controlling for an increase in body mass, the
ratio of systolic to diastolic blood pressure is higher the lower the body mass for
persons of the same age. The graphical representation of the independencies
(Cox and Wermuth 1993; Lauritzen and Wermuth, 1989) among derived re-
sponses and explanatory variables is shown in Figure 1(a) while Figure 1(b) gives
the corresponding graph for the variables in Table 5.

In a next step of the analysis of the data in Table 2 the explanatory variable
X; was discarded and derived responses were computed for p =3 and g =2.
Then the very simple structure displayed in Table 5 and in Figure 1(b) results:
the ratio of palmitic to linoleic acid relates only to the level of blood sugar and
the ratio of oileic acid to linoleic acid relates only to gender. This approximates
the precise weights of (0.67 0.11 —1) for Y;* and (0.31 0.82 —1) for Y,* and is
judged to be well compatible with the independencies (Y;*, X,)1(Y;*, X,) since
the above mentioned test statistic has a value of 0.59 on 4 degrees of freedom.
The matrices of standardized regression coefficients of Y* on X compare with
those estimated under the independence assumption as:

*Ix'—

A _(0.322 0.097) A =(0.317 0)
y 0.032 0.575)" "7lx 0 0571)

The last set of data in Table 6 contains information for 72 students on brain
activity (CNV: Contingent negative variation) measured at three locations (fron-
tal, central and parietal) and under two experimental conditions, one in which
the participant has to prepare for a motor activity at a stimulus four seconds
after a signal has forwarned him (g: the ‘go’-situation) and another in which he
is not to react (n: the ‘nogo’-situation). This defines the six responses Y),..., Y
in Table 6, where all measurements are taken during a fixed first part of an
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Table 6
Observed marginal correlations (lower half), observed partial correlations given all remaining
variables (upper half) for 72 students

Variable Y, Y, Y, Y, Ys Y X, X,

Y;: CNV-frontal, g 1 0.67 —0.14 069 -034 -0.03 -0.13 -021
Y,: CNV-central, g 0.80 1 0.66 —0.55 073 -0.50 —0.09 0.29
Y;: CNV-parietal, g 0.47 0.78 1 013 —-047 0.76 —-0.03 —-0.20
Y,: CNV-frontal, n 0.70 0.56 0.37 1 0.67 —-0.22 0.19 0.12
Y;: CNV-central, n 0.61 0.78 0.68 0.78 1 0.72 0.07 -0.15
Ys: CNV-parietal, n  —023 -052 -0.77 0.46 0.79 0.1 0.06 0.23
X;:EOG,g—n -012 -013 -0.04 0.24 0.19 0.22 1 —-0.03
X,: Trait anxiety 0.10 0.30 0.28 0.17 0.32 0.36 0.03 1

Mean —-718 -—-3.61 563 —625 249 595 —-0.54 39.81
Stand. dev. 4.96 5.76 5.03 4.83 597 5.64 8.21 9.94

early interval after the stimulus (Glanzmann and Frohlich, 1986; Hansel, 1992).
The potential explanatory variables are the personality characteristic anxiety
(X,) and attention (X,) measured as the difference in eye movements under the
two experimental conditions (EOG, g-n: Electrooculogram, difference between
‘go’- and ‘nogo’-situation). Extreme values in EOG are taken as an indication
that no unconfounded measurement of brain activities is possible, hence persons
with such values are excluded.

Derived responses were calculated for three corresponding sets of four
variables [Y,, Y,, X, X,], [Y,, Ys, X}, X,], and [Y3, Y;, X|, X,], in which we
have the same explanatory variables and the same kind of responses under the
two experimental conditions; only the location of the measurement is different
for the three variable sets (compare Table 6). The squared canonical correla-
tions are (0.02, 0.24), (0.10, 0.23), and (0.07, 0.22), respectively, and the calcu-
lated transformation matrices ((1, 0.54) & (1, —0.65); (1, 0.78) & (1, —0.91); (1,
0.21) & (1, —0.71)) suggest for all three locations of measurement that we can
take as derived responses the sums and the differences of the measurements
under the two experimental conditions. This leads to the observed association
structure displayed in the lower part of Table 7.

While the correlations of the original responses in Table 6 are not close to
any easily interpretable structure a rather simple interpretation arises from the
derived responses. The level of the brain activity under the two experimental
condition, i.e. the sum of CNV, relates only to trait anxiety, while the difference
in brain activity under the two conditions relates only to the attention or arousal
of the participant. This is reflected in Table 7 in how close most of the
correlations estimated under the hypothesis (Y}*, Y, Y3*, X,)u(Y*, Y&, Y*,
X,) are to those observed and in the overall chi square statistic of 20.31 on 16
degrees of freedom in a likelihood test of goodness of fit. The correlations in
Table 7 indicate further that site of measurement plays a different role for the
two explanatory variables: the weakest nonzero correlation of X, the difference
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Table 7
Observed marginal correlations (lower half), marginal correlations estimated under hypothesis
(Y}, Y5, Y5, X)) u(YF, Y&, Y, X)) (upper half) with derived responses for the data of Table 6

Variable Yy v Yy Y Y Y X, X,
Y¥=Y,+Y, 1 0.79 0.44 0 0 0 0 0.15
Y=Y, +Y, 0.79 1 0.78 0 0 0 0 0.33
Y¥=Y,+Y, 0.44 0.78 1 0 0 0 0 0.34
Yr=Y,-Y, 0.04 0.07 -0.09 1 0.82 0.65 —0.48 0
Yé=Y,-Ys -0.06 —-006 —0.19 0.82 1 082 —0.48 0
Yr=Y,—-Y; 005 -0.01 -0.18 065 —0.82 1 —0.40 0
X;:EOG, g —n 0.06 0.03 0.10 -048 —048 —0.40 1 0
X,: Trait anxiety 0.15 0.33 034 -009 -0.06 -0.17 0.03 1
Mean —1353 —-6.10 1157 -094 —-1.12 -032 —-054 3981
Stand. dev. 9.03 11.05 10.05 3.77 391 3.63 8.21 9.94

in eye movements, is to the parietal measurement, Y; the weakest nonzero
correlation of X, trait anxiety, is to the frontal measurement Y;, but that there
is nevertheless a replication of the results at the different sites: the correlations
(—0.48, —0.48, —0.40) and (0.15, 0.33, 0.34) of each of the explanatory variables
with one of the derived responses differing in site show the same direction of
dependence just different strengths.

If a further condensation of the results were desired, i.e. a summary irrespec-
tive of site of measurement, it could be based on the correlation matrix of the
derived responses estimated under this independence hypothesis. The regres-
sion coefficient matrices for Y* and X have a particularly simple form, so that
the canonical correlations are given by the diagonal elements of 7, g« as
0.14 and 0.25 and as transformation C T we take the regression coefficient
matrix obtained by regressing Y* on X, i.e.

S 0 0 0 —-0.54 —-049 —0.09
x| g -0.55 0.79 0.21 0 0 0

If this transformation is applied to the observed sums and differences in CNV
all except two correlations are nearly zero, the weighted sum of differences in
CNV, ie. (-0.54Y* —0.49YF —0.09Y,%), has correlation about 0.50 with X,
the difference in EOG and the weighted sum of sums of CNV has correlation
about 0.38 with trait anxiety. If one person with somewhat extreme values for
EOG is removed, the first correlation reduces to 0.25, all other conclusions
remaining qualitatively unchanged. Except for signs essentially the same correla-
tion structure results if only approximate weights (000110)& (1 —-10000)
are used, i.e. if we define derived variables Y** = Y,* + Y.* and Y;** =Y* — Y*
we get correlations close to (Y;**, X)) 1(Y;**, X,).

A confirmation of the usefulness of the derived variables would be the
applicability to different but similar sets of data and ultimately the demonstra-
tion of direct substantive importance.
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Appendix

Table 8
Raw data for the data summaries in Tables 1, 3 and 4 on 44 healthy female patients expecting
cosmetic surgery

Systolic Diastolic Age Height Weight
blood pr. blood pr. in years in cm in kg
115 80 35 163 58
120 80 31 162 58
120 80 22 170 59
110 70 23 164 50
110 70 18 179 58
105 60 28 167 62
150 95 51 163 67
110 75 25 164 54
110 60 22 170 54
115 70 19 183 60
100 80 32 165 63
100 60 26 160 57
110 80 26 170 58
120 80 25 170 67
110 60 22 167 55
110 60 21 174 69
110 60 22 167 53
120 70 36 168 75
140 80 57 161 70
110 80 43 165 75
110 70 17 157 41
90 60 22 163 63
115 80 30 160 55
140 80 25 165 57
110 70 20 170 65
115 70 26 168 55
100 70 24 170 69
125 80 29 165 72
140 90 44 163 75
120 75 22 168 58
110 70 28 170 58
120 80 39 158 52
130 70 25 174 65
105 65 25 174 65
110 70 23 168 55
110 80 34 170 93
110 70 36 164 60
130 80 23 165 59
100 60 27 169 70
120 80 51 172 85
115 80 23 176 65
100 60 49 173 75
150 100 35 180 90

100 70 18 173 82
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