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1 Introduction

The term graphical Markov models has been suggested by Michael Perlman,
University of Washington, for multivariate statistical models in which a joint
distribution satisfies independence statements that are captured by a graph.
The study and the development of these models is such an active research area
that some of their properties are not yet discussed in recent statistical books
concentrating on them (Edwards, 2000; Lauritzen, 1996; Cox and Wermuth,
1996). We ask here
– how do they relate to models used more traditionally for data analysis?
– what do they offer in addition?
– are case studies available?

In independence graphs used to summarize aspects of detailed statistical
analyses each vertex or node represents a variable feature of individuals under
study. These features may be categorical. Then they are denoted by capital
letters A, B, C, . . ., they are modelled by discrete random variables and drawn
as dots. Or, they may have numerical values of substantive meaning. Then
they are denoted by capital letters X, Z, U . . ., they are typically modelled by
continuous variables and drawn as circles. If this distinction is not important,
the individual components of a vector random variable Y may be denoted by
Y1, Y2, . . ., or, more compactly, just by integers 1, 2, . . ..

Often substantive knowledge is strong enough to specify a fully ordered se-
quence of the variables which starts with a background variable, ends with a
response of primary interest, and has single intermediate variables, which are
both, potential responses to variables of the past and potentially explanatory to
variables of the future. Then, no variable is taken to be explanatory for itself and
an independence graph fitted to the responses will be fully directed and acyclic.
For these we give here examples of research questions and of theoretical results.

2 A motivating research example

For the research questions: Who admits to be not concerned about protecting
the environment? How does such an attitude develop? we use answers of 1228
respondents, aged between 18 and 65 years, from the General Social Survey in
Germany in 1998.
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The following Figure shows a first ordering of six variables which are catego-
rized to be binary, together with the observed percentages for the stated category.
Most variables are based on answers to a single question but, for instance, for
risk of social exclusion is derived from several aspects such as no or incomplete
vocational training and extended periods of unemployment.
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After checking for interactive effects (Cox and Wermuth, 1994) and using a
likelihood-ratio based model selection strategy we concluded that each of the
univariate conditional distributions is here well described by logistic regressions
having two main effects. For each response the important explanatory variables
are shown in the graph by arrows pointing directly from the former to the latter.
The factorization of the joint density fV can be read off the graph to be

fV = fA|B,GfB|C,DfC|D,GfD|E,F fGfE,F .
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For each response the direction and strength of the dependencies can be read
off the estimated conditional probabilities. The following table shows for which
levels of the explanatory variables lowest and highest percentages are observed
for level 1 of each response, together with these observed percentages.

Level of response: A=1 B=1 C=1 D=1
Explanatory variables: BG CD DG EF

levels with highest perc.: 1,2 26.6 1,1 40.7 1,1 28.2 1,1 65.2
levels with lowest perc.: 2,1 2.2 2,2 8.2 2,2 4.7 2,2 7.7

One main gain of the graph is the possibility of tracing developments. For
instance the path from G to C to B to A describes that women are at higher risk
for social exclusion than men, that those at higher risk for social exclusion are
less likely to believe in having an own political impact and that those perceiving
to have no own political impact are more likely to be unconcerned about the
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environment.
Another important use of a directed acyclic graph is that its consequences can

be derived if only subsets of the variables are considered and if subpopulations
are selected. General answers have been given recently (Wermuth and Cox,
2001a). For instance, the independence graph implied if variables A, F, E are
ignored, that is the graph for the joint distribution of all remaining variables, is
- in this example - again a directed acyclic graph, the graph shown below.
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This follows by summing over variables A, F, E in the joint density fV , in which
each response depends only on the directly important explanatory variables.

3 Some consequences of directed acyclic graphs

3.1 Consequences in simple cases

For relations among only three variables, we now show examples of consequences
which have been described in the literature as spurious dependence, spurious
association and selection bias. The graphs help here to visualize the concepts.

The first example for spurious dependence concerns the question of discrimi-
nation against women and data from the German labour market for academics,
whose field of qualification was either mechanical enginering or home economics.

The well-fitting independence graph is

successful job
placement

field of qualification

gender

Ignoring the intermediate variable, i.e. marginalizing over B (6 6◦) leaves A de-
pendent on C: the data appear to indicate discrimination, since men have a
more than five times higher chance for successful job placement.

A B C D

However, including the information of the field of qualification by fixing levels of
the intermediate variable, i.e. conditioning on B ( 2◦ ), shows A independent of
C.

A AB C C

The second example for spurious asscociation was used by Y. Yule more than
100 years ago to argue that correlation is not causation. Ignoring the common
explanatory variable, i.e. marginalizing over Z leaves Y and X associated.
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Y, number of birth

X, number of storks

Z, number of roofs in 19th
century English villages

Y

X

Fixing levels of the common explanatory variable, i.e. conditioning on Z shows
Y independent of X .

The third example for selection bias is due to H. Wainer. He showed how
systematic differences in incomes of men and women having the same level of
formal schooling get covered up when different scales are used for income in
displays showing for both genders a systematic increase of income with higher
levels of formal schooling.

Overall the level of formal schooling, X , is independent of gender, A, but
after selecting levels of the common response variable, i.e. conditioning on Y ,
income, renders the explanatory variables to be associated: within given income
groups women have a higher level of formal schooling.

Y, income, American
banks, about 1980

X, years of formal
schooling

X

A, gender A

Ignoring the common response variable, i.e. marginalizing over Y shows the two
explanatory variables A and X to be independent.

3.2 Some consequences of large graphs

In general, simple matrix calculations can be used to derive for all variable pairs
whether a directed acyclic graph implies for instance marginal independence or
not. An edge or incidence matrix is a way of storing the information in an
independence graph with zeros for missing edges and ones for edges present. We
let row i in an edge matrix correspond to node i in a graph and let the node set
be ordered as V = (1, . . . , dV ) so that all ij-arrows for j > i point from j to i.
The edge matrix of a directed acyclic graph, A, is then upper-triangular matrix
with ones along the diagonal and a one in position (i, j) if and only if there is
an ij-arrow present in the graph.

In the language for such directed graphs it has become a convention to call
the node of a directly explanatory variable a parent and the node of a direct
response variable a child. The node of an indirectly explanatory variable is
named an ancestor, the node of an indirect response variable a descendant.

A directed acyclic graph is then often called the parent graph, GV
par, with

edge matrix A. The graph obtained from it by adding a direction-preserving
arrow for every ancestor-descendant relation is called the overall ancestor graph,
GV

anc, with edge matrix B. An undirected graph of dashed or broken lines is
induced by the parent graph GV

par which has a missing ij-edge (and a missing
ji-edge) if and only if Yi is implied to be marginally independent of Yj . It is
called the induced overall covariance graph, GV

cov. The name derives from joint
Gaussian distributions for which marginal independencies are reflected as zeros
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in the covariance matrix. We shall explain here why the edge matrix of the
induced overall covariance graph is the indicator matrix of BBT , where an indi-
cator matrix In(M) of a matrix M has a one in position (i, j) if and only if the
element of M in this position is nonzero. We give first an example with 6 nodes.

6 6 6

the parent graph G
V
par the overall ancestor the induced overall

with edge matrix A graph G
V
anc with covariance graph G

V
cov,

edge matrix B edge matrix In( BB
T )

The corresponding edge matrices A, B are
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











1 1 1 0 0 0
1 0 0 0 0

1 0 1 1
1 0 1

0 1 0
1












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











1 1 1 0 1 1
1 0 0 0 0

1 0 1 1
1 0 1

0 1 0
1













.

In this small example it may be checked directly for which pairs the factorization
of the joint density as given by the parent graph

f1,...,6 = f1|2,3f2f3|5,6f4|6f5f6

implies that fij = fifj by intergating over all remaining variables.
The edge matrix of an overall ancestor graph, B, is the indicator matrix of

I +
∑

(A− I)r,

where I is the identity matrix and (A− I)r counts for each i < j the number of
direction-preserving paths of length r present in the parent graph between them.

A matrix product BBT has in position (i, j) the element bij +
∑

k>j bikbjk.

Therefore, if In(BBT ) is the induced the edge matrix, then there is an additional
ij-one if and only if nonadjacent nodes i and j have a node k as a common
parent in the ancestor graph. Thus, an additional ij-edge in GV

cov compared to
GV

par arises if and only if either j is an ancestor of i or i and j have a common
ancestor. This statement is equivalent to Pearl’s (1988) separation criterion for
directed acyclic graphs when the conditioning set is empty. The matrix result
completes the search for the proper paths for all pairs at once.

By a similar simpler argument the induced overall concentration graph, GV
con,

can be shown to have edge matrix In(ATA). It is an undirected graph of full
lines, where each edge concerns the conditional relation of two variables given all
remaining ones, i ⊥⊥ j | V \{i, j}. The name derives from joint Gaussian distribu-
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tions for which these independencies are reflected as zeros in the concentration
matrix which is the inverse of the covariance matrix.

4 Relations to traditional methods and case studies

In the social sciences structural equation models (SEM) and, more generally,
linear structural relation models (Bollen, 1989) have been used extensively for
analysing multivariate data. They have been developed as extensions of path
analysis models (Wright, 1934), which in the econometric literature are bet-
ter known as linear recursive equations with uncorrelated residuals (Goldberger,
1964). Graphical Markov models provide a different extension in which both cat-
egorical and numerical features can be modelled. In the subclass of chain graph
models joint distributions are decomposed recursively into conditional joint dis-
tributions and simplified by conditional independencies. There are no theoretical
restrictions on the form of the conditional distributions, however algorithms for
computing estimates under each specified model are not yet available generally.

It has recently been shown (Koster, 1999) how an independence graph can be
associated with each Gaussian structural equation model to read off the graph
all independence statements implied by the model. But, while in chain graphs
every missing edge corresponds to an independence statement and every edge
present can be associated with a specific conditional or marginal association of
the variable pair, this does not hold in general for structural equation models.
An edge present in the graph relates directly to a parameter in an equation but
may be connected in a complicated way to any statement about the conditional
or marginal association of the variable pair. Similarly, a variable pair with an
edge missing may be associated no matter which conditioning set is chosen.

Results about fitting chain graphs approximately with the help of univari-
ate conditional regressions and results for deriving chain graphs induced by di-
rected acyclic graphs (Wermuth and Cox, 2001a) can be viewed as supplement-
ing existing, useful data analysis tools. Local fitting of univariate conditional
distributions permits to break up seemingly complex structures into tractable
subcomponents. These components may then be directly related to substantive
knowledge available about subsets of the variables under study.

Some case studies using chain graph models are by Klein, Keiding, and
Kreiner (1995), Hardt (1995), Cox and Wermuth (1993; 1996, Chapter 6; 2001),
Pigeot, Caputo, and Heinicke (1999), Stanghellini, McConway and Hand (1999),
Pigeot, Heinicke, Caputo and Brüderl (2000), Wermuth and Cox (2002), and
Cheung and Andersen (2002).
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career of sociologists: a graphical chain model reflecting early influences
and associations. Allgemeines Statistisches Archiv, 84, 3-21.

Stanghellini, E., McConway, K.J. & Hand, D.J. (1999), A discrete variable chain
graph for applicants for credit, Journal of the Royal Statistical Society ,
Series C, Applied Statistics, 48, 239-251.

Wermuth, N. & Cox, D.R. (2001a). Joint response graphs and separation induced
by triangular systems. Research Report, Australian National University.
http://www.maths.anu.edu.au/research.reports/01srr.html

Wermuth, N. & Cox, D.R. (2002) Graphical models: an overview. Encyclopedia

of Behavioral Sciences. Elesevier. To appear.

Wright, S. (1934). The method of path coefficients. Annals of Mathematical

Statistics, 5, 161-215.


