Derived variables for longitudinal studies
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Suppose that for each individual a vector of features is measured
at a number of time points. We look for a transformation of the
features, the same at all time points, that will induce a simple
dependency structure. In the simplest situation this requires that a
certain asymmetric matrix has real nonzero eigenvalues. Exten-
sions are considered.

In investigations in which several or many features are mea-
sured on each unit of study it is common to simplify analysis
and hopefully assist interpretation by transforming the features
to a set of derived variables. Often these are chosen from
subject-matter knowledge or experience, a simple example being
the replacement of body mass and height by Quetelet’s index,
mass divided by height squared. In other situations empirical
analysis of the current data may guide the choice of derived
variables. This may be by means of analysis of internal structure
as in principal component analysis or by means of analysis of
dependency, external analysis. The most common external anal-
ysis uses Hotelling’s method of canonical variables (1), in which
the derived variables are chosen to maximize measures of
dependency between two sets of variables. Another possibility is
to transform so that a simple form of dependency, for example
the one in econometrics called the seemingly unrelated regres-
sion structure of Zellner (2), is achieved. Cox and Wermuth (3)
developed the theory of this approach and as one of several
examples showed that the dependency between the concentra-
tions of three fatty acids and patient characteristics in a pain
clinic could be captured by some simple linear combinations of
log concentrations. In the present paper the argument is ex-
tended to deal with longitudinal data in which the same features
are measured at more than one time point.

Suppose then that at time # a p X 1 vector is measured on each
study individual and is represented by the random column vector
Y, = (Ya, ..., Y,)T. We study first the dependence of Y, on Y, .
We deal with linear dependencies described by a p X p matrix of
population least squares regression coefficients B;, 1, where the
Jjth row specifies the regression coefficients of responses Y;; in the
population least-squares multiple regression analysis of the
components of Y; on the full set of Y;—;. We have, on writing C,
for cov(Y,, Y5), that

Bt,z—l = Ct,t—l(Ct—l,t—1)717 [1]

where the covariance matrices are p X p. Now suppose that both
vectors are transformed by the same linear transformation A, to
Yi =AY fors =t t — 1. We now regress Y7 on Y7_; to obtain
the matrix of least-squares regression coefficients

B,y = cov(Y% Yi_ D{cov(Yi_ )} ' =AB,, A"

Choose A4, so that B} ,—; is a diagonal matrix, D, say. This
amounts to requiring that in a least-squares sense Yj; is condi-
tionally independent of Y, x (k # j) given Y;_1, and this can be
regarded as one time-related version of the seemingly unrelated
regression property. We thus require

AtBt,[fl = DzAn

so that the rows of A4, are the left eigenvectors of B,,—; corre-
sponding to the elements of D, as eigenvalues. If we arrange the
elements of D, in order of decreasing absolute value, that matrix

is an invariant of the system under linear transformation of the
original vectors; the elements have a direct interpretation as
correlation coefficients across time between the transformed
components. The rows of 4, can be standardized in any conve-
nient way.

In analyzing data we replace the population regression coef-
ficients by the corresponding sample estimates B,,—; leading to
estimates D, and A4,.

Even in this simplest situation with just two time points a
number of issues arise.

First, the matrix B,, ; is not symmetric and some of the
eigenvalues may be complex. If in some sense roots are signif-
icantly complex, then the proposed structure is incompatible
with the data. It is unclear just what aspect of the dependency
would lead to this conclusion. If a conjugate pair of complex
eigenvalues had only small imaginary part it would be possible
to set that part to zero and to proceed with the resulting pair of
real values.

Next it is possible that some of the eigenvalues are very small,
effectively zero. This would signal that the dependency can be
captured in a reduced number of dimensions.

In applications, as typical with these kinds of multivariate
analysis, it will often aid interpretation to replace the elements
of 4, by simpler quantities—for example, simple integer multi-
ples of log concentrations in the instance mentioned above—or
to replace small values by zero. Further, it will be wise to look
for possible nonlinearities in the dependency structure and to
deal with these, for example by nonlinear transformation of the
initial features.

In all these issues there are associated problems of formal
statistical inference—i.e., of assessing the precision of quantities
derived from B,,_;. These are probably best addressed by
simulation or data splitting.

We now consider a number of developments which are
potentially useful in a largely exploratory sense.

First, there may be data at time points 0, 1, ..., m on the
same set of individuals. We may then apply the above results
with ¢+ = 1, ..., m leading to m matrices of regression
coefficients and to m estimated transformation matrices A4,, for
t =1,...,m and m sets of eigenvalues. There are now many
possible forms of interesting stability of structure that might
arise. Thus, except for sampling error, the whole system might
be consistent with a single matrix of regression coefficients and
hence to a single A and D; note though that the means and
residual covariance matrices could still vary arbitrarily across
time. A weaker form of stability would involve constant 4 and
changing D, and a weaker still version would have only some
rows of A, stable.

Next, even with just three time points we may explore the
Markov character of the dependence, in its strongest form
examining whether Y; is conditionally independent of Y;_», . . .
given Y,_;. If this property in its entirety fails it is possible that
the non-Markovian character might be captured in a few
components of the transformed variable Y. Another possibil-
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ity is that the transformed components are individually sec-
ond-order Markov but that the conditional independencies in
the new coordinate system are preserved in that Y7 is condi-
tionally independent of Y%_1 x, Y52, (k, [ # j) for all j. By the
same argument as before this requires the strong condition
that

(AtCt,tflAtT, AtCt,t*ZAtT) = (DuD,)

_(Azctfl,,flA,T A,c,fl,,szZ>
ACi 1124l AL, 2, 2AL)

where Dy, Dy, are diagonal matrices.

It can be shown that this requires the rows of the matrix 4, to
be simultaneously the left eigenvectors of two different matrices,
namely

(C[,,,IC,’JL,,Z - Ct,tfzczi]ztfz)
: (Cz—l,t—lc;ll,z—z - Ct—l,z—ch—lz,t—z)_l

and
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Often in addition to the vectors Y there will be at baseline a
q X 1vector X of explanatory variables. The simplest procedure
is then to use the above procedures, taking all covariance
matrices residual to least-squares regression on X, and then to
study how the derived variables Y* depend on X. Andrew
Roddam (personal communication) has applied this idea to a
study in which X refers to maternal characteristics and with p =
2 the vector Y consists of log height and log body mass of infants
at a number of ages up to 5 yr.

The above discussion is aimed at problems in which a con-
siderable number of study individuals are measured at a limited
number of time points. There are no assumptions of stationarity;
indeed, the means of the various features may vary arbitrarily
across time. If applied to a single long realization of a stationary
vector time series, the technique could be used for estimating the
matrix of regression coefficients by means of the lag zero and lag
one matrices of cross-correlations.
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