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S

We study criteria for identifiability of path analysis models with one hidden variable.
We first derive sufficient criteria for identification of models in which marginalisation is
carried out over the hidden variable. The sufficient criteria are based on the structure of
the directed acyclic graph associated with the path analysis model and can be derived
from the graph. We treat further the identification of models when the hidden variable is
conditioned on and establish connections with the extended skew-normal distribution.
Finally it is shown that the derived conditions extend the existing graphical criteria for
identification.
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1. I

The combination of ideas from the area of graphical models with those from path
analysis and, more generally, from structural equation modelling, has led to reinter-
pretation and enlargement of existing results. Examples are the implementation of a
unifying language, based on graphs, for establishing testable implications contained in
a model, and therefore permitting a listing of equivalent models (Frydenberg, 1990), and
evaluation of the state of identifiability of models with hidden variables (Stanghellini,
1997; Pearl, 1998; Vicard, 2000). In particular, a graphical criterion has been given by
Stanghellini (1997) and Vicard (2000) for assessing the identifiability of single-factor
models with correlated residuals. The extension to models with more than one factor has
been addressed by Giudici & Stanghellini (2001) and Grzebyk et al. (2004). Pearl (1998)
treats identifiability of subsets of the parameters of a path analysis model with correlated
residuals giving a sufficient condition based on the graph called the back-door criterion.
In this paper we focus on path analysis models with uncorrelated residuals. The simplify-

ing structure of these models can be represented by a directed graph introduced in § 2 as
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a parent graph. We derive criteria for the identification of all parameters of the model
when one variable is hidden. We treat two types of hidden variable: either it is a variable
over which we marginalise or it is a variable on which we condition. There are various
notions of identification in the literature. Here we shall refer to the notion of global
identification of a model (Rothenberg, 1971; Bowden, 1973). Models with one unobserved
variable arise for instance in contexts with one variable measured with error, such as air
pollution, or with an unmeasured confounder. For example the knowledge that exposure
to asbestos causes leukaemia is only recent and therefore older studies of potential causes
of leukaemia did not include a measure of this exposure. When such data are reanalysed
this unmeasured variable should be taken into account.

2. K 

2·1. Covariance and concentration graphs

For the definitions of the various types of graph and for aspects of their interpretation,
we refer the reader to Cox & Wermuth (1996) or Edwards (2000). Here only the notions
necessary for our results will be restated. Let Y={Y1 , . . . , Yk} be a vector of random
variables. A covariance graph GVcov= (V, EVcov ) for linear relationships is the pair of a set
V of nodes associated with Y and a set EVcov of undirected edges such that there is no edge
joining nodes j and i whenever Y

j
and Y

i
are marginally uncorrelated. Edges in a covariance

graph are represented here by dashed lines. A concentration graph GVcon= (V, EVcon ) for
linear relationships is the pair of a set V of nodes associated with Y and a set EVcon of
undirected edges such that there is edge joining nodes j and i whenever Y

j
and Y

i
are

uncorrelated given all other variables. Edges in a concentration graph are represented
here by full lines.
Let S= (s

ij
) be the covariance matrix and S−1= (sij ) the concentration matrix of Y.

The following results hold (Wermuth, 1976):

s
ij
=r
ij
√(s
ii
s
jj
), sij=−r

ij.Vc{i,j}
√(siisjj ),

where r
ij
is the correlation coefficient between Y

i
and Y

j
and r

ij.Vc{i,j}
is the partial

correlation coefficient between Y
i
and Y

j
given all other variables. It follows that, if Y has

a joint Gaussian distribution, then

s
ij
=0 if and only if Y

i
))Y
j
, sij=0 if and only if Y

i
))Y
j
|Y
Vc{i,j}

,

in which Y
a
))Y
b
|Y
c
is the notation for Y

a
and Y

b
to be conditionally independent given Y

c
(Dawid, 1979). In this paper, the probabilistic independence interpretation applies only
to Gaussian distributions; missing edges in graphs mean linear independencies otherwise.
We partition Y={Y

a
, Y
b
, Y
c
} and the node set V={a, b, c} is partitioned accordingly.

In the following we indicate by M
ab
the submatrix (M)

a,b
of a matrix M and by Mab the

submatrix (M−1 )
a,b
of its inverse. The covariance matrix S and the concentration matrix

S−1 of Y are then written as

S=ASaa Sab SacS
ba
S
bb
S
bc

S
ca
S
cb
S
ccB , S−1=ASaa Sab SacSba Sbb Sbc

Sca Scb SccB . (1)
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We will make use of the following well-known results for the inverse of partitioned
matrices, using d={a, b}:

S
dd
= (Sdd )−1+S

dc
S−1
cc
S
cd
, (2)

S−1
dd
=Sdd−Sdc (Scc )−1Scd , (3)

S
dc
S−1
cc
=− (Sdd )−1Sdc. (4)

As Dempster (1969, p. 58) noted, Sdd=S−1
dd.c
, where S

dd.c
is the covariance matrix of

Y
d
given Y

c
, that is after conditioning on Y

c
. Analogously, Scc=S−1

cc.d
. It follows that, if

S
bc
=0, then S

bb.c
=S
bb
and the covariance matrix of Y

a
after conditioning on Y

b
and Y

c
is

S
aa.bc
=S
aa.b
−S
ac
S−1
cc
S
ca
. (5)

In the rest of the paper, the variance of a single random variable Y
a
will be denoted by

s
aa
and the partial variance of Y

a
given Y

b
will be denoted by s

aa.b
. The following lemma

can be stated.

L 1. L et Y be a vector of random variables with covariance matrix S and concen-
tration matrix S−1. We partition Y={Y

d
, Y
c
}, with c being a single random variable, and S

and S−1 accordingly. L et a=Sdc√s
cc.d

. T hen

s
cc.d
=s
cc
(1+aTS

dd
a)−1.

Proof. From (2) and (4) we find that

s
cc.d
=s
cc
−s
cc.d
ScdS

dd
Sdcs
cc.d
=s
cc
−s
cc.d
aTS
dd
a

and the result follows. %

2·2. Univariate generating process and graphs

A univariate generating process determines a full ordering of the variables in Y such
that each variable in the ordering is potentially a response variable for the preceding ones
and an explanatory variable for the following ones. The joint density of the variables in
Y can then be factorised accordingly into k univariate densities:

f
1,…,k

(y)= f
k
(y
k
) a
k−1

i=1
f
i
(y
i
|ypar(i) ), (6)

where par(i ) is the subset of {i+1, . . . , k} containing the variables that Y
i
still depends

on, given all other preceding variables. These could be regarded as ‘direct influences’.
Elements of par(i ) are called the parents of node i. A univariate generating process is
represented by the distribution generated over a graph GVpar= (V, EVpar ), where V is the
set of vertices or nodes corresponding to the variables Y1 , . . . , Yk and EVpar is the set of
directed edges drawn as arrows pointing from j to i whenever jµpar(i ). As a result of this
structure, we call this graph the parent graph. The set of nodes with a directed edge
originating from j contains the children of j and is denoted by chl( j). The defining
independence structure in (6) can be equivalently formulated in a condensed notation
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of nodes:

{i))potential ancestor of i excluding par(i )|par(i )}

for all iµV.
In Fig. 1 three possible parent graphs involving three nodes are presented. In Fig. 1(a)

node t acts as a transition node, whereas in Fig. 1(b) node t acts as a source node and in
Fig. 1(c) node t acts as a collision node.

Fig. 1. Three parent graphs with node t as (a) a transition node,
(b) a source node and (c) a collision node.

Given a graph G, a path of length n is a succession of n>1 edges connecting nodes
i0 , . . . , in irrespective of the orientation of the edges. A cycle is a path in which i0 and i

n
coincide. An odd cycle is a cycle involving an odd number of nodes. For a subset SkV
we define the boundary of S in a given graph G, bd(S, G), as the set of all nodes connected
by an edge with a node in S. A subgraph G

S
induced by a subset SkV in G consists

of the nodes S and the edges having both endpoints in S. A graph or a subgraph is
connected if every two nodes are connected by a path. If all edges are present a graph is
called complete. We define the complementary graph of a graph G as the graph G9 with
the same set of nodes, and an undirected edge connecting i and j whenever an ij-edge is
missing in G. By connectivity component we mean a maximal connected subgraph. A
node i is called a descendant of j in a GVpar if there is a direction-preserving path from j
to i. In this case j is called an ancestor of i. A parent graph is such that a node cannot be
ancestor of itself. For this reason a parent graph is also called a directed acyclic graph.
Let S and C be two subsets of V with SmC=B. We will make use of the undirected
graphs GS|Ccon and GS|Ccov induced by a parent graph. The former shows the independencies
of variable-pairs in S induced after conditioning on C and all remaining variables in S,
and the latter shows the marginal pairwise independencies of variable-pairs in S induced
after conditioning on C. More precisely, the graph GS|Ccon has S as a set of nodes and E

S
as

a set of edges such that the undirected ij-edge is not in E
S
whenever i)) j|CnSc{i, j}

follows from (6). Similarly, the graph GS|Ccov has S as a set of nodes and E
S
as a set of edges

such that the undirected ij-edge is not in E whenever i)) j|C follows from (6).
The above independencies may be derived by combining directly probability statements

(Dawid, 1979) or by using a separation criterion for directed acyclic graphs (Pearl, 1988,
p. 117). One formulation of the criterion (Wermuth & Cox, 1998) is that i and j are
independent when conditioning on CkVc{i, j} if, along every path from i to j, either there
is a source node or a transition node in C or outside C there is a collision node together
with all its descendants.
A direct implication of the above criterion is that, when C is the empty set, the overall
concentration graph induced by a parent graph, GVcon , has an undirected, full-line, ij-edge
whenever there is an ij-arrow in the parent graph or i and j have a common child.
Analogously, the overall covariance graph induced by a parent graph, GVcov , has an
undirected, dashed-line, ij-edge if and only if there is a path connecting i to j which does
not contain a collision node. Figure 2 shows a parent graph together with its overall
induced concentration and covariance graphs.
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Fig. 2. (a) A parent graph GVpar , (b) the overall induced
concentration graph GVcon and (c) the overall induced

covariance graph GVcov .

2·3. Identification of a single-factor model

Let Y be a vector of k mean-centred Gaussian random variables. We partition Y
into Y

O
, a set of observable variables, and Y

L
a single unobserved random variable. A

single-factor model is constructed as follows:

Y
O
=lY

L
+g, (7)

where l is the vector of so-called factor loadings and g is a vector of residuals such that
E(gY

L
)=0. It then follows that the covariance matrix implied by a single-factor model on

the observable variables is

S
OO
=llTs

LL
+S
OO.L
, (8)

in which S
OO.L
is the covariance matrix of g.

If system (8) admits a unique solution or a finite number of solutions in llTs
LL
and

S
OO.L

then the single-factor model is identified. Stanghellini (1997) gave a graphical rule
for solving system (8) as arising from a single-factor model with correlated residuals. The
sufficient rule is based on the structure of zeros in S−1

OO.L
when lN0. This rule was later

proved to be necessary by Vicard (2000). The derivation hinges on equation (3), that is
the fact that the concentration matrix of the observable variables S−1

OO
has a structure

similar to that of the covariance matrix in (8); in fact,

S−1
OO
=−ddT+S−1

OO.L
, (9)

where d=SOL√s
LL.O
. The following lemma is a direct consequence.

L 2. System (8) can be solved with respect to llTs
LL

and S
OO.L

if and only if one
of the following conditions holds:
(i ) lN0 and the structure of zeros in S

OO.L
is such that every connectivity component

of the complementary graph of GO|Lcov contains an odd cycle;
(ii ) dN0 and the structure of zeros in S−1

OO.L
is such that every connectivity component

of the complementary graph of GO|Lcon contains an odd cycle.

Proof. If (i) holds then, from a parallel argument to that of Stanghellini (1997) applied
to the covariance matrix S

OO.L
, system (8) can be solved. If (ii) holds then, from

Stanghellini (1997), system (9) can be solved for S−1
OO.L
. If we invert S−1

OO.L
, system (8) can

be solved as well. The necessity follows if we note that if none of the two conditions holds
then system (8) has infinitely many solutions or no solution (Vicard, 2000). %

Note that only llTs
LL
is uniquely identified. This implies that l is only identified up

to the sign and the positive constant √s
LL
. Usually, in factor analysis modelling the

second problem is solved via the assumption that s
LL
=1.
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Note that an ij-edge in the complementary graph of GO|Lcov implies a zero entry in SOO.L
and thus, from (8), an ij-entry of S

OO
that is equal to l

i
l
j
. When the complementary

graph contains a three-cycle, then there is a triple of observed variables, i, j and k say,
such that

s
ik
s
jk

s
ij
=
l
i
l
k
l
j
l
k

l
i
l
j
=l2
k
,

leading to the identification of l2
k
. When the cycle involves an odd number greater than

three, an extended version of the above relationship is implied. Analogously, an ij-edge in
the complementary graph of GO|Lcon defines an ij-entry of S−1

OO
that is equal to d

i
d
j
.

3. P    

In this paper we will assume Y to be a vector of k mean-centred random variables
such that

AY=e, (10)

where A= (−a
ij
) is an upper triangular matrix with ones along the diagonal and the

errors e have zero means and are uncorrelated so that cov(e)=D is a diagonal matrix.
The linear system (10), with some elements a

ij
restricted to be zero, is known as path

analysis, from the work of Wright (1923, 1934).
From (10) the covariance matrix S and the concentration matrix S−1 of Y are

S=BDBT , S−1=ATD−1A, (11)

where B=A−1. Therefore, given A and D the matrix S, or equivalently S−1, is uniquely
determined. When the full ordering of the variables is given the converse also holds.
In what follows, associated with (10) is a parent graph, GVpar= (V, Epar ), such that Y

i
corresponds to node i and an arrow points from j to i whenever a

ij
is a nonzero coefficient.

If all the a
ij
in (10) are different from zero the model is saturated and the corresponding

parent graph is complete. The parent graph so constructed is not different from the usual
path analysis diagram introduced by Wright (1923, 1934), and it coincides with the parent
graph of § 2·2 in the case of a Gaussian distribution for Y.
Let S and C be two subsets of V with SmC=B. Then we will also make use of the
covariance and concentration graphs GS|Ccov and GS|Ccon , induced by (10), such that GS|Ccov has
a missing ij-edge whenever r

ij.C
=0 is implied by (10). Analogously, GS|Ccon has a missing

ij-edge whenever r
ij.CnSc{i,j}

=0 is implied by (10). Such graphs may be constructed using
a separation criterion for directed graphs, as stated in § 2·2.
A univariate process for generating densities as in (6) or equations as in (10) may

contain latent variables, where latent means hidden or unobserved. Such variables act
either as variables that are marginalised over or as variables defining a selected sub-
population by fixing some of their levels; the latter are the variables conditioned upon.
The corresponding parent graph then contains hidden nodes. Questions about what can
be learnt from the distribution of the observable variables about the joint distribution
specified by the parent graph should therefore be addressed. This problem is closely related
to the problem of identifiability.
We partition Y={Y

O
, Y
L
}. When Y

L
is marginalised over, the observable variables are

Y
O
. When Y

L
acts as a conditioning node, we distinguish between two types of conditioning.

In the first, which we call conditioning on a point, the observable variables are Y
O
given
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Y
L
=y
L
. If Y has a Gaussian joint distribution then the same is true of the observable

variables. We refer to the second type as conditioning on an open interval. In this situation
the observable variables are Y

O
given Y

L
�b. Then, if Y has a Gaussian distribution the

observable variables have an extended skew-normal joint distribution (Capitanio et al.,
2003).
Model (10) is globally identified if the elements of A and D can be uniquely reconstructed
from the parameters of the joint distribution of the observable variables. If we denote
by hobs the vector of the parameters of the distribution of the observable variables,
model (10) is globally identified if hobs has a unique solution, or at most a finite number
of solutions, in A and D. A common assumption of latent variable models, which we
will adopt here, is that E(Y

L
)=0. This constraint is required in order to solve the non-

identifiability problem of the expected value of the latent variable.
Global identification of (10), when all variables are observed, has been established by

Wold (1960); see also Goldberger (1964, p. 383). The problem of identification of structural
equation models with latent variables has also been studied in the econometric literature,
see Bollen (1989) for a review, but general results are not yet available.
Here we develop criteria based on the properties of the graph for assessing whether or

not a path analysis model with one latent variable is identified. Nodes over which we
marginalise are denoted in the graph by a double crossing over the nodes. Nodes on
which we condition are put in a square. In Fig. 3 two parent graphs are presented, both
of which we later prove to be identified. In Fig. 3(a) Y4 acts as a node over which we
marginalise, while in Fig. 3(b) Y2 acts as a node on which we condition.

Fig. 3. Two parent graphs with (a) marginalisation
over node 4 and (b) conditioning on node 1.

To derive our sufficient criteria we now define a particular class of graphs.

D. An undirected graph G is G-identifiable if every connectivity component of
the complementary graph G9 contains an odd cycle.

In the following sections we apply marginalisation or conditioning on the observable
variables in order to reduce the identification problem to the solution of systems of
equations such as (8) and (9).

4. I     

For Y
L
not observed and marginalised over, the relevant parameters of the observable

variables are hobs=SOO . The covariance matrix implied by the model coincides with (8),
where l=S

OL
/s
LL
and S

OO.L
is the possibly non-diagonal covariance matrix of Y

O
given

Y
L
. Also, the implied concentration matrix coincides with (9), where d=SOL√s

LL.O
and

S−1
OO.L
is the possibly non-diagonal concentration matrix of Y

O
given Y

L
.
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The relationship between l and d can be made explicit as a function of S
OO
by the use

of (4) and the definition of d:

l=−S
OO
d√(s

LL.O
)/s
LL

. (12)

Note that equations (8) and (9) now arise from model (10). While the single-factor
model is a model of the conditional distribution of the observed variables given the
unobserved one, and does not imply any other ordering, model (10) implies a full ordering
of the variables. Therefore, in contrast to the single-factor model, in which lN0 is an
assumption of the model, an i-element of l equals zero whenever model (10) implies that
element Y

i
is marginally independent of Y

L
. Therefore lN0 or, analogously, dN0 is not

implied by the model. For that reason, the previous results cannot be applied directly
to the present situation. On the other hand, model (10) could imply a relationship
between different elements of l and d that, if taken into account, may enlarge the class of
identified models; see the Proof of Theorem 2. Note also that, if l and s

LL
are identified,

then, from (8), S
OO.L

can be uniquely reconstructed as the difference between S
OO
and

llTs
LL
, so that the model is identified. Therefore, the problem reduces to finding conditions

under which l and s
LL
are identified. As we shall see, the conditions in this paragraph

lead us to identify uniquely llTs
LL
and therefore S

OO.L
, but, as in the single-factor model,

l is only identified up to the sign and the positive constant √s
LL
. Note also that, if d is

known up to the sign, then, from (12), the same is true of l.
In what follows we define m=bd(L , GVcov ), c=bd(L , GVcon ) and a=bd(L , GVpar ) as subsets
of the observed nodes O which need not coincide. Note that a={par(L )nchl(L )} in the
parent graph. Recall that the set V is partitioned into V={O, L }. Moreover, whenever
the set O is partitioned further, then so are the matrices S and S−1. In the following
theorem we assume that no parametric cancellation occurs; that is, each iL -edge present
in GVcov and in GVcon , respectively, corresponds to nonvanishing li and di .

T 1. L et Y={Y
O
, Y
L
} with marginalisation over Y

L
and s

LL
=1. T hen a path

analysis model (10) is identified if one of the following conditions holds:
(i ) the boundary of the latent variable, m, in the covariance graph GVcov contains at least

three nodes and Gm|Lcov , the subgraph induced by m in GO|Lcov , is G-identifiable;
(ii ) the boundary of the latent variable, c, in the concentration graph GVcon contains at

least three nodes and Gc|Vcccon , the subgraph induced by c in GVcon , is G-identifiable.

Proof. For (i) we partition O={m, Ocm} and l={l
m
, l
Ocm
} with l

m
N0 and l

Ocm
=0,

so the problem reduces to that of identifying l
m
after imposing s

LL
=1. Note that

S
mm
=s
LL
l
m
lT
m
+S
mm.L
. (13)

From Lemma 2 we see that (i) is sufficient for solving (13) with respect to l
m
lT
m
and S

mm.L
.

For (ii) we partition O={c, Occ} and d={d
c
, d
Occ
} with d

c
N0 and d

Occ
=0. From (9),

for iµO and jµOcc, an (i, j )-element of S−1
OO
is equal to the corresponding (i, j )-element

of S−1
OO.L
. Moreover,

(S−1
OO
)
c,c
=−d

c
dT
c
+Scc (14)

as (S−1
OO.L
)
c,c
is equal to Scc . From Lemma 2 we see that (ii) is sufficient for solving (14)

with respect to d
c
dT
c
and Scc. By imposing s

LL
=1 and noting that SOcc,L=0, from Lemma 1

we derive s
LL.O
and ScL . The matrix S−1 is then identified and l

m
can be derived as the

matrix S
mL
. %
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The graph in Fig. 4(a) corresponds to an identified model. In this case L=3. From
Fig. 4(b) we see that c={1, 2, 4, 5}. In Fig. 4(c) the subgraph induced by c in GVcon is
shown and in Fig. 4(d) the complementary graph of this subgraph is presented. As this
graph has just one connectivity component which contains the odd cycle formed by
{1, 2, 4}, condition (ii) of Theorem 1 is satisfied. Note that condition (i) of Theorem 1 is
not satisfied. In fact, m={1, 2, 4, 5, 6} and Gm|Lcov is not G-identifiable. An instance of a
model identified by condition (i) of Theorem 1 is presented in § 7.

Fig. 4. (a) A parent graph with L=3 as a node to be marginalised over,
(b) the induced overall concentration graph GVcon with c=bd(3)=Oc{6},
(c) Gc|Vcccon , the subgraph induced by c in GVcon and (d) its complementary

graph.

The following theorem enlarges the class of identified models, where again m=
bd(L , GVcov ), c=bd (L , GVcon ) and a=bd(L , GVpar ).

T 2. L et Y={Y
O
, Y
L
} with marginalisation over Y

L
and s

LL
=1. T hen a path

analysis model (10) is identified if the subset a contains at least three nodes and there
exists a subset hk{Oca} such that Ga|Lnhcov or Ga|Lnhcon is G-identifiable and one of the following
conditions holds:
(i ) S

hL.a
=0;

(ii) S
hL
=0.

Proof. We partition O={a, mca, Ocm}, l={l
a
, l
mca

, l
Ocm
} and note that l

Ocm
=0 and

l
mca
=Kl

a
, in whichK=S

mca,a
S−1
aa
is a function of elements of S

OO
. The problem therefore

reduces to that of identifying l
a
.

For (i) let J={a, h, L }. If there exists an h such that S
JJ
or S−1

JJ
can be uniquely

reconstructed from S
OO
then the model is identified. We denote by VaL the matrix

(S−1
JJ
)
a,L
and by VhL the matrix (S−1

JJ
)
h,L
. First note that, from (3) and (4),

S−1
aa.h
=S−1
aa.hL
−bbT , (15)

in which b=VaL√s
LL.ha
. Moreover, from (2) and (4) we have

S
aa.h
=S
aa.hL
+ccTs

LL.h
, (16)

in which c=S
aa.hL
VaL . Therefore, if Ga|Lnhcov and Ga|Lnhcon are G-identifiable then, by Lemma 2,

bbT is identified. As s
LL
=1 and VhL=0, Lemma 1 can be applied to elements of S−1

JJ
leading us to identify VaL . Thus S

JJ
is also identified and (i) is sufficient.

For (ii) if S
hL
=0, from (5), expression (16) simplifies to

S
aa.h
=l
a
lT
a
s
LL
+S
aa.Lh
, (17)

with the inverse having the same expression as (15). Therefore l
a
lT
a
is identified and l

a
is

identified up to its sign and (ii) is sufficient. %
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Note that conditions (i) and (ii) of Theorem 2 can be checked on the graph by separation
criteria. Furthermore, condition (ii) of Theorem 2 implies that h))L and can also be
expressed as hkOcm. Note that h could be empty, in which case conditions (i) and (ii)
are trivially satisfied. The model corresponding to the graph of Fig. 5(a), with L=5, pro-
vides an example of a model identified according to Theorem 2 with h=B. In this case,
O={1, 2, 3, 4, 6}, a={2, 3, 4, 6} and Ga|Lcon is G-identifiable. The graph in Fig. 6(a) with
L=4 corresponds to a model that is identified according to Theorem 2(ii). In this case
O={1, 2, 3, 5}, a={1, 2, 3} and c=O. By choosing h={cca}={5} we see that S

hL
=0

and Ga|Lnhcon is G-identifiable. Note that the graph does not meet any of the conditions of
Theorem 1. The graph in Fig. 3(a) with L=4 corresponds to a model identified according
to Theorem 1(ii). In this case, O={1, 2, 3, 5}, a={1, 2, 3} and c=O. The graph GO|Lcon is
G-identifiable. Note that this graph does not meet any of the conditions of Theorem 2.
In fact, Oca={5} and, if we choose h=B, neither Ga|Lcon nor Ga|Lcov is G-identifiable; also, if
we choose h={5}, then neither Ga|hnLcon nor Ga|hnLcov is G-identifiable.

Fig. 5. (a) A parent graph with node L=5 as a node to be
marginalised over, (b) the graph Ga|Lcon and (c) the complementary

graph of Ga|Lcon .

Fig. 6. (a) A parent graph with node L=4 as a node to be
marginalised over and h={5} such that S

hL
=0, (b) the graph

Ga|Lnhcon and (c) the complementary graph of Ga|Lnhcon .

5. I     

In this section we establish criteria for identification of path analysis models (10) when
conditioning on a single value of the hidden variable, that is Y

L
=y
L
. In this situation the

relevant parameters of the observable variables are hobs=SOO.L , that is the covariance
matrix of Y

O
given Y

L
. Note that, from (8) and (9),

S
OO.L
=S
OO
−s
LL
llT , S−1

OO.L
=S−1
OO
+ddT , (18)

with l and d as previously defined. Again, we impose s
LL
=1. The relationship between

l and d can be made explicit as a function of S
OO.L
; that is, from (4),

l=−S
OO.L
d/√s

LL.O
. (19)
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The arguments in this section follow closely those of § 4. Systems in (18) can be solved,
depending on the structure of zeros in S

OO
or S−1

OO
. For the following theorem, stated

without proof, we exclude parametric cancellation; that is, each iL -edge present, in order,
in GVcov and in GVcon corresponds to nonvanishing li and di .

T 3. L et Y={Y
O
, Y
L
} with Y

L
a conditioning node and s

LL
=1. T hen a path

analysis model (10) is identified if one of the following conditions holds:
(i ) the boundary of the latent variable, m, in the covariance graph GVcov contains at least

three nodes and Gmcov , the subgraph induced by m in GVcov , is G-identifiable;
(ii ) the boundary of the latent variable, c, in the concentration graph GVcon contains at

least three nodes and Gc|Occcon , the subgraph induced by c in GOcon , is G-identifiable.

Conditions (i) and (ii) are never met in models in which L has children, as the following
Corollary proves.

C 1. Conditions (i ) and (ii ) of T heorem 3 are never met in models with
chl(L )NB.

Proof. We first consider the case with O={chl(L )npar(L )}. We denote this set by a
and assume that it contains at least three nodes; otherwise conditions (i) and (ii) of
Theorem 3 are trivially violated. The subgraph induced by chl(L ) in Gmcov is complete
and every element of chl(L ) is connected to every element of par(L ), so that Gmcov is not
G-identifiable. Furthermore, in this case Occ is empty, the subgraph induced by par(L )
in Gccon is complete and every element in par(L ) is connected to every element of chl(L ), so
that Gccon is not G-identifiable. We now consider the case with a5O. The set mca includes
either ancestors of L or descendants of L or both. The subgraph induced by chl(L ) in
Gmcov is complete and every element of chl(L ) is connected to all the other elements, so
that Gmcov is not G-identifiable. Furthermore, the set cca includes par{chl(L )} and the
subgraph induced by {par(L )npar{chl(L )}} in Gc|Occcon is complete and every element in
this subset is connected to every element of chl(L ). Therefore Gc|Occcon is not G-identifiable.

%

In Fig. 7(a) we present a parent graph with L=1 acting as a conditioning node. From
Theorem 3(i) we can see that the associated model is identified. In this case m=Oc{6}
and the complementary graph of Gmcov contains one connectivity component formed by
two odd cycles. Note that this model also satisfies condition (ii) of Theorem 3. In fact,
c={3, 4, 5} and Gc|Occcon is G-identifiable.

Fig. 7. (a) A parent graph with node L=1 as a conditioning node,
(b) the induced overall covariance graph GVcov with m=bd(1)=
Oc{6}, (c) Gmcov , the subgraph induced by m in GVcov and (d) the

complementary graph of Gmcov .



348 E S  N W

The parent graph in Fig. 3(b) with L=1 corresponds to a model that is identi-
fied according to Theorem 3(ii), as c=O and the complementary graph of GOcon is
G-identifiable. Note that this model also satisfies condition (i) of Theorem 3.

6. C     

In this section we consider models in which the joint distribution of the observable
variables arises from conditioning on an open interval of a hidden node of the form Y

L
�b.

Let Y={Y
O
, Y
L
} be a k-dimensional Gaussian random vector with E(Y )={j, 0} and

covariance matrix S partitioned as in (1) with s
LL
=1. Let Z=Y

O
|Y
L
�−t be the

observable variables. The joint distribution of Z is an extended skew-normal distribution
(Capitanio et al., 2003) with parameters a, S

OO
, j and t, and density function

f (z)=w
k−1

(z−j; S
OO
)W{a

0
+aT (z−j)}/W (t), (20)

where w( . ) and W ( . ) denote the standard normal density function and its integral. Note that
a=S−1

OO
S
OL
/√s
LL.O
and a0 is a function of the other parameters, as a0=t(1+aTSOOa)D .

Also

S
OL
=
t

a
0
S
OO
a

and therefore every path analysis model is identified. Note that in this particular situation
the sign of S

OL
is identified, as it corresponds to the sign of the parameter a.

7. S 

We use the previous results to investigate the identifiability of models for the effect of
sequentially administered treatments in randomised clinical trials with an unobserved
confounder. Robins & Wasserman (1997) describe the following hypothetical clinical trial
in which  patients receive two  treatments in sequence. At both times the treatment
dose is assigned at random. Randomisation probabilities of the recent dose T

r
depend on

the previous treatment dose T
p
and on an intermediate variable I, a measure of the anaemia

of the patients. The overall outcome W is the measure of the -viral load at the end of
a follow-up period. There is an unobserved confounder L representing the patient’s under-
lying immune function prior to the treatment. It affects both the intermediate variable I
and the outcome variable W. The parent graph under the null hypothesis of no treatment
effect is represented in Fig. 8(a). We assume the graph to be a conditional independence
graph and to reflect the factorisation of a joint Gaussian distribution as in (6).

Fig. 8. (a) Parent graph in a randomised trial for sequentially administered
treatments showing no treatment effect and (b) the parent graph with both

treatment effects and the instrument Z.
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By applying the separation criterion of § 2·2 we see that the only independencies
implied by the model in the marginal distribution of the observable variables are W))T

p
and W))T

r
|T
p
, I. These independencies can therefore be tested, and acceptance of both

hypotheses leads one to conclude that there is no treatment effect. Suppose now that there
is a direct effect of the second treatment T

r
on W. Then, no independency is implied in

the marginal distribution of the observable variables. By application of the criteria derived
in this paper, the model under the assumption that both treatments have an effect can be
made identifiable and both hypotheses can be independently tested. If we assume that an
auxiliary observed variable Z exists which is influenced by the unobserved variable L and
that a path analysis system (10) on V={W, T

r
, I, T
p
, Z, L } holds, then the model under

the assumption that both treatments affect the outcome variable, as described in Fig. 8(b),
is identified. In fact, condition (ii) of Theorem 1 is satisfied, as c={W, I, T

p
, Z} and the

subgraph induced by c in GVcon is G-identifiable. Note that Z does not meet the back-door
criterion (Pearl, 1998) relative to any of the treatment effects. Moreover, removal of one
arrow at the time between T

r
and T

p
and W also leads to identified models, and the two

hypotheses can be independently tested. The model with no treatment effect is identified
also according to condition (i) of Theorem 1.
Alternatively, if we may assume that only patients with the underlying immune function

above a threshold enter the trial, then the model can be made identified using the results
of § 6, as Y

L
acts as a conditioning node of the kind Y

L
�b. In this second situation all

possible models are identified.

8. D

Since all models obtained as a reparametrisation of an identified model are also
identified, the criteria shown in this paper can be applied to the class of linear models
corresponding to graphs that are independence-equivalent to a parent graph.
To fit the models described in § 4, standard latent variable software can be used. When

a joint Gaussian distribution is assumed, maximum likelihood estimation of these models
can be performed via the  algorithm. Routines for estimation and testing the state of
identification according to the criteria presented in this paper have been implemented
in R by G. M. Marchetti and M. Drton in the package ggm obtainable from http://
cran.r-project.org/. In this case, standard errors of the relevant parameters can be
computed by extending the work of H. T. Kiiveri’s 1982 Ph.D. thesis from the University
of Western Australia. This has been done in a 2004 Università di Firenze Ph.D. thesis by
F. Pennoni. Likelihood factorisation conditions based on graphs have been given for
the skew-normal distribution in Capitanio et al. (2003), where algorithms for maximum
likelihood estimation of the extended skew-normal distribution have also been presented.
Therefore, the models discussed as identified lead to estimation and test problems that
now have known solutions.
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