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languages.

Goulden’s career as a part-time teacher at the
University of Manitoba continued until 1948,
when he moved to Ottawa to become Chief
of the Cereal Crops Division in what is now
Agriculture Canada. This move was another
turning point in Goulden’s career; he became
more absorbed in administrative duties and less
involved in day-to-day research activities. In
1955 he was appointed Director of the Experi-
mental Farms Service of Agriculture Canada
and four years later was promoted to Assis-
tant Deputy Minister with responsibility for the
newly formed Research Branch of Agricultural
Canada. As an administrator Goulden brought
about several organizational improvements to
the research arm of Agriculture Canada. He re-
tired from the civil service in 1962 but contin-
ued to be active, designing several exhibits for
“Man the Provider” for the international exhi-
bition, Expo 67, held in Montreal.

Cyril Goulden was the recipient of many
honors. He was an elected fellow of the Royal
Society of Canada (1941), an elected fellow of
the American Statistical Association* (1952),
and an honorary member of the Statistical So-
ciety of Canada* (1981). In 1958 he served as
president of the Biometrics Society*. He was
awarded an honorary LL.D. from the Univer-
sity of Saskatchewan (1954) and an honorary
D.Sc. from the University of Manitoba (1964).
In 1970 he received an Outstanding Achieve-
ment Award from the University of Minnesota,
and ten years later was named to the Canadian
Agricultural Hall of Fame.
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DAVID BELLHOUSE

GRAPHICAL MARKOV MODELS

Graphical Markov models provide a flexible
tool for formulating, analyzing, and interpreting
relations among many variables. The models
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combine and generalize at least three dif-
ferent concepts developed at the turn of the
last century: using graphs, in which variables

are represented by nodes, to characterize and

study processes by which joint distributions
may have been generated (Sewell Wright [60,
61]), simplifying a joint distribution with the
help of conditional independences (Andrei
Markov* [36]), and specifying associations
only for those variables which are in some
sense nearest neighbors* in a graph (Willard
Gibbs [21]).

Graphical Markov models are used now in
many different areas, such as in expert sys-
tems* (Pearl [41], Neapolitan [38], Spiegel-
halter et al. [45]), in decision analysis (Oliver
and Smith [39]), for extensions of the notion
of probability (Almond [1]), for attempts to
model causal relations (Spirtes et al. [47]), and
in multivariate statistics to set out and de-
rive properties of structures (Lauritzen [30],
Whittaker [57]) or to explain and summarize
observed relations (Cox and Wermuth [15],
Edwards [19]). We emphasize here their use-
fulness in observational studies*, where data
are obtained on a considerable number of
variables for each individual under investi-
gation, where the isolation of relations between
these variables is of main concern, and where
available subject-matter knowledge is to be
integrated well into model formulation, analy-
sis, and interpretation. We illustrate in particular
how graphical Markov models can aid

1. insetting up a first ordering of the variables
under study to reflect knowledge about re-
sponse variables of primary and secondary
interest, about one or more levels of inter-
mediate variables and purely explanatory
variables,

2. in specifying hypotheses resulting from
previous investigations,

3. in providing an overview of the analyses
to be carried out,

4. in summarizing and interpreting the com-
pleted analysis, and

5. in predicting results in related investiga-

tions involving the same variables or a se-
lection of the same variables.
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The last important feature can also be made
available to a number of traditional statistical
models if they can be viewed [56] as special
cases of graphical Markov models.

Most of the general concepts are introduced
in the next two sections with the help of two
specific research problems. A brief historical
view is given first.

The geneticist Sewell. Wright used directed
graphs, which he called path diagrams, to de-
scribe hypothesized linear generating processes;
he suggested estimating corresponding path co-
efficients and judging the goodness of fit of
the process by comparing observed marginal
correlations with those he derived as implied
by the hypothesized process (see PATH ANALY-
SIS). It was not until much later that his es-
timated coefficients were identified by Tukey
[50] as least squares regression coefficients of
variables standardized to have mean zero and
variance one, and his goodness-of-fit criterion
was derived by Wermuth [52] as Wilks’ likeli-
hood ratio test [58] for Gaussian variables, pro-
vided the process can be represented by what
is now called a decomposable concentration
graph. These tests were not yet improved by
Bartlett’s adjustment® [12]. The same type of
path analysis models were propagated in econo-
metrics by Wold [59] and extended to discrete
variables by Goodman [24] to be used in soci-
ology and political science.

The notion of having a generating process
which admits a causal interpretation was given
up in extensions of path analysis aimed at
modeling proper joint responses: extensions to
simultaneous equation models [26], to linear
structural equations® [27] and to chain graph
models [32]. Similarities and distinctions be-
tween the different approaches were derived
much later [53].

The notion of conditional independence*,
which had been used by the probabilist Markov
to simplify seemingly complex processes, was
studied in detail by Dawid [17] and related by
Speed [43] and Darroch et al. [16] to the undi-
rected graphs which Gibbs had used to deter-
mine the total energy in a system of particles
such as atoms of a gas.

Measures of association in graphical Markov
models depend on the type of variables in-
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volved in a system. For instance, for Gaussian
variables they are linear regression or corre-
lation coefficients, for discrete variables they
are odds ratios* studied early by Yule [62] and
Bartlett [5], and for mixed variables they are
based on different measures discussed by Olkin
and Tate [40] and Cox [10].

Models with several variables which are
now seen as special cases of graphical Markov
models were developed quite separately, for
instance, as linear models for contingency ta-
bles* [6, 23, 11, 7] and as covariance se-
lection models for Gaussian variables by
Dempster [18]. Analogies between indepen-
dence interpretations and between likelihood
ratio tests in these two model classes were
recognized later by Wermuth [51]. Similarly,
linear structure models in covariances [2, 27]
which admit an independence interpretation
were integrated into graphical Markov models
by Cox and Wermuth [13] only many years af-
ter they had first been proposed, as were many
of the generalized linear models* introduced
by McCullagh and Nelder [37].

Of special importance for sparse data are
models which permit explicit maximum like-
lihood estimation of parameters and testing of
goodness of fit by considering only subsets of
variables. Such decompositions of joint distri-
butions were first studied by Haberman [25] and
Sundberg [48] for contingency tables, by Speed
and Kiiveri [44] for covariance selection, and
by Lauritzen and Wermuth [32] for models with
both discrete and Gaussian variables. Efficient
algorithms for deciding on this property of a
model from its graph have been designed [49,
33, 34].

Models for the same set of variables may
differ with respect to their defining parameters.
Then they typically correspond to different
graphical representations, but they may never-
theless imply the same set of independence
statements. This agreement has been termed
independence equivalence of models and is one
important aspect of the stronger requirement of
equivalence in distributions. Early first results
by Wermuth and Lauritzen [52, 55, 32] were
generalized by Frydenberg [20].

This last is one active research area. Another
1s to incorporate latent variables into the model

formulations and to integrate time series and
survival analysis*. Also, further criteria are de-
veloped to read off a graph which conditional
independences and which conditional associa-
tions are implied. Some of the available criteria
are described here in the next-to-last section.

AN INTERVENTION STUDY

A first illustration of the use of graphical
Markov models in observational studies is an
intervention study involving 85 chronic pain
patients and observations before and after three
weeks of stationary treatment [35, 15]. There
were three main objectives. We wanted to see
whether results reported in earlier studies can
be replicated, whether it is worthwhile to study
measures of well-being of a chronic pain pa-
tient other than self-reported treatment success,
and whether a psychotherapeutic placebo inter-
vention shows sizeable effects.

This placebo intervention, offered to about
one-third of the patients, consisted of telephone
contacts, solely involving general information
and interest in the patient’s well-being, offered
by one physician over a period of three months
after stationary treatment, together with the op-
tion for the patient of phoning this physician
again.

The available knowledge about the variables
under study and decisions about potential rele-
vant explanatory variables lead to the ordering
of the variables in Fig. 1. Such an ordering is
called a dependence chain, because the vari-
ables are arranged in sequence, in a chain of
boxes. One variable is binary, the additional in-
tervention, A; all 25 other variables are quanti-
tative measurements.

There are three response variables of primary
interest, measuring different aspects of the pa-
tient’s well-being three months after the patient
has left the hospital: the patient’s own judge-
ment of success of the stationary treatment, Y;
the self-reported typical type of pain, Z,; and a
depression score, X,. Whenever there are sev-
eral variables that we want to treat on an equal
footing in the sense of not specifying one vari-
able as a response and another as an explana-
tory variable, then we list them in the same
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Well-being, Coping We}ll-being, Personality
after strategies: ?e Ot'e t traits: Medical
treatment: 811810 reatmen background

Ve v
Zy, A, Zg, Anxiety, 576
type of pain| |additional type of Vi Demo-
Y, intervention pain graphical
success of U, background
treatment chronicity Anger, V7, Vg, Vg
X, pain | Xa, V2 Vs Va
depression depression

Figure 1 First ordering of types of variable for chronic-pain patients: patient’s well-being three
weeks after stationary treatment (box a) and before (box d); an intervention (box b) intermediate for
the former and response to the latter. The stage of chronic pain, U, and the coping strategies S;
are stacked to display hypothesized independence given pretreatment well-being (box d), personality
characteristics, and medical and demographic background variables (box e¢). The double-lined box

indicates relations taken as given.

box. This is to imply that we investigate aspects
of their joint (conditional) distribution given all
variables listed in boxes to the right.

Several variables are intermediate, because
they are taken as potentially explanatory for
some variables in the system (listed in boxes
to the left) and as response to others (listed
in boxes to the right). Depression before treat-
ment, X4, for instance, is considered here as
explanatory for chronicity of pain, U, but as
a response to certain patient characteristics,
Vi,..., Vo, and, as another measure of well-
being of the patient before treatment, on an
equal footing with typical intensity of pain, Z,.

In a previous investigation it had been
claimed that certain strategies to cope with
pain Si,...,S)o are independent of chronic-
ity of pain, U, given pretreatment conditions
(Z4, X4), personality characteristics, and medi-
cal and demographic information about the pa-
tient Vy,..., Vo. The two stacked boxes indicate
this hypothesized conditional independence.

The set of variables to be taken as purely
explanatory is listed to the far right end of the
sequence, in a doubly lined box, to indicate that
their relations are taken as given without being
analyzed in much detail.

We illustrate two typical steps of a full analy-
sis for these data: checks for possible interactive
effects and plots showing the direction and size
of some of the estimated conditional interac-
tions. For a full analysis of joint responses a de-

cision has to be made whether other responses
on an equal footing are to be included in regres-
sion equations as additional regressors or not.
If prediction of responses is an aim, the lat-
ter appears often most appropriate, and it leads
to what we call a multivariate regression* ap-
proach. In this, each of the joint responses is
taken separately in turn, to decide which of the
potentially important explanatory variables are
in fact directly important. Next it is checked
whether any important symmetric associations
remain among the responses after the regres-
sions. To summarize such analyses, relations to
important regressors enter as arrows between
boxes and important symmetric associations as
lines within boxes to give what is called in its
most general form a joint response chain graph.

Plots to check systematically for nonlinear
relations have recently been proposed by Cox
and Wermuth [14]. Two such plots, displaying
t-statistics for interactive effects from trivari-
ate marginal distributions, are shown in Fig. 2.
Most t-statistics, even if they are considerably
larger than 2, lie along the line of unit slope in
Fig. 2a and may therefore be interpreted as be-
ing well compatible with random variation. A
few statistics deviate from the unit line. They
indicate the presence of interactions, which are
to be identified. Figure 2b shows that these mar-
ginal interactions do not involve chronicity of
pain, U, coping strategies, or earlier variables
(listed in boxes ¢, d, e), since the largest t-
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4  Ordered ¢-statistic

| i . J

-2 2
Expected normal order statistic
(a)

~ Ordered ¢-statistic
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-2 2
Expected normal order statistic
(b)

Figure 2 Normal probability plot of t-statistics of cross-product terms in trivariate regressions for
variables on chronic pain. (a) Plot for all variables. (b) Plot for stage of chronic pain, U, coping strategies
S;, and their potential explanatory variables; each triple includes U.

values in this plot are small, that is, they are
in absolute value near 2.

Two estimated interactive effects are dis-
played in Fig. 3. All other directly important
explanatory variables are there kept at their av-
erage level, that is, mean values are inserted
for all remaining regressors in the selected re-
gression equation. Figure 3a shows that the
psychotherapeutic placebo intervention, A, has
essentially a positive effect on reported treat-
ment success for patients with low pain inten-
sity Z; — §,, but a negative effect for patients
with typically high intensity of pain. Figure 3b
shows that the hypothesized conditional inde-
pendence between stage of chronic pain and
strategies to cope has to be rejected: the risk
for higher chronicity decreases with increasing
use of one of these strategies by patients with
low pain intensity, but it increases with use of

Y, success of treatment

20- 0Z;-s
15 o Z,, typical
I pain
10 - O' """"""""" O Ed
sres.
5r A
L T 4 Zgts
no yes

A, intervention
(a)

the same strategy by patients with high pain
intensity.

In this study the additional intervention is
important for each of the three responses, the
particular effect type depending on specific
characteristics of the patient and on the cop-
ing strategies of the patient. The estimated re-
lations, however, appear to be fairly complex
relative to the sample size. For instance, for
the self-reported treatment success there are
three sizable interactive effects, and for typical
pain intensity there are two alternative regres-
sion equations, which fit the data equally well
and which both permit plausible interpretations.
Hence it appears best to try to replicate some
of the results with a reanalysis of previous data
and in a study with more and different patients,
instead of attempting to summarize results with
a graph.

U, chronicity of pain

5 10 15 20
Sg, resignation
(b)

Figure 3 Plots to interpret interactive effects on two responses in treatment of chronic-pain data.
Remaining directly explanatory variables are fixed at level 1 or at mean. (a) Response is Y, (b) response
is U. Standard deviation of residuals in the regression is denoted by sres; observed mean and standard
deviation of a variable X are denoted by X, s, respectively.



A COHORT STUDY

The second example is a cohort study [22, 15],
in which the main aim is to identify impor-
tant developments in a school and a student
career which might increase the risk that a stu-
dent stops studying without having received a
degree.

Complete records were available for 2339
high school students on their average perfor-
mance in high school and on questions regard-
ing school career and demographic background.
During their first year at university, responses
to psychological questionnaires were obtained,
and it was finally recorded whether students
successfully completed their studies or dropped
out of university.

Figure 4 shows the first ordering of the ob-
served variables, based largely on the time
sequence involved; it implies that relations be-
tween the variables are to be studied in five con-
ditional distributions. For the variable in box a,
all other variables are taken as potentially ex-
planatory. The variables in box b are treated
on an equal footing and are considered condi-
tionally given those in boxes ¢, d, e, f. For the
variable in box ¢, those in boxes d, e, f may
be explanatory, but not those listed in boxes a,
b, and so on. Finally, the variables in box f are
treated as purely explanatory with associations
not to be further specified by any model.

Checks for nonlinearities gave no indica-
tion of any strong interactions or nonlinear de-

(a) (b) ©
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pendences among the ten variables, of which
three are quantitative measurements (Y, X, Z)
and seven are binary variables (A,B,...,F).
The procedure followed to study the relations
among the variables via separate logistic and
linear regression, as well as log-linear con-
tingency table analyses, is summarized in the
graphs of Figs. 5 and 6.

In studying the relations among the joint
responses, X, Y, Z, we did not intend to iden-
tify good predictors, so that a block regres-
sion approach has been used. In it the other
components of a response vector serve as
additional regressors for each component con-
sidered in turn as a single response. This leads
typically to simpler independence structures,
that is, to larger sets of independences im-
plied by a system. The reason is that fewer
of the potentially important regressors become
directly important if information on other re-
sponses on an equal footing is available in a
regression equation.

Even with as many as ten variables, it
would be possible to summarize the results
of the analyses with a single chain graph, but
we present separate graphs for the university
variables given earlier variables and for the
high school variables given the demographic
background information in Figs. 7 and 8.

This not only is clearer, but illustrates one
of the features of chain graph representations:
separate analyses may be integrated into larger
graphs in different ways to emphasize special

(d) (e) ®

AY X! Ul
dropout at motivation average
university grade,
Y, last three
expected years of
achievement high school
ZI
integration
into student
group

B, C, E,
change integration change of
of high into high- primary
school school class school
D, Fy
high- education
school of father
class
repeated

Figure 4 First ordering of variables for university students. Variable A, dropout at university (box a), is
the response variable of primary interest; for instance, B, change of high school (box d), is an intermediate
variable, potentially explanatory for dropping out at university (box a), for the student’s attitudes towards
his study situation (box &), and for grades at high school (box ¢), and also a potential response to other
school-career and demographic variables (boxes e, f). Variables are treated on an equal footing in boxes
b, e because no direction of dependence is specified—in box f because variables are purely explanatory.
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Figure S Regression graphs showing results of analyses for university variables in cohort study.

/C'F

L1 Bg
U‘\MQ . -
D ®

.DE D E

Selected regressions

U: C+D+F

B: D+E+F

Selected log-linear model

CD,DE EF

Figure 6 Regression graphs and concentration graph showing results of analyses for high school

variables in cohort study.
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Figure 7 Independence graph for university variables given high school and background variables.
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Figure 8 Independence graph for high-school vari-
ables given demographic background variables.

aspects, here the university components and the
high school career.

A short qualitative interpretation of the
graphs is that dropout, A, is directly influ-
enced by the attitudinal variables ¥, Z and by
academic performance in the final years of high
school as measured by the average mark, U,

and that these variables in turn depend on some
of the earlier properties.

A next step is to interpret the regression re-
sults more quantitatively, in particular the logis-
tic regression* for A. One way of appreciating
the sizes of the individual logistic regression
coefficients is via Fig. 9, which shows the es-
timated probability for the three important ex-
planatory variables, again in each plot holding
the other two variables fixed at their means.

It is a matter of judgement when and how to
introduce directed relations between the compo-
nents of the psychological questionnaire scores
X, Y, Z, but, partly because X is not directly ex-
planatory for the primary response A and partly
because of the simplification achieved, we have
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A, Estimated probability of dropout A, Estimated probability of dropout A, Estimated probability of dropout

0.3

0.1

Z, integration into student group

Y, self-expected achievement

I 0.3r 0.3r
- 0.1+ 0.1r
0 g 8 o T8 2 ‘ 4

U, average mark, years 11-13

Figure 9 Fitted probability of university dropout, A, versus the directly explanatory variables in turn.
In each plot two other variables are fixed at the mean; lower marks correspond to higher achievement.

explored treating Y as a response to Z and to U,
ignoring X, that is, marginalizing over it. Simi-
larly, we have marginalized over the variable C.
This leads to the chain of Fig. 10, which shows
only univariate responses.

An indirect path like the path from E to D
to B to Z to A may be interpreted as follows:
change of primary school, E, increases the risk
that a high school class will have to be repeated,
D, which in turn increases the risk that the
student will change high school at least once
during his school career, B. Once a high school
change has been experienced, it becomes less
likely that a student integrates well into his later
student group (Z), and this in turn is a direct risk
factor for A, leaving university without having
obtained a degree. The overall effect of such
a path may be moderate, however, if some of
the relations along such a path are of moderate
strength. This does not show in the graph, but
is the case here for the edge DE.

' The possibility of using the graph to infer
additional independences and induced depen-
dences is an additional appealing feature of
graphical Markov models. We describe these in
more detail for univariate-recursive regression

graphs later, but give some formal definitions
next.

SOME GRAPH TERMINOLOGY

For graphical Markov models, p nodes V =
{1,..., p} in a graph denote random variables
Yy,...,Y,. There is at most one edge i, j be-
tween each pair of nodes i and j. Edges rep-
resent conditional association parameters in the
distribution of Yy. An edge may be directed and
then drawn as an arrow, or it may be undirected
and then drawn as a line. If a graph has only
lines, then it is an undirected graph. The graph
is fully directed if all its edges are arrows, and
partially directed if some of its edges are lines
and some are arrows.

An edge i, j has no orientation if it is a line;
it has one of two possible orientations if it is
an arrow, either pointing from j to i or point-
ing from i to j. A path of length n — 1 is a
sequence of nodes (iy,...,I,) with successive
edges (i,,i,+,) present in the graph; this is ir-
respective of the orientation of the edges. The
graph obtained from any given one by ignor-

—
Pl
ey

o -~
\E

|
—3

Figure 10

Independence graph for subset of variables concerning university dropout. Consistent with

the results of Figs. 7 and 8 after marginalizing over variables X and C.
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ing type and orientation of edges is called its
skeleton.

Two nodes i, j are said to be adjacent or
neighbors if they are connected by an edge, and
they have a common neighbor t if t is adjacent
to both i and j. Three types of common neighbor
nodes ¢ of i, j can be distinguished in a directed
path as shown in Fig. 11a to ¢. Two arrows
point to i and j from a source node t (Fig. 11a);
a transition node t has one incoming arrow, say
from j, and one outgoing arrow (Fig. 11b); and
a sink node t has two arrows pointing at it from
each of i and j (Fig. 11c¢). Because two arrows
meet head on at a sink node, it is also called
a collision node.

A graph constructed from a given one by
keeping nodes and edges present within a se-
lected subset S of nodes is an induced subgraph.
If the induced subgraph of three nodes i, ¢, j has
exactly two edges, it is a V-configuration, and
if it is one of the paths of Fig. 11a, b, ¢, it
1S source-, transition-, or sink-oriented, respec-
tively. Similarly, a subgraph as in Fig. 114 is
called a sink-oriented U-configuration.

A path containing a collision node is a col-
lision path, and a path is said to be collision-
less otherwise.- A path of arrows leading to i
from j via transition nodes is called a direction-
preserving path. In such a path i is a descendant
of node j, and node j is an ancestor of i.

A cycle is a path leading from a node back
to itself and a directed cycle is a (partially)
oriented cycle without a sink-oriented V- or U-
configuration along it.

Induced subgraphs which are complete in the
sense of having all nodes joined but which
become incomplete if even one other node is
added are the cliques of the graph. The set of
cliques of a graph without arrows and only full
lines, points to the set of minimal sufficient sta-
tistics for a corresponding exponential family

AVARRNVA

(a) (b)

model. This special role of nearest neighbors
is closely related to simplifying log-linear con-
tingency table analyses and to the Hammers-
ley—Clifford theorem* [16].

JOINT-RESPONSE GRAPHS AND
GAUSSIAN SYSTEMS

The arrangement of the variables for a joint-
response chain graph is, here, into boxes from
left to right, starting with responses of pri-
mary interest. There are in general several
nodes within each box corresponding to joint
responses, i.e., to variables to be considered on
equal footing. This corresponds to an ordered
partition of the set V of all p nodes into subsets
as V = (a,b,c,...), to the dependence chain.
Different types of edge [15] add flexibility in
formulating distinct structures.

Arrows pointing to any one box are either
all dashed or all full arrows. Dashed arrows to
a node i indicate that regression of the single
variable Y; on variables in boxes to the right of i
is considered, whereas full arrows mean that the
regression is taken both on variables in boxes
to the right of i and on the variables in the same
box as i. In this way dashed arrows indicate a
multivariate regression and full arrows point to
a block regression approach.

Within a box there is either a full-line graph
or a dashed-line graph, each considered condi-
tionally given variables in boxes to the right.
For instance, a dashed line for a pair (i, j) in
box b means the presence of conditional asso-
ciation between Y; and Y; given Y,,...; a full
line for a pair (i, /) in box b means the pres-
ence of conditional association between Y; and
Yj given Yb\{i,j}’ YC, e

Block regressions are combined with full-
line response boxes, while for a multivariate
regression there is a choice between a full-

AR

t \-../

©) (d)

Figure 11 Some V-configurations with 7 (a) a source node, () a transition node, (c) a sink or collision

node, (d) a sink-oriented U-configuration.



and a dashed-line graph for the correspond-
ing joint responses. Figure 12 shows two joint-
response graphs having the same skeleton but
corresponding to different models.

To relate formally the corresponding
parametrization in a joint Gaussian distribu-
tion it is convenient to think of the p X 1
vector variable Y as having mean zero and
being partitioned into component column
vectors Y4, Yp,..., of dimensions p, X 1,
py X 1,....

For a dependence chain of three elements let
the covariance matrix % and the concentration
matrix 3! be partitioned accordingly as

2aa 2ab 2ac
2 - : be 2'bc ’
. . ECC
Eaa Eab Eac
2 -1 _ . 2 bb Ebc
. . Ecc

A zero off-diagonal element in 3 specifies
a marginal independence; a zero off-diagonal
element in %! implies a conditional indepen-
dence statement given all other remaining vari-
ables [51; 15, p. 69]. Independence statements
with other conditioning sets arise as zero re-
gression coefficients in different regressions as
follows.

From regressions of each component of Y,
on Y., regression coefficients are obtained (in
the position of X,. by sweeping 3 on c or
resweeping ! on (a,b) in a p, X p. matrix
Bblc:

By = Ebczc_cl = —(Ebb-a)‘lzbc,a.

Y,
]
Ys X
— X2

(a)
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In this each row corresponds to regression co-
efficients of Y, in the regression of one of the
components of Y, on Y,; 2049 3b¢4 denote
submatrices of the concentration matrix in the
marginal joint distribution of Y,, Y,.

From regressions of each component of Y,
on both Y, and Y. we get (in the positions of
24, 2ac by sweeping X on b, ¢ or resweeping
%"l ona) the p;, X (pp + p.) matrix

Balbc = (Balb.c’ Ba]c.b)

-1
= (zab, Eac) <§bz ébc >

— _(Eaa)—l(zab’ Eac) )

Then, the parameters of a pure multivariate-
regression chain of only dashed edges result
from the transformation Z = AY, and the pa-
rameters of a pure block-regression chain of
only full edges, such as shown in Fig. 12a, re-
sult from the further transformation X = DZ,
where D = T~! is a block-diagonal matrix
containing concentration matrices of the distri-
butions of Y, given Y, and Y., of Y, given
Y., and of Y., and

Iaa —Ba|b.c _Balc.b

A= 0 Ibb _Bblc s
0 0 I.
2aa.bc‘ 0 O
T = 0 e 0 |,
0 0 =
(20 0
D=| 0 3I* 0
O O Ecaab

(b)

Figure 12. Two joint-response chain graphs with the same arrows and lines but different types
of edges, implying different independence statements. For instance, absence of an edge for (¥, Y>)

means in (@) Y 1L Y2'(Y3,X1,..

L Us), in (b)) Yy 4L Y5l(X,,..

., Us); absence of an edge for (X, Us)

means in (a) X; i Us|(X2, X3,Uy, Uz), in (b) X, 1L Us|(U,, Us); absence of an edge for (X,, X3) means

X2 lLX3|(X],U1,U2,U3) in both.
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Here identity block matrices are denoted by 1.
The regression coefficients of a multivariate-
regression chain are in A; those of a full block-
regression chain are obtained from the ma-
trix DA after dividing each row by the corre-
sponding diagonal element [53]. The variance
of Z is ATS A = T: the variance of X is D
and coincides with the diagonal block matrices
of DA.

The parameters in a mixed dashed- and full-
edge response graph coincide with those of
a block-regression chain for full lines and
with those of a multivariate regression chain
for dashed edges. For instance, the model of
Fig. 12b is like a multivariate regression chain,
except that for the distribution of Y, given
Y. the inverse covariance matrix is considered
mstead of the covariance matrix, i.e.,

2b_bl.c = (Ebb - Ebczc_clzcb)_l
— Ebb.a — Ebb — Eba(zaa)“lzab )

The transformation from covariance to con-
centration parameters introduces no complica-
tions, since mean and concentration parameters
vary independently. This property holds more
generally for mixed parametrizations with mo-
ment and canonical parameters in exponential
families (Barndorff-Nielsen [4, p. 122]). For
joint Gaussian distributions the numbers of pa-
rameters obtained with complete joint-response
models, 1.e., with unrestricted regression chains,
coincide in the three different approaches
described.

Full-edge joint-response graphs for discrete
and continuous variables may correspond to
joint conditional Gaussian distributions [32],
in which null values of interaction parameters
indicate the independences specified with the
graph. With nonlinear and higher-order interac-
tive effects permitted, the individual regressions
specified with a graph capture independences in
some non-Gaussian joint distribution.

Subclasses of joint-response chain graphs
arise as follows. If the set of nodes, V, is not
partitioned, so that there is just one box and
no arrows, the dashed-line graph is a covari-
ance graph and the full-line graph a concentra-
tion graph, because their edges correspond for
a joint Gaussian distribution to elements in the

overall covariance and concentration matrix, re-
spectively. One main distinction is that concen-
tration graphs with some edges missing point to
sets of minimal sufficient statistics which sim-
plify estimation, while this is not so for covari-
ance graphs.

If Vis partitioned into just two elements and
the distribution of the explanatory variables is
regarded as fixed by drawing a double-lined box
for them, then the joint-response chain graph is
reduced to a regression graph. Finally, if the
partitioning is into single nodes, so that there
are no joint responses (i.e., there are as many
boxes as responses), then this is a univariate-
recursive regression graph as in Fig. 10.

Some results are available on when two
general joint-response graphs with identical
skeletons imply the same set of independence
statements. Such a condition for independence
equivalence is that for any two full-edge graphs
[20] the sink-oriented V- and U-configurations
coincide. It explains, for instance, why the sub-
graph of nodes C, D, E, F in Fig. 8 has the
same independence interpretation as the graph
for these nodes in Fig. 6. For full-line, dashed-
arrow graphs another criterion involving V- and
U-configurations has been given by Anderson
et al. [3].

Joint-response graphs arranged in boxes do
not contain directed cycles. Graphs with di-
rected cycles, i.e., cyclic graphs, were studied
and related to some linear structural equations
by Spirtes [46] and Koster [29]. In them an
edge may be missing but not correspond to an
independence statement.

TYPES OF FULLY DIRECTED
INDEPENDENCE GRAPHS

In a directed acyclic graph Gé/ag, all edges are
directed and there is no direction-preserving
path from a node back to itself. Given the set
of ancestors adjacent to any node i, this graph
defines Y; to be conditionally independent of
the remaining ancestors of i.

In the contexts we are concerned with, the
order of the variables is specified from subject-
matter knowledge about the variables and, for
each response in turn, by decisions about sets of



variables considered to be potentially explana-
tory. A recursive ordering is indicated by draw-
ing a chain of boxes around nodes 1, ... ,p.
The order need not be complete, in the sense
that sets of several responses may be condition-
ally independent given all variables in boxes to
the right; then the nodes of these sets are drawn
in stacked boxes. If in Fig. 10 the edge E, F is
oriented to point to E, then the fully directed
graph obtained by deleting all boxes is directed
acyclic.

Given such an order, we have a univariate re-
cursive regression system, that is, a sequence of
conditional distributions with Y| regressed on
Yy,...,Y,; Y, regressed on Y3,...,Y,; and so
on up to Y, regressed on Y,. Each response
Y; has then potentially explanatory variables
Yi+1,...,Y,, and we assume that its condi-
tional dependence on Y, given its remaining
potentially explanatory variables can be cap-
tured by a set of parameters, the null values of
which imply the corresponding independence
for i < j. That the independence structures of
a directed acyclic graph and of a univariate-
recursive regression graph coincide follows
from what has been called the equivalence of
local and pairwise Markov properties (Lau-
ritzen et al. [31]).

The graphical representation of such a sys-
tem, the univariate recursive regression graph,
1s a directed acyclic graph with two additional
features: each edge present represents a spe-
cific nonvanishing conditional dependence, and
each edge absent represents one particular con-
ditional independence statement for the variable
pair involved. We then say that the joint distri-
bution is generated over the given Gé/ag, or that
Gé/ag 1s a generating graph, because it is to rep-
resent a process by which the data could have
been generated.

By considering Gé/ag as a generating graph,
we mean that it is to have the same properties
as a univariate recursive regression graph but
without drawing the boxes; the order is then
often indicated by a numbering of the nodes
(1,..., p) whereby a set of r stacked nodes can
obtain any one of the r! numberings possible
without affecting the independence structure of
the system.
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RELATIONS INDUCED BY DIRECTED
ACYCLIC GENERATING GRAPHS

The possibility of reading all independence
statements directly off a graph has been made
available by so-called separation criteria for a
graph. Such have been given to date for the
two types of undirected graphs [16, 28], for
partially directed full-line graphs [20, 8], and
for directed acyclic graphs [41, 42, 31]. They
permit one to conclude, under fairly general
conditions on the joint distributions, that Y,
is independent of Yy given Y., provided that
the criterion is satisfied. The simplest crite-
rion is for concentration graphs: C separates
A from B in G}, for a nondegenerate joint
distribution if every path from A to B has a
node in C.

The separation criterion for directed acyclic
graphs is more complex. To present it in a form
which permits one to read induced associations
directly off the graph, we define a path to be
active whenever it is correlation-inducing in
Gaussian systems. More precisely, in a joint
Gaussian distribution generated over Gé/ag an
active path between i and j relative to a set
C introduces a nonzero component to p;; ¢ if
the path is stable, that is, if correlations to
each edge along it are strictly nonzero given
C. Such edges may either be present in GXag or
be generated after conditioning on C.

A path between nodes i and j, i < j, in a
directed acyclic graph Gc‘{ag 1S active relative to
C if either-

1. it is collisionless with every node along it
outside C, or

2. acollisionless path wholly outside C is gen-
erated from it by completing with a line the
nonadjacent nodes of every sink-oriented
V-configuration having a descendant in C.

The definition is illustrated with Fig. 13.

Note that a path is collisionless if i is a de-
scendant of j (Fig. 13a) or if there is a source
node ¢ which is an ancestor to both i and
J (Fig. 13b). The contribution of such a path
to the conditional association between i and j
given C is obtained by marginalizing over all
nodes along it. Similarly, the contribution of



296 GRAPHICAL MARKOV MODELS

| — - . —

| — —>—>\/<—J
(a)

| e i e e ]

(b)

t

€1

c
€2

(©)

Figure 13 Active paths for a pair (i, ) relative to C: (a) collisionless active path with i descendant
of j, (b) collisionless active path with i and j descendants of ¢ (both have all nodes along it outside C),
and (c) active collision path: a collisionless path outside C is generated from it by conditioning on C,
i.e., a path not touching the collision nodes ¢, and ¢ results after joining with a line the nonadjacent
nodes in every sink-oriented V-configuration having a descendant in C.

an active collision path results by marginaliz-
ing over all nodes along the collisionless path,
which only gets generated after conditioning on
nodes in C.

Separation effects in directed acyclic graphs
can be specified for disjoint subsets A, B, C of
V as follows: Y4 1L Yp|Yc if in Gé/ag there is no
active path between A and B relative to C.

A stronger result of asserting dependence is
possible whenever the joint distribution is non-
degenerate and satisfies a condition which has
been called lack of parametric cancellation. We
stress that often representing dependences is as
important as representing independences.

An association is induced by a generating
graph GXag for nondegenerate systems without
parametric cancellation relative to C as follows:
Y; and Y; are conditionally dependent given Y¢
if in Gc‘l/ag there is an active path between i and
J relative to C.

The stronger result applies in essence to other
than Gaussian systems provided they are quasi-
linear, that is, any dependence present has a
linear component such that the vanishing of
the least squares regression coefficient implies
or closely approximates an independence state-
ment. Excluded thereby are situations in which
dependences are so curved, or involve such a
special high-order interaction, that they corre-
spond to a vanishing correlation.

A parametric cancellation is a very special
constellation among parameters such that an
independence statement holds even though it
is not implied by the generating graph, that
1s, even though it cannot be derived from the
separation criterion. Thus the specific numerical
values of the parameters are such that an inde-

pendence arises that does not hold in general
for structures associated with the given graph.

In a stable Gaussian system there is paramet-
ric cancellation only if the contributions to p;; ¢
of several active paths between i, j relative to
C add up to give zero [54]. Examples are given
here with the simple system of Fig. 14.

The graph of Fig. 14 specifies two inde-
pendences: X; 1L X4|(X5,X3) and X, 1L X;3|X,.
The separation criterion tells us that the graph
implies no marginal independence for the pair
X1,Xs and no conditional independence for
X,,X3 given X;. Nevertheless, each of these
additional independences may hold even in
a stable Gaussian system whenever effects
of different paths cancel each other. With
the special constellation of correlation coeffi-
cients given by ppp = p13 = pau = pa = p,
p = p?, and pyy = 2p2/(1 + p?), it follows
that p,3; = 0, because then the contribution
to pr31 from the collisionless path (2,4,3)
and from the collision path (2,1,3) cancel.
If, instead, the correlation coefficients satisfy
pP12p24 = —p13p3s, it follows that p14 = 0,
because the nonzero contribution to p;4 of the
path (1,2,4) cancels the nonzero contribution
of the path (1, 3,4).

Y,
Y; —O Y,
o1 B —
Y3

Figure 14 A simple stable Gaussian system in which
effects of two paths may cancel: for p4 those of paths
(1,2,4) and (1,3,4), and for p,3.; those of paths (2,1,3)
and (2,4,3).



PREDICTION OF RESULTS IN
RELATED INVESTIGATIONS

We now illustrate the use of the results stated in
the preceding section for deriving consequences
of a given hypothesized generating process.

The simple generating graph in five nodes of
Fig. 15a consists just of one path, so that there
can be no parametric cancellation in a corre-
sponding stable system. This path is a collision
path with node 1 being the single collision node
in the system. Thus, in this graph a collision
path between any pair of nodes i, j is active rela-
tive to C whenever C includes node 1. Then the
generating graph does not imply Y; 1L Y;|Y for
general joint distributions, and it implies Y; de-
pendent on Y; given Y for a nondegenerate
stable Gaussian system and for systems that be-
have similarly, such as the following system of
main-effect regressions in mixed variables.

Let the joint distribution be generated in stan-
dardized variables Y, X, Z corresponding to
nodes 1,2,5 and in binary variables A, B, each
taking values —1 and 1 with probability 0.5,
such that the following set of regressions de-
fines the joint distribution:

E{Yl(X’ A)} = PyxX + pyai s

var{Y (X, A)} = 1 = p}, = pj,,
7TAIX >
1X) 1x PaxX
10g1t<771|x >— log i ; _xp ,
—llx ax
. [ _BIX) 2ppxx
10g1t<77’11x > = 1—:—';2—

Here p denotes a strictly nonzero correla-

tion coefficient and, e.g., Wﬁlxx the conditional
probability that A takes value 1 given X = x.
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Then the joint distribution has as generating
graph Gdag of Fig. 15a, and it is quasilinear.

If we choose C to be the empty set and draw
a dashed-line edge for any pair for which mar-
ginal independence is not implied, the over-
all induced covariance graph of Fig. 15¢ is
obtained, GY . Similarly, if for each i, j we
take C to be the set of all remaining nodes
(C = V\{i, j}), and draw a full-line edge when-
ever Y; 1L Y;|Yy\; ;) is not implied, then the
overall mduced concentration graph GY. of
Fig. 15¢ results.

The following construction criteria for these
graphs can be formulated. A given generating
graph Gdag induces an edge i, j in the overall
covariance graph G if and only if in the
generating graph there is a collisionless path
between the two nodes, and it induces an edge
i, j in the overall concentration graph GY if
and only if in the generating graph either i, j
1s an edge or nodes i and j have a common
collision node.

More generally, for any selected subset S of
all nodes V (where § includes i, j ) a generating
graph Gdag induces a dashed-line edge in the
conditional covariance graph G5:C for nodes i,
J if and only if in the generating graph there
1s an active path between i and j relative to C
and it induces a full-line edge in the conditional
concentration graph G3$ for nodes i, j if and
only if in the generating graph either i, j is an
edge or there is an active path between i and j
relative to § U C (Wermuth and Cox [54]).

Figure 16 shows a conditional covariance
graph and a marginal concentration graph in-
duced by the generating graph of Fig. 15a.
These are not induced subgraphs of the corre-
sponding overall graphs. For a stable Gaussian

4
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DS "’;'
S -’
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(a)
Figure 15

(b)

(a) A generating graph Gdao with five nodes; (b) the overall concentration graph GCO

n

induced by it; and (c) the overall covariance graph G induced by it.
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Figure 16 Further graphs induced by the generating
graph of Fig. 15a: (a) the covariance graph G5 with

cov

S =1{2,3,4,5} given C = {1}, and (b) the concentra-
tion graph G3  with § = {1,2,4,5}.

con

system they show the zero and nonzero entries
in 255 with § = {2,3,4,5}, C = {1} and in
35 with § = {1,2,4,5}.

These results may be used to predict impli-
cations of a hypothesized generating system for
different analyses with the same set of data. Pre-
diction of results in related investigations may
be illustrated with the help of Fig. 10, which
summarizes some aspects of the study in the
section “A Cohort Study.”

Suppose, for instance, there is a study of aca-
demics, that is, of persons who have received
a university degree, so that we condition on
level 1 of variable A. Suppose further that in-
formation on the other seven variables shown
in Fig. 10 is available. Then we may predict
(for instance, with the induced covariance graph
of seven nodes given A) which variable pairs
should be marginally independent in this sub-
population, provided the graph of Fig. 10 is
an adequate description of how the data are
generated.

Suppose as a further example for A at level 1,
we consider the relation between U and B given
D, E, F. Figure 10 specifies U 1 B|(D,F), but
an active path between U and B via Z relative
to A. This implies, for distributions that are like
stable Gaussian systems without cancellation of
path effects, that U and B are dependent given
A, D, F. Indeed, strong conditional association
is typically obtained between U and B given D,
F in similar studies of German academics.

Such possibilities of deriving consequences
implied by a particular model mean that the im-
portant general principle of making a hypothe-
sis elaborate, discussed in detail by Cochran [9],
can be applied to these multivariate structures.
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(CAUSATION

CONDITIONAL INDEPENDENCE
EXPERT SYSTEMS, PROBABILISTIC
GRAPH THEORY

PATH ANALYSIS)

NANNY WERMUTH

GROUPING NORMAL MEANS

The comparison of % normal means
M1, M2, ..., g 1S typically presented in
the context of analysis of variance*. The hy-
pothesis Ho : py = pp = -+ = uy; is tested
by an F-test* with k — 1 and v degrees of
freedom (df), where v represents the df for the
error mean square, s say, in the ANOVA.
When the groups (treatments) whose means
are to be compared are qualitative and unstruc-
tured, commonly used procedures to investi-
gate the more specific question of which means
are different are multiple comparison proce-
dures* (MCPs), multiple range tests* (MRTSs),

and simultaneous testing procedures* (STPs).
The basic idea of such procedures is to ar-
range the observed means in ascending order,
say y; <Yy, < --- <Yy, each based on n ob-
servations, by testing sequentially hypotheses
of the form

Hpg i fp+1 = Mpta =+ = fpiy

for p =0,1,....,k — g, g = 2,3,..., k. This
is done in at most k — 1 stages. At stage
[, hypotheses of the form H, (x—;+1) for p =
0,1,...,1 — 1 are tested [5]. More specifically,
the hypothesis H, , is rejected if

yp—i—q - —yp+1 = C;,VS/\/E’

where « is the familywise error rate and ¢,
Is an appropriate critical value.

One of the drawbacks of these procedures
is that often they lead to overlapping clusters
of homogeneous groups (means). This may be
unsatisfactory from a practical point of view.
To alleviate this problem, alternative proce-
dures have been proposed which are embedded
in STPs or make use of MCPs and clustering
methods. All of these procedures are sequential
and lead to nonoverlapping clusters of homo-
geneous groups.

Basically, the procedures can be classified in
two ways: hierarchical (H) versus nonhierarchi-
cal (NH), and agglomerative (A) versus divi-
sive (D). Here, hierarchical means that once a
group is assigned to a cluster in one step of the
procedure, then it will remain in that cluster at
subsequent steps. Agglomerative means that at
each step two clusters will be combined to form
a new cluster, and divisive means that at each
step more clusters are being formed than existed
in the preceding step. Methods by several au-
thors fall into the various categories mentioned
above (see Table 1).

Table 1
A D
H Calinski and Corsten (1) [1],  Scott and
Jolliffe [5] Knott [6]

NH —_ Calinski and

Corsten (2) [1]




