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1. Introduction

A sequence of characters, such as QR*-TS, becomes a palindromic sequence when
the order of the characters is reversed and appended, here to give QR*-TSST-*RQ.
The notion is used in somewhat modified forms, among others, in musicology,
biology and linguistics. An example of a palindromic sentence which respects
the spacings between words is ‘step on no pets’.

Here, we adapt the term to Bernoulli distributions. For a single binary vari-
able, the distribution is palindromic if it is uniform, that is if both levels oc-
cur with probability 1/2. For a Bernoulli distribution of d binary variables
A1, . . . , Ad, having a probability mass function p(a) with a in the set of all
binary d-vectors, the distribution is palindromic if p(a) = p(∼ a) for all a,
where ∼ a is the complement of a; for instance, ∼ a = (0, 1, 0) for a = (1, 0, 1).

With α, β, γ, δ denoting probabilities, bivariate and trivariate palindromic
Bernoulli distributions can be written, as in the following tables:

A1 A2: 0 1 sum

0 α β 1/2
1 β α 1/2

sum 1/2 1/2 1

A3: 0 0 1 1
A1 A2: 0 1 0 1 sum

0 α γ δ β 1/2
1 β δ γ α 1/2

sum α+ β γ + δ γ + δ α+ β 1

Continuous distributions may also be palindromic. This concept extends the
discussion of the diverse forms of multivariate symmetry by Serfling (2006)
since it operationalizes his notion of central symmetry in an attractive way. Let
the above binary vector a define for d mean-centred continuous variables their
orthant probabilities. Such a distribution is palindromic if the probabilities of
the d(a)-orthant and the d(∼ a)-orthant coincide for all a. Examples are for
instance mean-centred Gaussian and spherical distributions.

For general discrete variables, the palindromic property differs from complete
symmetry defined by Bhapkar & Darroch (1990). Complete symmetric tables
satisfy the condition p(a) = p(σ(a)), for any a and for any permutation σ of the
indices. Edwards (2000, app. C) median-dichotomized joint Gaussian distribu-
tions and proved that the resulting binary probabilities give a non-hierarchical
log-linear model in which all odd-order interactions vanish, that is all terms
involving an odd number of factors are zero.
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Fig 1. Contour levels of a centrally symmetric bivariate density (left) and a median di-
chotomized sample (right); these data are from the case study of Section 6.

In this paper, we study properties of palindromic Bernoulli distributions in
general. In particular, we prove that the vanishing of all odd-order log-linear
interactions is not only a necessary but also a sufficient condition. We show the
same characterization for models linear-in-probabilities, Streitberg (1990), and
for the multivariate logistic parametrization, Glonek & McCullagh (1995), and
explain why palindromic Bernoulli distributions with Markov structure are in
the regular exponential family.

2. Characterization in terms of interaction parameters

In this section we introduce three types of parameterization and we show that
the palindromic Bernoulli distributions can be characterized by the vanishing
of all odd-order interactions, no matter whether these are log-linear, linear or
multivariate logistic terms.

2.1. Notation

Let A = (A1, . . . , Ad) be a random vector with a multivariate Bernoulli dis-
tribution. Thus, A takes values a = (a1, . . . , ad) in the set I = {0, 1}d with
probabilities

p(a) = Pr(A1 = a1, . . . , Ap = ap),
∑

a∈I p(a) = 1.

For simplicity, we assume p(a) > 0 for all a. The probability distribution of A
is determined by the 2d × 1 vector π containing all the probabilities p(a) and
belonging to the (2d−1)-dimensional simplex. We list vectors a in a lexicographic
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order such that the first index in a runs fastest, then the second changes and
the last index runs slowest. Cells of a corresponding contingency table are in
vector b ∈ I.

Given a subset M ⊆ V of the variables, the marginal distribution of the
variables Av, for v ∈ M has itself a joint Bernoulli distribution, in the same
lexicographic order:

pM (aM ) = Pr(Av = av, for all v ∈ M).

We use three well-studied parameterizations for joint Bernoulli distributions,
that is the log-linear, the linear and the multivariate logistic parameterizations
and show how and why they differ even for palindromic Bernoulli distributions.

In general, a parameterization of A is a smooth one-to-one transformation,
mapping π into a 2p × 1 vector θ = G(π), say, whose entries θb, are called
interaction parameters. To index interactions, it is useful to have a one-to-one
mapping between the cells in b and subsets of V = {1, . . . , p}. For p = 3:

Lexicographic order

cells in b: 000 100 010 110 001 101 011 111
subset of V : ∅ 1 2 12 3 13 23 123

θb: θ∅ θ1 θ2 θ12 θ3 θ13 θ23 θ123

The cardinality of the set b, denoted by |b| =
∑

v bv, gives the number of ones
in vector b. Depending on |b| being odd or even, an interaction parameter θb is
said to be of odd or even order. For instance, the even-order θ13 is a two-factor
interaction of A1 and A3.

2.2. Log-linear parameters

Log-linear parameters are contrasts of log probabilities, that is linear combi-
nations of log p(a), with weights adding to zero. The vector of the log-linear
parameters is

λ = H−1
d log π (2.1)

where
Hd =

(
1 1
1 −1

)
⊗ · · · ⊗

(
1 1
1 −1

)
︸ ︷︷ ︸

d

.

is a 2d × 2d symmetric design matrix whose generic entry is hab = (−1)a·b for
(a, b) ∈ I × I. Its inverse, the contrast matrix, is H−1

d = 2−dHd. The special
form of Hd, chosen here, uses so-called effect coding ; see for instance Wermuth
& Cox (1992). The individual interactions can be written as

λb = 2−d∑
a∈IV

(−1)a·b log p(a), (2.2)

where a·b = a1b1+· · ·+apbp is the inner product of the two binary vectors a and
b; see Haberman (1973, p. 619). In equation (2.2), the symbol b is interpreted
for λb as a subset of V and in the expression (−1)a·b as binary vector.
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The inverse mappings from λ to π may be explicitly computed as

π = exp(Hdλ), p(a) = exp
[∑

b∈I(−1)a·bλb

]
. (2.3)

Bernoulli distributions with positive cell probabilities belong to the so-called
regular exponential family with the vector λ containing the canonical parame-
ters.

2.3. Linear interactions or moment parameters

In contrast to log-linear models, the linear-in-probability models, discussed for
instance by Cox & Wermuth (1992, app. 2), and their interactions are based on
moments. The vector ξ = Hdπ is a moment parameter vector and the mapping
between ξ and λ is one-to-one and differentiable; see Barndorff-Nielsen (1978,
p. 121).

The moment vector ξ is proportional to the expected value of the sufficient
statistics for λ. With y denoting the vector of the frequencies and by the sym-
metry of Hd of equation (2.1), this vector of sufficient statistics is Hdy. The
elements of ξ, called also linear interactions, are

ξb =
∑

a∈I(−1)a·b p(a) (2.4)

and gives as inverse transformations

π = 2−d Hd ξ, p(a) = 2−d∑
b∈I(−1)a·bξb. (2.5)

For instance, with d = 2 the two-factor linear interaction is ξ11 = p00 − p01 −
p10 + p11.

For the transformed random variables Dv = (−1)Av , which take value 1 if
Av = 0 and −1 if Av = 1, the individual interactions are

ξb = E
(∏

v∈V D
bv
v

)
. (2.6)

Because the element (−1)a·b in equation (2.4) may be written with dv = (−1)av

as
(−1)a·b = (−1)a1b1 × · · · × (−1)apbp =

∏
v∈V (dv)

bv ,

equation (2.4) gives the expected value of this product with respect to p(a).
Equation (2.6) implies that each moment parameter, ξb, is a marginal pa-

rameter, defined in the marginal distribution of the random vector (Av)v∈b,
while the log-linear parameter λb is defined in the joint distribution. Therefore
there is, in general, no simple relation between the log-linear parameter λM

b ,
say, in the marginal distribution pM (aM ) and λb, the log-linear parameter in
the joint distribution, but there are exceptions, see Example 4.2 and Section 5.
By contrast, the moment vector ξMb defined in pM (aM ) coincides with ξb.

According to an important result by Barndorff-Nielsen (1978, pp. 121–122)
for regular exponential families, for an arbitrary partition of the parameter
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vectors λ and ξ in two sub-vectors such that λ = (λA, λB) and ξ = (ξA, ξB),
the distribution π is uniquely parameterized by the mixed vector (λA, ξB) or
by (ξA, λB) and there is a diffeomorphism between this mixed parameterization
and the log-linear parameter λ or the moment parameter ξ.

2.4. Multivariate logistic parameters

The multivariate logistic parametrization, introduced by Glonek & McCullagh
(1995), is defined by the highest order log-linear parameters, considered here
under effect coding, in each possible marginal distribution of A. The parameters
are given by the vector η = (ηb)b⊆V where

ηb = λb
b, b ⊆ V. (2.7)

Kauermann (1997) showed that the mapping T : λ �→ η from the log-linear
to the multivariate logistic parameters is a diffeomorphism by proving that T
is a composition of smooth transformations between the canonical, the moment
and the mixed parameters. More details are given below in Subsection 2.5.

Let Λ = R
2p−1 be the parameter space for the log-linear parameters λ. Then

the parameter space E = T (Λ) for η is the image of λ under the transformation
T . Explicit forms for the inverse function T−1 : E → Λ are known for p = 1
or p = 2 and in special cases, such as in Example 4.2. An algorithm provided
by Qaqish & Ivanova (2006) detects simultaneously whether the vector η is
compatible with a proper probability vector π.

2.5. Properties of the palindromic Bernoulli distributions

We now study several properties of palindromic Bernoulli distributions and start
by proving that these distributions are closed under marginalization.

Proposition 2.1. If p(a) is a palindromic Bernoulli distribution then, for any
subset M of the variables, the marginal distribution pM (aM ) is palindromic.

Proof. Partition a = (aN , aM ) and let pM (aM ) =
∑

aN∈{0,1}|N| p(aN , aM ). Then

if the distribution is palindromic, p(aN , aM ) = p(∼ aN ,∼ aM ) and

pM (aM ) =
∑

∼aN∈{0,1}|N| p(∼ aN ,∼ aM ) = pM (∼ aM ).

Next, we characterise the distribution by zero constraints on interactions.

Proposition 2.2. A Bernoulli distribution is palindromic if and only if, with
θb = ξb or θb = λb, all odd-order linear or log-linear interactions vanish, that is
if and only if

θb = 0, for all b ⊆ V with |b| odd.
Proof. 1) (If A is palindromic then all odd-order ξb = 0.) Any linear interaction
can be written as

ξb =
∑

a∈I1
(−1)a·b p(a) +

∑
a∈I1

(−1)(∼a)·b p(∼ a), (2.8)
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where I1 denotes the subset of cells having a one as first element. Thus I1
contains half of the cells. If the distribution is palindromic, p(∼ a) = p(a) and
(−1)(∼a)·b) = (−1)|b|(−1)a·b. Thus,

ξb =
∑

a∈I1
(−1)a·b p(a) + (−1)|b|

∑
a∈I1

(−1)a·bp(a). (2.9)

When |b| is odd then (−1)|b| = −1 and ξb = 0; see also Edwards (2000, App.
C).

2) (If all odd-order ξb = 0, then p(∼ a) = p(a).) If all odd-order interactions
vanish, then

p(a) =
1

2d
∑

b∈Ieven
(−1)a·b ξb, (2.10)

where Ieven is the subset of the cells b such that |b| is even. Thus,

p(∼ a) =
1

2p
∑

b∈Ieven
(−1)(∼a)·b ξb =

1

2p
∑

b∈Ieven
(−1)|b|(−1)a·b ξb = p(a),

(2.11)
because |b| is even. So the distribution is palindromic.

3) The same arguments apply for the log-linear parameterization. The dis-
tribution is palindromic if and only if log p(a) = log p(∼ a) for all a. Therefore,
using equation (2.2), and the previous lines of reasoning, λb = 0 whenever |b| is
odd. Conversely, if all odd-order log-linear parameters λb vanish, then from

log p(a) =
∑

b∈I(−1)a·bλb

we get log p(a) = log p(∼ a) and the distribution is palindromic.

By equation (2.6) and Proposition 2.2, the joint distribution of A is palin-
dromic if and only if all the odd-order moments of D = (−1)A are zero. Also, as
the palindromic property is characterized by linear constraints on the canonical
pararameters λ, we have the following result.

Corollary 2.3. Palindromic Bernoulli distributions are a regular exponential
family.

We show next a similar characterization for the multivariate logistic parame-
trization.

Proposition 2.4. A Bernoulli distribution is palindromic if and only if all
odd-order multivariate logistic parameters vanish, that is if and only if

ηb = 0, for all b ⊆ V with |b| odd.

The analogous result for the larger class of complete hierarchical marginal log-
linear parameterizations, Bergsma & Rudas (2002), will be discussed elsewhere.

The proof uses a transformation T : λ �→ η introduced by Kauermann (1997,
p. 265). The composition of smooth one-to-one transformations TM gives T ,
for each nonempty subset M ⊆ V . The functions TM operate on parameter
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Table 1

The sequence of transformations required to obtain the multivariate logistic parameter η
from the log-linear parameter λ.

Transformation Parameters Intermediate result

T123(λ) ξ1 ξ2 ξ12 ξ3 ξ13 ξ23 η123 θ(1)

T23(θ(1)) ξ1 ξ2 ξ12 ξ3 ξ13 η23 η123 θ(2)

T13(θ(2)) ξ1 ξ2 ξ12 ξ3 η13 η23 η123 θ(3)

T12(θ(3)) ξ1 ξ2 η12 ξ3 η13 η23 η123 θ(4)

T3(θ(4)) ξ1 ξ2 η12 η3 η13 η23 η123 θ(5)

T2(θ(5)) ξ1 η2 η12 η3 η13 η23 η123 θ(6)

T1(θ(6)) η1 η2 η12 η3 η13 η23 η123 η

transformations between the canonical and the moment parametrizations, as
follows. If M = V ,

TM (λP(V )\V , λV ) = (ξP(V )\V , λV ).

If M ⊂ V, |M | 
= 1:

TM (. . . , ξP(V )\V ), ξM , . . . ) = (. . . , ξP(M)\M), ηM , . . . )

and the remaining parameters, which are not listed, are left unchanged. Finally,
if |M | = 1,

TM (ξM , . . . ) = (ηM , . . . ).

For instance, to clarify, to get η = T (λ) for three variables we define

T (λ) = T1 ◦ T2 ◦ T3 ◦ T12 ◦ T13 ◦ T23 ◦ T123(η)

and Table 1 gives the details of the required transformations TM .

Proof. Let odd = {b ∈ {0, 1}|V | : |b| odd} be the subset of all odd-order inter-
actions. Then, below we show that ηodd = 0 if and only if λodd = 0.

From Proposition 2.2 we know that a binary distribution is palindromic if
and only if λodd = 0. If π is palindromic then all the marginal distributions
pb(ab), b ⊆ V are palindromic and thus in each of them, such that |b| is odd,
λb
b = ηb = 0. Thus, ηodd = 0. Let even = P(V ) \ odd. Then

T (λeven, λodd = 0) = (ηeven, ηodd = 0). (2.12)

Conversely, if ηodd = 0, let ηeven be arbitrarily chosen such as (ηeven, ηodd) =
0) ∈ E0 ⊂ E (the parameter space of the ηs). As E0 is connected we can directly
use equation (2.12) and the smoothness of the inverse transformation T−1 to
get

T−1(ηeven, ηodd = 0) = (λeven, λodd = 0),

and thus the distribution π is palindromic.
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Table 2

Illustration of the the different parameters with a 23 table; constant terms omitted.

cells b: 000 100 010 110 001 101 011 111
80π: 15 9 1 15 15 1 9 15

subsets of V : ∅ 1 2 12 3 13 23 123
ξ: − 0 0 1/2 0 −1/5 1/5 0
λ: − 0 0 log(5)/2 0 −1/5 1/5 0
η: − 0 0 log(3)/2 0 − log(3)/2 log(3)/2 0

Table 2 illustrates the different parameters with a 23 table.
Next, we state a result connected with binary probability distributions gen-

erated by a linear triangular system, as studied in Wermuth, Marchetti & Cox
(2009). Their joint probabilities may be defined by the recursive factorization

Pr(A1 = a1, . . . , Ad = ad) = Pr(A1 = a1)×∏d
s=2Pr(As = as | A1 = a1, . . . , As−1 = as−1)

with uniform margins. With βsj denoting linear regression coefficients,

Pr(As = as | A1 = a1, . . . , As−1 = as−1) =
1
2 (1 +

∑d
1=s−1 βsj(−1)as+aj ).

(2.13)
The conditional expected values of As given variables A[s−1] = (A1, . . . , As−1)
are linear regressions with only main effects and no constant term. For these
distributions, all the even-order linear interactions are known functions of the
marginal correlations; see Wermuth, Marchetti & Cox (2009, eq. (2.4)). Here,
we prove in Appendix A the following result and get back to such systems later.

Proposition 2.5. If a binary probability distribution is generated with a linear
triangular system, then it is palindromic.

3. Independences and dependences

Palindromic Bernoulli distributions share some but not all of the properties of
joint Gaussian distributions. We elaborate here on properties of independences,
of undirected dependences, also called associations, and of directed dependences,
also called effects. Conditional independence of variables A,B given variable
O, say, is written as A⊥⊥ B|O, while the complement of it, called conditional
dependence of A,B given O, is written as A � B|O; see Wermuth & Sadeghi
(2012).

Starting with properties of general Bernoulli distributions, several measures
of dependence are equivalent with respect to independences and the sign of a
dependence; see Xie, Ma & Geng (2008, thm. 1). The same happens for Gaus-
sian distributions. In addition, for bivariate palindromic Bernoulli distributions,
many measures of dependence are even in one-to-one correspondence; see e.g.
Wermuth & Marchetti (2014). For the three variable table in Section 1, condi-
tional measures of main interest for (A1, A2) at level 0 of A3 are
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(αδ)/(βγ), the odds-ratio,
{δ/(γ + δ)} − {β/(α+ β)}, the chance difference for success,
{δ/(γ + δ)}/{β/(α+ β)}, the relative chance for success and

ρ12|k=0 = (αδ − βγ){(α+ β)(γ + δ)(α+ γ)(β + δ)}−
1
2 , the conditional

correlation.

Thus, the chance difference for success and the conditional correlation ρ12|k=0

are multiples of the cross-product difference, αδ − βγ, and coincide if and only
if the probabilities for success are identical for A1 and A2. Moreover, the odds-
ratio is equal to the relative chance if and only if A1 ⊥⊥ A2|A3, that is if and
only if αδ = βγ. A dependence is positive if ρ12|k=0 (or the chance difference)
is positive or the odds-ratio (or the relative chance) is > 1.

It can be verified that ρ12|k=0 = ρ12|k=1, and given the linear form of the
conditional expectation E(A1, A2 | A3 = k) = ρ12|k, it follows from Baba Shi-
bata & Sibuya (2004, thm. 1) that the constant conditional correlation ρ12|k
equals the partial correlation

ρ12.3 = (ρ12 − ρ13ρ23)/c where c = {(1− r213)(1− r223)}1/2.

Special one-to-one relations among the mentioned different measure of depen-
dence are given in the following Proposition, proved in Appendix A.

Proposition 3.1. In a trivariate palindromic distribution:

(i) A1 ⊥⊥ A2 | A3 ⇐⇒ λ12 = 0 ⇐⇒ ρ12|3 = 0 ⇐⇒ ρ12.3 = 0,
(ii) A1 � A2 | A2 > 0 ⇐⇒ λ12 > 0 ⇐⇒ ρ12|3 > 0 ⇐⇒ ρ12.3 > 0,
(iii) A1 � A2 | A3 < 0 ⇐⇒ λ12 < 0 ⇐⇒ ρ12|3 < 0 ⇐⇒ ρ12.3 < 0.

However, even if the chance difference is identical at all level combinations of
the remaining variables, the relative chance for success may vary widely. This
shows for the palindromic distribution in Example 3.1, where the relative chance
at level combination (0, 0) of A3, A4 is more than 10 times higher than at (1, 1).
This may become more extreme with equality just in sign.

Example 3.1
[
lev. of A1, A2, A3, A4 : 0000 1000 0100 1100 0010 1010 0110 1110

9200 π : 4095 91 91 47 91 47 47 91

]
The explanation is the presence of a four-factor log-linear interaction in the

24 table.

3.1. Induced dependences and effect reversal

Next, we give three examples of binary palindromic tables, which illustrate what
have been called the weak and the strong versions of the Yule-Simpson paradox.
In Examples 3.2 and 3.3, an independence gets destroyed by changing the con-
ditioning sets and in Example 3.4 the sign of a dependence gets reversed after
marginalizing. The three examples illustrate in addition, that in all palindromic
Bernoulli distribution not only conditional parameters are relevant but also the
marginal parameters and, in particular, also simple correlations, due to the
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one-to-one relation between an odds-ratio and the correlation in their bivariate
distributions. In the following examples the symbol λ′ indicates the log-linear
interactions in effect-coding obtained from the counts. They are identical to
previous λ parameters except for the constant term, where λ∅ = λ′

∅ − logn.

Example 3.2
A⊥⊥ B|O
& A � B

[
levels ijk of A,B,O : 000 100 010 110 001 101 011 111

100 π : 32 8 8 2 2 8 8 32
log-lin. interaction λ′ : 2.08 0 0 0 0 0.69 0.69 0

]

Example 3.3
A � B|O
& A⊥⊥ B

[
levels ijk of A,B,O : 000 100 010 110 001 101 011 111

400 π : 90 60 40 10 10 40 60 90
log-lin. interaction λ′ : 3.65 0 0 −0.25 0 0.45 0.65 0

]

Example 3.4
A � B|O pos.
& A � B neg.

[
levels ijk of A,B,O : 000 100 010 110 001 101 011 111

400 π 100 50 40 10 10 40 50 100
log-lin. interaction λ′ : 3.63 0 0 −0.17 0 0.52 0.63 0

]

To understand the examples the following matrices with marginal and partial
correlations are given for the three examples. The variables are (A,B,O) in
this order. The matrices show correlations, ρst, for (s, t) = (1, 2), (1, 3), (2, 3) in
the lower triangle and partial correlations, ρst.v = −ρst/

√
ρssρtt, in the upper

triangle; v denotes the remaining variable and ρst is a concentration, that is an
element in the inverse covariance matrix.

1 0 0.51
0.36 1 0.51
0.60 0.60 1

1 −0.18 0.35
0 1 0.52

0.30 0.50 1

1 −0.13 0.41
0.10 1 0.50
0.40 0.50 1

Note that in Example 3.1, we have ρ12 = ρ13ρ23 and in Example 3.2, ρ12.3 =
−ρ13.2ρ23.1.

Though these situations may be surprising when one sees them for the first
time, they have simple explanations. The strong version of the Simpson’s para-
dox in Example 3.4 results for pair (A,B), say, when there are substantial
dependences A � B|O and A � O|B, and a strong dependence B � O; see
(Wermuth, 1987, sec. 6).

The weak versions are due to a dependence-inducing property. This property
is shared by joint Gaussian distributions; see e.g. Wermuth & Cox (1998, lem.
2.1) and is known as singleton transitivity when it is used for graphs representing
a large class of graphical Markov models; see Wermuth (2015, eqs. (10), (11)).
The property has been studied for binary variables by Simpson (1951, sec. 11)
and Birch (1963, discussion of eq. (5.1)), in the form

(A⊥⊥ B | O and A⊥⊥ B) implies (A⊥⊥ O or B ⊥⊥ O). (3.1)

Equivalently, equation (3.1) is formulated as dependence-inducing with

(A � O and B � O) implies (A⊥⊥ B|O or A⊥⊥ B) but not both,

and it applies to triples of variables also when a common conditioning set is
added to each statement. For variables A,B,O this shows as in Fig. 2 in graphs
which are Vs:
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Fig 2. Pairs of Vs for binary A,B,O with non-vanishing dependences associated to each
edge present; left: A⊥⊥ B|O and A � B is represented by a source V and by its Markov-
equivalent, concentration-graph V; right: A⊥⊥ B and A � B|O is represented by a sink Vand
by its Markov-equivalent, covariance-graph V.

In our examples for (A,B,O), the log-linear interaction vector λ tells for
Example 3.2 that the concentration graph is a V since λ12 = 0; for Examples
3.3 and 3.4 that it is a complete graph since all two-factor terms are nonzero. On
the other hand, the correlation matrices tell for Example 3.3 that the covariance
graph is a V since ρ12 = 0.

The two weak versions of the Yule-Simpson paradox show that a distribution
may have more independences than those displayed in its graphical representa-
tion. This has also been called its lack of faithfulness to the graph; see Spirtes
Glymour & Scheines (2000).

3.2. Combination of independences

For three binary variables, the combination of independences was first studied
by Birch (1963, sec. 5): (A⊥⊥ B|O and A⊥⊥ O|B) =⇒ A⊥⊥ BO, but (A⊥⊥ B and
A⊥⊥ O) =⇒ A⊥⊥ BO holds only when the three-factor interaction is lacking.

More generally, if independences combine both downwards and upwards in
a distribution as explained below, then the complete independence, a⊥⊥ bc, has
several equivalent decompositions. Let a, b, c be disjoint subsets of {1, 2, . . . , d}
for the random variables X1, X2, . . . Xd, where each of a, b, c contains at least
one element, then

a⊥⊥ bc ⇐⇒ (a⊥⊥ b|c and b⊥⊥ c)

⇐⇒ (a⊥⊥ b and a⊥⊥ c) ⇐⇒ (a⊥⊥ b|c and a⊥⊥ c|b). (3.2)

In all probability distribution, the first equivalence holds but the third and
fourth statement are only implied by a⊥⊥ bc. If the third statement implies a⊥⊥ bc,
the independences combine upwards and if the fourth statement implies a⊥⊥ bc,
they combine downward. Equation (3.2) is a known property of joint Gaussian
distributions; see Lněnička & Matúš (2007, def. 1), and Marchetti & Wermuth
(2009, app. 2), and of traceable regressions; see Wermuth (2012, cor. 1). In the
context of graphical Markov models, the upward and downward combination of
independences are called the composition and the intersection property, respec-
tively. Both are also properties of all currently known probabilistic graphs; see
Sadeghi & Lauritzen (2014).

A general sufficient condition for the downward combination in discrete dis-
tributions are strictly positive probabilities, which are assumed in this paper.
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In contrast to Gaussian distributions, in palindromic Bernoulli distributions in-
dependences need not combine upwards. An extreme form of this is in Example
3.5, where the correlation matrix is the identity matrix, even though the four
variables are dependent.

Example 3.5
[
lev. of A1, A2, A3, A4 : 0000 1000 0100 1100 0010 1010 0110 1110

880 π : 100 10 10 100 10 100 100 10

]
Here, the independences do not combine upwards since, for instance, both
A1A2 ⊥⊥ A3 and A1A2 ⊥⊥ A4 are satisfied, but A1A2 � A3A4 holds instead of
A1A2 ⊥⊥ A3A4. The reason is the reciprocal behaviour of the conditional odds-
ratios which implies that the only nonzero log-linear interaction is the four-factor
term and that the conditional correlations vary with the levels of the third vari-
able and can therefore not coincide with a partial correlation.

Similarly, the equality of conditional correlations may get destroyed with
special covariance structures even when there is essentially no log-linear four-
factor interaction. In Example 3.6, this happens with a funnel graph which
generalises the sink V to more than two uncoupled nodes pointing to a common
response; see Lupparelli, Marchetti & Bergsma (2009) for estimation in such
covariance graph models.

Example 3.6
[
lev. of A1, A2, A3, A4 : 0000 1000 0100 1100 0010 1010 0110 1110

888 π : 87 24 102 9 60 51 87 24

]
The importance of this type of palindromic structure is that it models studies
using a 2k factorial design with equal allocation of the study subjects to all level
combinations and special sampling so as to get equal chances of success and of
failure for a binary response A1.

4. Some special cases

We discuss now palindromic distributions arising when a Gaussian distribution
is median dichotomized. Further, some details concerning the specification and
estimation of undirected graphical models are given.

4.1. Median dichotomization

Let (X1, X2) have a joint distribution function F12 with marginal distributions
functions F1 and F2. Let further U1 = F1(X1) and U2 = F2(X2) be the prob-
ability integral transforms of X1 and X2, so that U1 and U2 are uniform. Also
let X̃j be the medians of Xj , j = 1, 2. Consider now the median dichotomized
variables,

A1 = I[U1 > 1
2 ], A2 = I[U2 > 1

2 ] (4.1)

where I[·] is the indicator function. Then, the joint distribution of A1 and A2

is a bivariate palindromic Bernoulli distribution, as given in Section 1, with
α = P (U1 > 1

2 , U2 > 1
2 ).
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The variables D1 = (−1)A1 and D2 = (−1)A2 , taking values 1,−1, have
mean zero and unit variance, so that ξ12 = E(D1D2), the correlation coefficient
between D1 and D2, becomes the cross-sum difference of the joint probabilities

ξ12 = 2α− 2β = 4α− 1. (4.2)

Thus the correlation between two binary variables, which is a multiple of the
cross-product difference, coincides in a bivariate palindromic Bernoulli distribu-
tion with the cross-sum difference. This was not noted, when ξ12 was proposed
as a measure of dependence between any two random variables X1 and X2 by
Blomqvist (1950):

4α− 1 = Pr
{
(X1 − X̃1)(X2 − X̃2) > 0

}
− Pr

{
(X1 − X̃1)(X2 − X̃2) < 0

}
= 2Pr(U1 ≤ 1

2 , U2 ≤ 1
2 ) + 2Pr(U1 > 1

2 , U2 > 1
2 )− 1.

Remark 4.1. The probability α may be interpreted as the copula C(12 ,
1
2 ) of the

random vector (X1, X2), where the function C(u, v) = Pr(U1 ≤ u, U2 ≤ v)),
0 ≤ u ≤ 1, 0 ≤ v ≤ 1.

With the linear interaction expansion of equation (2.5), the distribution of
D1, D2 is

P (D1 = i,D2 = j) = 1
4 (1 + ξ12ij), i, j = 1,−1. (4.3)

After median-dichotomizing d > 2 continuous variables, the resulting binary
variables Av, v = 1, . . . , d are still marginally uniform, but their joint distribu-
tion is palindromic only for centrally symmetric variables, that is when Xv−X̃v

has the same distribution as −(Xv − X̃v) for each Xv, v = 1, . . . d.
With d = 3, the joint distribution of the median-dichotomized variables is

palindromic with parameters α, β, γ and δ, as given in Section 1. Their marginal
correlations are

ξ12 = 4α+ 4δ − 1, ξ13 = 4α+ 4γ − 1, ξ23 = 4α+ 4β − 1

and the joint probability distribution is, with i, j, k = 1,−1.

P (D1 = i,D2 = j,D3 = k) = 1
8 (1 + ξ12ij + ξ13ik + ξ23jk).

Example 4.2. The following example gives the orthant probabilities of a trivari-
ate, mean-centred Gaussian distribution having equal correlations: −1/2 < ρ <
1. The joint probability vector of the median-dichotomized variables is:

8π = (1 + 3ξ, 1− ξ, 1− ξ, 1− ξ, 1− ξ, 1− ξ, 1− ξ, 1 + 3ξ)

and the explicit transformations between the three types of parameters result
with

ξ =
2

π
arcsin ρ, λ =

1

4
log

1 + 3ξ

1− ξ
, η = atanh ξ. (4.4)

The arcsin transformation is due to Sheppard (1898) and the obtained distribu-
tion is a concentric ring model ; see Wermuth, Marchetti & Zwiernik (2014).
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Proposition 4.3. If X has a d-variate Gaussian distribution with mean zero
and correlation matrix R = [ρst] for s, t = 1, . . . , d and A is the binary random
vector obtained by median dichotomizing X, with linear interaction parameters
ξb, then R can be reconstructed from the correlation matrix RA = [ξst] between
the binary variables A by

ρst = sin{(π/2)ξst}, s, t = 1, . . . , d.

The proof results by inverting the arcsin transformation of the quadrant
probability

ξst = 4Pr(Xs ≤ 0, Xt ≤ 0)− 1 = 2π−1 arcsin ρst.

As a consequence one may reconstruct the original correlations from the palin-
dromic Bernoulli distribution derived via the orthant probabilities.

4.2. Maximum likelihood estimation

For a palindromic Bernoulli distribution, given a random sample of size n, one
has as counts, that is as observed cell frequencies: n(a), a ∈ I. The likelihood is∏

a∈Ip(a)
n(a) =

∏
a∈I0

p(a)n(a)p(∼ a)n(∼a) =
∏

a∈I0
p(a)n(a)+n(∼a) (4.5)

where I0 is the set of half of the cells a such that a1 = 0. The sufficient statistics
are thus the set of the 2d−1 frequencies n(a) + n(∼ a), obtained by summing
each cell and its complement image. The maximum likelihood estimate of a
cell probability (or of a cell count) is the average of the two proportions (or of
counts):

p̂(a) = {n(a) + n(∼ a)}/(2n), n̂(a) = {n(a) + n(∼ a)}/2. (4.6)

This produces a symmetrized vector of counts.
For palindromic Bernoulli distributions, Wilks’ likelihood ratio test statistic

is

w = 2
∑

a∈In(a) log

(
2n(a)

n(a) + n(∼ a)

)
. (4.7)

It has an asymptotic χ2 distribution with 2d−1 degrees of freedom; see Edwards
(2000, app. C). The maximum likelihood estimates of the linear interaction
parameters are

ξ̂b =

{
0 if |b| odd,∑

a∈I(−1)a·b n(a)/n. if |b| even.

Thus, the estimated ξ̂b, for |b| even, matches the observed moment statistic

and for |b| odd is zero. For |b| = 2, the estimated marginal correlation, ξ̂12
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coincides with the correlation coefficient in the fitted table p̂(a), hence is a
cross-sum difference of the counts

ξ̂12 = (n00 + n11)− (n01 + n10). (4.8)

Since the log-linear and the multivariate logistic parameters are in a one-to-
one relation to the linear interactions, the maximum likelihood estimates of
their parameter vectors, result by the same transformations that hold for the
parameters; see Fisher (1922). For the special transformations that apply here,
see equations (2.3), (2.5).

In the following, we speak of maximum likelihood estimates simply as ‘esti-
mates’. Estimates may simplify further, when the distribution satisfies indepen-
dence constraints in such a way that they lead to a graphical Markov model;
see, for an overview of these models, e.g., Darroch, Lauritzen & Speed (1980),
Haberman (1973), Wermuth (2015).

Example 4.4 (A Markov chain). Let A1, A2 and A3 be three binary random
variables where A1 and A3 are conditionally independent given A2, so that the
probabilities satisfy

pijk = p−1
+j+ pij+ p+jk for i, j, k = ±1 .

Its undirected graph, called a concentration graph, 1 2 3, has a missing
edge for nodes 1 and 3, representing A1 and A2, and it is a simplest type of a
graphical Markov model, a Markov chain in 3 variables; see also Example 3.1.

The log-linear parameters are constrained by λ13 = λ123 = 0 for the condi-
tional independence of pair (1, 3). If, in addition, the distribution is palindromic,
the odd-order parameters are zero so that also λ1 = λ2 = λ3 = 0. In general
Bernoulli distributions, the minimal sufficient statistics are the observed counts
corresponding to the cliques of the graph, i.e., the maximal complete subsets of
the nodes, here just the node pairs (1,2) and (2,3). However for a palindromic
Bernoulli distribution, the minimal sufficient statistics are the estimated counts
n̂ij+ and n̂+jk for margins (1, 2) and (2, 3), defined as in equation (4.6) from
the symmetrized table, so that

p̃ijk = n−2 n̂ij+n̂+jk for i, j, k = ±1.

where p̃ijk is the estimate of pijk under the Markov chain model.

This example illustrates how independence constraints, conditionally given
all remaining variables, simply add to the linear constraints on canonical pa-
rameters of a palindromic Bernoulli distribution. Moreover, when the model is
decomposable, since its concentration graph is chordal, see Darroch, Lauritzen
& Speed (1980), it can be generated by a linear triangular system; see end of
Section 2.

As far as the maximum likelihood estimation of palindromic graphical models
is concerned, the hierarchical constraints of conditional independence and the
non-hierarchical constraints of central symmetry are well compatible with one
another. Thus one can fit a given graphical model to the symmetrized counts
or equivalently symmetrize the fitted counts under the model.
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5. Palindromic Ising models

We now introduce palindromic Ising models, especially when combined with
conditional independence constraints. Ising models are joint Bernoulli distribu-
tions without any higher than two-factor log-linear interactions. An Ising model
is palindromic if it has also uniform margins. As mentioned before, this leads
for the (−1, 1) coding to binary variables which have zero means, unit variances
and covariances coinciding with Pearson’s correlations. General Ising models
have, for instance, been studied as lattice systems, Besag (1974), and as binary
quadratic-exponential distributions, Cox & Wermuth (1994b).

The concentration graph of an Ising model in d variables has d nodes and
at most one undirected edge coupling a node pair. The edge (i, j) in this con-
centration graph is missing if the two-factor log-linear interaction of pair (i, j)
vanishes. Each missing edge (i, j) means i⊥⊥ j|{1, . . . , d} \ {i, j}. Simpler inde-
pendence statements such as i⊥⊥ j|C, for C ⊂ {1, . . . , d} \ {i, j} result if every
path between i and j has a node in C; see for instance Darroch, Lauritzen &
Speed (1980). Recall that nodes and edges of the cliques of the graph form its
maximal complete subgraphs, that is those node subsets without any missing
edge which become incomplete when one more node is added.

Proposition 5.1. If the concentration graph of a palindromic Bernoulli distri-
bution has largest clique size three, then it is a palindromic Ising model.

Proof. An unconstrained palindromic Bernoulli distribution has a complete con-
centration graph in nodes {1, . . . , d}. Each removed edge introduces an inde-
pendence and reduces the size of a generating clique. If the largest clique-size
is three, then each of the 23 generating probabilities for the joint palindromic
distribution has no 3-factor log-linear interaction.

Proposition 5.2. Palindromic Ising models are closed under marginalizing for
d ≤ 4.

Proof. In an Ising model, all higher than 2-factor log-linear interactions are zero
and all trivariate and bivariate marginal distributions are Ising models because
palindromic distributions are closed under marginalizing.

For palindromic Ising models of more than four variables, cliques of even order
may get induced by marginalizing and they may lead to corresponding even-
order log-linear interactions. This happens, for instance, if the concentration
graph is a star graph with edges is, for i = 1, . . . , 4, and marginalizing is over
the common source s = 5. Notice however that, in any case, the bivariate and
trivariate marginal probabilities remain palindromic Ising models.

Proposition 5.3. For a decomposable palindromic Ising model with largest
clique size three, the maximum likelihood estimates are obtained in closed form
from the marginal correlations in the symmetrized 2× 2 tables within its 2-node
and 3-node cliques.
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Proof. If a model is decomposable, then an ordering of the cliques Ct, t =
1, . . . , T can be found, such that the joint probability factorizes and estimation
simplifies; see Sundberg (1975). This ordering satisfies the running intersection
property meaning that the sets S1 = C1 ∩ (∪t>1Ct), S2 = C2 ∩ (∪t>2Ct), . . . ,
ST−1 = CT−1 ∩ CT , called separators, are all complete, that is all nodes are
coupled by an edge. Then, the joint probability p(a) factorizes into the product
of the marginal distributions over cliques Ct divided by the product of the the
marginal distributions over the separators St.

As cliques and separators have largest size ≤ 3, and the associated marginal
distributions are palindromic Ising models, they are fitted in closed form directly
from the marginal 2× 2 tables of the symmetrized counts by using for instance
the marginal correlations of such tables, that is the cross-sum differences.

Example 5.1 below gives three non-decomposable palindromic Ising models
having a so-called chordless four-cycle. They have maximal clique size two and
edges for (1, 3), (1, 4), (2, 3), (2, 4). They differ in that all nonzero log-linear
interactions are positive in the first and negative in the second case. In the
third one, there is a chordless cycle in the concentration graph as well as in the
covariance graph, that is not only the two independences of the concentration
graph hold, 1⊥⊥ 2|34 and 3⊥⊥ 4|12, but, in addition, 1⊥⊥ 2 and 3⊥⊥ 4.

Example 5.1

⎡
⎢⎣ lev. of A1, A2, A3, A4 : 0000 1000 0100 1100 0010 1010 0110 1110

336 π : 75 15 15 3 15 15 15 15
336 π : 3 15 15 75 15 15 15 15
336 π : 35 35 7 7 7 35 7 35

⎤
⎥⎦

In these chordless cycles, the missing edges in the concentration graph show also
as zeros in the matrix of partial correlations given all remaining variables that
is in −ρij/

√
ρiiρjj . This points to the possible extension of a result by Loh &

Wainwright (2013) to include chordless cycles for palindromic Ising models.

Proposition 5.4. There is no effect reversal in a palindromic Ising model if
all its nonzero log-linear interactions are positive.

This result is a direct consequence of Proposition 3.4 (ii) in Fallat et al.
(2016) for totally positive palindromic Ising models. We conjecture that the
same holds, when all nonzero log-linear interactions in a palindromic Ising model
are negative, such as in our second case of Example 5.1.

6. A case study

The following case study illustrates some of the obtained results. For a sample
of grades obtained at the University of Florence, we aim at predicting grades
in Physics in terms of given grades in Algebra, Analysis and Geometry. The
passing grades range in each subject from 18 to 31. We use sums of grades over
exams in three successive years and have data for n = 78 students who reached
in each of the subjects a sum of at least 60 points. Instructors expect positive
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correlations for each pair of these grades and no sign reversal for the correlations
at fixed level combinations of the other variables. The data are in Appendix B.

The four summed grades are closely bell-shaped, each of their scatter plots
shows a nearly elliptic form as well as the plots of residual pairs obtained after
linear least squares regression of each grade on the other three. There is also
no evidence for nonlinear relations in the probability plots of Cox & Wermuth
(1994a). Thus, there is substantive and empirical support for assuming a joint
Gaussian distribution.

After replacing for pairs (1,4) and (2,4) the observed correlations by r̂14 =
r13r34, r̂24 = r23r34, in Table 3 we have the estimate of the correlation matrix,
which has zeros for pairs (1,4) and (2,4) in its inverse, in its concentration
matrix; see e.g. Wermuth, Marchetti & Cox (2009), equation (2.8).

Table 3

For four fields and 78 students, observed marginal correlations, rij (below the diagonal),
concentrations on the diagonal and partial correlations, rij.kl (above the diagonal).

Analysis Algebra Geometry Physics
1:=Analysis 2.64 0.27 0.34 0.17
2:=Algebra 0.72 3.03 0.51 0.04
3:=Geometry 0.76 0.80 4.07 0.38
4:=Physics 0.62 0.60 0.71 2.09

Wilks’ likelihood-ratio test statistic on 2 degrees of freedom shows with a
value of w = 2.8 a good fit to the model with generating sets {{1, 2, 3}, {3, 4}}.
This implies conditional independence of the grade in Physics from those in
Analysis and Algebra given the grade in Geometry. This follows directly, for
instance, with the corresponding concentration graph, on the left of Fig. 3. It
has the cliques {1, 2, 3} and {3, 4} for which node 3 separates node 4 from nodes
1,2 since to reach nodes 1,2 from node 4, one has to pass via node 3.

Similarly, after replacing the marginal correlations for pairs (1, 2), (1, 3) and
(2, 3) by their average r̂ = 0.76, we have for the submatrix of (1,2,3) the conven-
tional estimate of an equicorrelation matrix; see Olkin and Pratt (1958, Section
3). This is here well-fitting since w = 3.4 on 2 degrees of freedom. The grade
in Physics, correlates with this sum score as 0.706, even slightly less than with
the grade in Geometry alone, where r34 = 0.709. This is plausible in view of the
well-fitting Markov structure.

Fig 3. Left: the well-fitting concentration graph for the Florence grades; right: a possible
generating graph for grades 1, 2, 3.
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A possible generating graph for the Gaussian equicorrelation matrix is the
star graph displayed on the right of Fig. 3. In it, mathematical ability is rep-
resented by the unobserved inner node, L, and the three grades are the outer
nodes of the graph, shown as responses to L by arrows starting at L and point-
ing to the uncoupled nodes 1,2,3; each arrow has assigned to it the same positive
correlation ρ. After marginalizing over L, each outer pair is correlated like ρ2.
We shall see next how well these results are reflected in the dichotomized data.

After median-dichotomizing the grades with jittering, we generate precisely
uniform binary variables, the marginal distributions of which differ only little
from those obtained by simple median-dichotomizing. One obtains the estimate
of a palindromic contingency table in closed form using equation (4.6) and as
we shall see, the same well-fitting concentration graph as on the left of Fig. 3.

The observed contingency table is given next together with — in the addi-
tional rows and in the following order — the estimates of palindromic counts, the
estimates of the counts after imposing, in addition, conditional independences
for the model of Fig. 3 on the left, and the estimates of the corresponding
log-linear interactions.

Table 4

Cells ijkl, levels of interactions, counts nijkl, estimates of palindromic counts, of the
palindromic concentration graph counts and of the log-linear interactions under the latter

model

0000 1000 0100 1100 0010 1010 0110 1110 0001 1001 0101 1101 0011 1011 0110 1111
∅ 1 2 12 3 13 23 123 4 14 24 124 34 134 234 1234

22 3 3 0 1 0 1 9 6 2 2 1 3 2 1 22
22 2 2.5 1.5 1 1 1.5 7.5 7.5 1.5 1.0 1.0 1.5 2.5 2.0 22.0

21.2 2.5 2.5 1.8 0.7 1.0 1.0 8.3 8.3 1.0 1.0 0.7 1.8 2.5 2.5 21.2
0.90 0 0 0.45 0 0.62 0.62 0 0 0 0 0 0.47 0 0 0

The palindromic concentration graph model fits well, with w = 10.3 on 11
degrees of freedom. This decomposes into w = 9.1 on 8 degrees of freedom for
the saturated palindromic model and w = 1.2 on 3 degrees of freedom for the
additional independence constraints.

Values of the studentized log-linear interactions are 2.5, 3.5, 3.5 and 3.7 for
λ12, λ13, λ23 and λ34, respectively. Thus, the same independences as for the
underlying joint Gaussian distribution fit also the median-dichotomized data
and further simplifications are not compatible given the sizes of the remain-
ing studentized interactions. The partial correlations implied by the well-fitting
palindromic Markov structure has also zeros for pairs (1, 4) and (2,4).

The sum score of the median-dichotomized grades 1,2,3 leads as in the under-
lying Gaussian distribution not to an improved prediction of grades in Physics.
To our starting question, we get two summarizing answers. Given a grade below
the median in Geometry, one predicts that 72% of these students will have a
grade below the median in Physics and, similarly, given a grade above the me-
dian in Geometry, one predicts that 72% will have a grade above the median in
Physics.
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7. Discussion

We say that centrally-symmetric Bernoulli distributions are palindromic since
their probabilities, at the fixed level of one of the variables repeat in reverse order
for the second level of this variable and thereby mimic palindromic sequences
of characters as introduced in linguistics.

A palindromic Bernoulli distribution is characterized by the vanishing of all
odd-order log-linear interactions. Hence, such zero constraints lead to a non-
hierarchical, log-linear model which give centrally symmetric probabilities. Un-
til now, it was only known that in centrally-symmetric Bernoulli distributions,
all odd-order log-linear parameters vanish; see Edwards (2000, app. C). With
these linear constraints, distributions result which are in the regular exponential
family.

Palindromic Bernoulli distributions may also be parameterized with all odd-
order interactions vanishing in a linear-in-probability model and in a multi-
variate-logistic model. The parameters in the three types of model are in one-to-
one relations; see Section 2. These relations are now available in closed form for
the linear and the log-linear formulations, while in general, iterative procedures
are needed when the multivariate logistic formulation is involved. In any case,
equivalent parameterizations assure that the maximum-likelihood estimates of
the parameters are in the same one-to-one relation; see Fisher (1922).

It is remarkable that a palindromic Bernoulli distribution can be expressed
precisely as a log-linear and as a linear model, since log-linear parameters use
the notion of multiplicative interactions and the linear-in-probability models are
based instead on the notion of additive interactions as discussed, for instance
by Darroch & Speed (1983).

The log-linear parameterization shows that positive palindromic Bernoulli
distributions are in the regular exponential family with and without additional
independence constraints in its concentration graph. A palindromic Ising model
may have only log-linear two-factor interactions as non-vanishing canonical pa-
rameters, while in their linear-model formulations higher-order interactions may
be present. The palindromic property is preserved under marginalizing over any
subset of the variables; see Proposition 2.1, even though one may no longer have
an Ising model after marginalizing over some of the variables.

Another property is important for applications. In palindromic Bernoulli dis-
tributions, many other measures of dependence of a variable pair are one-to-one
functions of the odds-ratio; in particular the relative risk, used mainly in epi-
demiology, and the risk difference, employed almost exclusively in the literature
on causal modelling. Only if a measure of dependence is a function of the odds-
ratio, it varies independently of its margins; see Edwards (1963) and only then,
measures of bivariate dependence become directly comparable under different
sampling schemes, for instance when the overall count is fixed as in a cross-
sectional study or one of the margins is fixed as in a prospective study or the
other margin is fixed as in a retrospective study.
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We expect that with a direct extension of the palindromic property to discrete
variables of more levels, similar attractive properties can be obtained as for the
palindromic Bernoulli distribution.

Appendix A: Proofs

Proof of Proposition 2.5. The proof is by induction. We know that A1 has a
palindromic distribution. For s = 2, . . . , d we assume that the random vector
A[s−1] = (A1, . . . , As−1) has a palindromic distribution, and then we show that
the distribution of A[s] = (A1, . . . , As) is palindromic. Let Ieven denote the
subset of {0, 1}s with even order and split it in two parts

I0 = {a ∈ Ieven : as = 0}, I1 = {a ∈ Ieven : as = 1}.

We then start from the identity

Pr(A[s] = a[s]) = Pr(A[s−1] = a[s−1])Pr(As = as | A[s−1] = a[s−1])

and after substituting equations (2.5) and (2.13) and taking into account that
by assumption A[s−1] has a palindromic distribution and thus ξb = 0 for all
b ∈ I1, we have

Pr(A[s] = a) = 2−s∑
b∈I0

ξb(−1)a·b · {1 +
∑s−1

j=1βsj(−1)a·es,j}

where es,j is a binary vector of dimension s with ones exactly in positions s and
j. After multiplying and collecting terms we get with

ξb =
∑

v∈I0 : v�{s,j}=b ξvβs,j , for b ∈ I1, (A.1)

Pr(A[s] = a) = 2−s
(∑

b∈I0
ξb(−1)a·b +

∑
b∈I1

ξb(−1)a·b
)
,

where � denotes the symmetric difference of sets. Therefore A[s] has a linear
parameterization with exclusively even order interactions and hence is palin-
dromic. Thus, by induction, the distribution of A[d] = A is palindromic. From
the recursive equation (A.1), each linear interaction is a linear function of the
regression parameters βs,j .

Proof of Prop. 3.1. It is known that in a strictly positive 23 table A1 ⊥⊥ A2 |
A3 ⇐⇒ (λ12 = 0 and λ123 = 0). As in a trivariate palindromic table the
three-factor interaction is always zero the single condition λ12 = 0 is necessary
and sufficient. This is in turn equivalent to a single condition on the partial
correlation ρ12.3 = 0.

With no constraints other than those of palindromic distributions, there is a
smooth one-to-one transformation (λ12, λ13, λ23) ←→ (ρ12, ρ13, ρ23) where the
marginal correlations are the free parameters of vector ξ.

In addition, there is a one-to-one smooth transformation between the simple
correlations and the partial correlations (ρ12, ρ13, ρ23) ←→ (ρ12.3, ρ13.2, ρ23.1),



Palindromic Bernoulli distributions 2457

since the conditional and partial correlations coincide. Also, the function g : R →
[−1, 1] : λ12 �→ r12.3 is strictly monotone increasing for any values of λ13 and
λ23 and has a single zero in the origin, so that the partial correlation r12.3 has
the same sign as the log odds-ratio λ12.

In more detail, the three variable table of Section 1, supplemented by both
margins for the two conditional tables of A1, A2 can be written in terms of
simple correlations as

A1 A2A3 : 00 01 sum 10 11 sum

0 α γ 1
4
(1 + ρ13) δ β 1

4
(1− ρ13)

1 β δ 1
4
(1− ρ13) γ α 1

4
(1 + ρ13)

sum 1
4
(1 + ρ23)

1
4
(1− ρ23)

1
2

1
4
(1− ρ23)

1
4
(1 + ρ23)

1
2

The probabilities in the two 22 tables, expressed with margins and ρ12|3 give
e.g.

8α = (ρ12 − ρ13ρ23) + {(1 + ρ13)(1 + ρ23)},
8δ = (ρ12 − ρ13ρ23) + {(1− ρ13)(1− ρ23)},

since the product of all four margins is in both tables (1−ρ213)(1−ρ223)/16
2 and

(ρ12 − ρ13ρ23)/16 = { 1
2 − (β + γ + δ)}δ − βγ = αδ − βγ .

Thus, ρ12|3 = ρ12.3 and αδ − βγ = 0 if and only if λ12 = 0. The above 23 table
shows also directly that under the independence constraint 1⊥⊥ 2|3, we have

α̃ = {1 + ρ13)(1 + ρ23)}/8, δ̃ = {(1− ρ13)(1− ρ23)}/8
β̃ = {1− ρ13)(1 + ρ23)}/8, γ̃ = {1 + ρ13)(1− ρ23)}/8

so that e.g. α̃δ̃ and the probability α̃+ δ̃, induced in the marginal table of A1, A2

for (1, 1), are

α̃δ̃ = (1− ρ213)(1− ρ223)/8
2, α̃+ δ̃ = (1 + ρ13ρ23)/4.

Appendix B: The data for the case study

The columns of Table 5 contain sums of grades of three exams in four subjects
for n = 78 mathematics students at the University of Florence.
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Table 5

Summed grades over 3 exams in the order: Analysis, Algebra, Geometry and Physics.

78 78 74 80 88 77 79 85 82 82 74 89 85 77 93 85 79 85 74 69 78 88 67 92 85 69
76 75 71 77 81 79 77 90 79 72 62 90 75 83 92 88 80 88 68 80 75 88 70 89 88 75
82 81 74 71 85 74 81 83 73 73 71 86 84 84 93 82 78 90 70 79 71 89 68 91 91 62
85 77 80 80 79 80 75 82 71 71 72 87 82 69 90 75 75 82 70 78 72 77 69 93 87 68

79 92 76 88 73 91 76 71 65 74 80 71 78 77 70 83 89 72 82 77 91 92 75 90 90 93
78 92 78 87 68 85 78 79 68 76 89 74 81 74 68 89 81 76 81 74 92 92 69 79 82 93
71 92 84 88 64 83 82 69 71 75 80 71 85 69 67 88 83 75 83 82 93 92 72 90 89 93
79 90 86 78 69 75 82 71 63 72 78 74 81 67 66 72 82 75 79 76 92 87 75 79 78 89

92 87 81 82 76 86 92 87 79 91 88 90 90 92 89 83 77 69 89 92 86 76 68 79 76 88
93 83 69 70 75 71 80 70 70 77 88 92 85 92 84 83 82 74 83 92 74 71 62 68 66 89
93 87 74 67 80 69 87 77 69 92 83 91 82 91 86 83 80 83 83 90 78 71 65 74 83 91
89 77 81 79 84 72 80 81 70 79 77 72 88 81 86 81 78 76 77 79 73 69 69 72 80 85

References

Besag, J. (1974). Spatial interaction and the statistical analysis of lattice
systems. J. R. Stat. Soc. Ser. B. Stat. Methodol., 36, 192–236. MR0373208

Baba, K., Shibata, R. & Sibuya M. (2004). Partial correlation and condi-
tional correlation as measures of conditional independence, Aust. N. Z. J.
Stat., 46(4), 657–664. MR2115961

Barndorff-Nielsen, O. E. (1978). Information and Exponential Families in
Statistical Theory. New York: Wiley and Sons. MR3221776

Bergsma, W. & Rudas, T.(2002). Marginal models for categorical data. Ann.
Statist., 30(1). 140–159. MR1892659

Bhapkar, V. P. & Darroch, J. N. (1990). Marginal symmetry and quasi
symmetry of general order. J. Multivariate Anal., 34, 173–184.

Birch, M. W. (1963). Maximum likelihood in three-way contingency tables.
J. R. Stat. Soc. Ser. B. Stat. Methodol., 25, 220–233. MR0168065

Blomqvist, N. (1950). On a measure of dependence between two random
variables. Ann. Math. Statist. 21, 593–600. MR0039190

Cox, D. R. & Wermuth, N. (1992). Response models for mixed binary and
quantitative variables. Biometrika 79, 441–461. MR1187603

Cox, D. R. & Wermuth, N. (1994). Tests of linearity, multivariate normality
and the adequacy of linear scores. J. R. Stat. Soc. Ser. C. Appl. Stat., 43,
347–355.

Cox, D. R. & Wermuth, N. (1994). A note on the quadratic exponential
binary distribution. Biometrika, 81, 403–408. MR1294901

Darroch, J. N., Lauritzen S. L. & Speed, T. P (1980). Markov fields
and log-linear interaction models for contingency tables. Ann. Statist., 8(3),
522-539. MR0568718

Darroch, J. N., & Speed, T. P (1983). Additive and multiplicative models
and interactions. Ann. Statist. (11), 724–738. MR0707924

Edwards, A. W. F. (1963). The measure of association in a 2 × 2 table. J.
Roy. Statist. Soc. Ser. A, 126, 109–114.

http://www.ams.org/mathscinet-getitem?mr=0373208
http://www.ams.org/mathscinet-getitem?mr=2115961
http://www.ams.org/mathscinet-getitem?mr=3221776
http://www.ams.org/mathscinet-getitem?mr=1892659
http://www.ams.org/mathscinet-getitem?mr=0168065
http://www.ams.org/mathscinet-getitem?mr=0039190
http://www.ams.org/mathscinet-getitem?mr=1187603
http://www.ams.org/mathscinet-getitem?mr=1294901
http://www.ams.org/mathscinet-getitem?mr=0568718
http://www.ams.org/mathscinet-getitem?mr=0707924


Palindromic Bernoulli distributions 2459

Edwards, D. (2000). Introduction to graphical modelling. New York: Springer.
MR1880319

Fallat, S., Lauritzen, S., Sadeghi K., Uhler, C., Wermuth, N. &

Zwiernik P. (2016). Total positivity in Markov structures. To appear in
Ann. Statist., also on arXiv:1510.01290.

Fisher, R. A. (1922). On the mathematical foundations of theoretical statis-
tics. Philos. Trans. Roy. Soc. London Ser. A, 222, 309–368.

Glonek, G. F. V. & McCullagh, P. (1995). Multivariate Logistic Models.
J. R. Stat. Soc. Ser. B. Stat. Methodol., 57, 533–546.

Haberman, S. J. (1973). Log-linear models for frequency data: sufficient statis-
tics and likelihood equations. Ann. Statist., 1, 617–632. MR0690292
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