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Explicit, identical maximum likelihood estimates
for some cyclic Gaussian and cyclic Ising models
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Cyclic models are a subclass of graphical Markov models with simple, undirected probability graphs that are chord-
less cycles. In general, all currently known distributions require iterative procedures to obtain maximum likelihood
estimates in such cyclic models. For exponential families, the relevant conditional independence constraint for a
variable pair is given all remaining variables, and it is captured by vanishing canonical parameters involving this
pair. For Gaussian models, the canonical parameter is a concentration, that is, an off-diagonal element in the inverse
covariance matrix, while for Ising models, it is a conditional log-linear, two-factor interaction. We give conditions
under which the two different likelihood functions, that is, one for continuous and one for binary variables, per-
mit nevertheless explicit maximum likelihood estimates, and we show that their estimated correlation matrices are
identical, provided the relevant starting correlation matrices coincide. Copyright © 2017 John Wiley & Sons, Ltd.

Keywords: canonical parameter; chain graph; graphical Markov model; palindromic Ising model; quadratic
exponential distribution

1 Introduction
Graphical Markov models are a large class of multivariate models that permit to model undirected and directed
dependences of different types (Studený, 2005; Scutari & Strimmer, 2011; Sadeghi & Lauritzen, 2014; Wermuth,
2015) and have applications in many fields in the natural, social and medical sciences. These models started to be
developed after the analogies between undirected association models for continuous variables with joint Gaussian
distributions and for discrete distributions had been recognized (Wermuth, 1976; Darroch et al., 1980), based on
models that had been studied without graphs by Dempster (1972) and by Bishop et al. (1975), respectively.

In probabilistic graphs, the nodes represent random variables, edges present permit conditional dependences and
missing edges capture conditional independence constraints in many different types of graphs; see, for instance,
Wermuth & Sadeghi (2012). The conditioning sets depend on the types of graph and edges present; for variable pairs
in undirected graphs drawn with full-line edges as in Figure 1, these are all remaining variables.

Distributions that satisfy all independences defining a given graph are said to be generated over this graph. These
may result in quite different models when the involved variables are of continuous type as for Gaussian distributions
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Figure 1. Left, a labelled 4-cycle; right a labelled 5-cycle.

or of binary type as for Ising models. Both of these belong however to the quadratic exponential family because their
canonical parameters involve just two variables. For a Gaussian model, the canonical parameters are concentrations,
the elements of the inverse covariance matrix, while for an Ising model, these are two-factor, log-linear interactions.

Many missing edges typically simplify graphs and models and their interpretation, but for chordless cycles, this
happens only if the missing edges concern the same node, as described next with an example in Figure 1.

Chordless cycles are finite, simple undirected graphs in four or more nodes, which have as many nodes as edges and
by starting at any node of a d-cycle, and walking along its d edges, one returns to the starting node. In the 5-cycle of
Figure 1, the factorization of any joint density generated over the graph, the missing edges for instance for pairs .1, 3/
and .2, 4/ do not lead to a simpler factorization of this density. This makes cyclic models more complex than models
without chordless cycles even though each node is touched by just two edges, that is, has only two neighbours.

By marginalizing over any node in a chordless d-cycle, one removes this node and replaces the two edges touching
this node by a new edge that couples the previously uncoupled neighbours (Wermuth, 2011; Sadeghi, 2016). In this
way, a chordless (d�1)-cycle results for d > 4. In the 5-cycle of Figure 1, the independence of pairs .1, 3/ .1, 4/ given
three remaining variables simplifies to 1 independent of 3 and 4 given 2, 5 and hence to a missing edge for .1, 3/ also
in the two marginal 4-cycles of nodes 1, 2, 3, 4 or 1, 2, 3, 5. The same holds in more complex graphical Markov models
which satisfy the so-called intersection property; see, for example, Sadeghi & Wermuth (2016). This happens, in
particular, whenever the distribution is strictly positive, while necessary and sufficient conditions are currently known
only for joint distributions of either Gaussian or discrete variables (San Martín et al., 2005).

Chordal graphs have no chordless cycle as a subgraph, and each single-node elimination scheme provides a full
ordering of all nodes (Tarjan & Yannakakis, 1984). Therefore, joint distributions generated over chordal graphs can
be factorized into recursive sequences of single-response, conditional distributions, also called regressions, and the
models are said to be decomposable. Until today, decomposable models are used also to study the more complex
models generated over non-chordal graphs; see, for instance, Dahl et al. (2008), Thomas & Green (2009), and
Studený & Cussens (2016).

Even for joint Gaussian distributions, maximum likelihood estimation for models generated over non-chordal graphs
require in general iterative procedures (Speed & Kiiveri, 1986; Sadeghi & Marchetti, 2012; Lauritzen et al., 2017).
Only under constraints that are additional to independences, such as equal edge strength, do explicit estimates become
available for cyclic Gaussian models (Højsgaard & Lauritzen, 2007).

To our knowledge, no similar results had been obtained so far for Ising models even though there has been recent inten-
sive work on Ising models in statistics (Foygel Barber & Drton, 2015; Martín del Campo et al., 2017; Bhattacharya &
Mukherjee, 2018) and in machine learning (Murphy, 2012; Bresler, 2015; Johnson et al., 2016).

On the history of Ising models in physics, a sequence of three papers has been published by the same author: the
second is titled “History of the Lenz-Ising model 1950–1965: from irrelevance to relevance” (Niss, 2009). Something
similar may possibly now be stated regarding its relevance in statistics and machine learning given the earlier quoted
recent work and more forthcoming insights.
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Of special interest are two versions of the Ising model, which have recently been studied as the general and palindromic
Ising models, both with or without conditional independence constraints; see Marchetti & Wermuth (2016). The term
palindromic means in linguistics that a sequence of characters or words may be read forward and backward to give
the same meaning, as, for instance, in the sentence ’step on no pets’. A joint binary distribution is palindromic if its list
of probabilities given in any lexicographic order remains unchanged after fully reversing its listed elements. For Ising
models, this type of central symmetry results, surprisingly, when the levels of each variable occur with probability 1=2.
With effect coding, that is with all levels coded as ˙1, this leads to a vector variable of mean zero and a covariance
matrix, which coincides with the correlation matrix.

We introduce in Section 2 some more definitions and concepts, derive the two different likelihood functions in general
and their solutions for 4-cycles in Section 3, give some extensions in Section 4 and end with a short discussion.

2 Some more definitions and concepts
The arguably best studied class of graphical Markov models, also known as Markov random fields, is specified by an
undirected graph G D .V, E/, where V D ¹1, 2, : : : , dº, is the finite vertex or node set and E � ¹¹s, tº : s ¤ t 2 Vº
denotes the edges present in the graph. The node set indexes the components of a random vector variable X D
.Xs/, s 2 V, and a pair .s, t/ 2 E permits the dependence of Xs and Xt given X n ¹Xs, Xtº. When an edge ¹s, tº is missing
in G, then the variables Xs and Xt are independent given the remaining variables. The graph G may be represented by
a symmetric binary matrix, say A, called its adjacency matrix, which has elements one for edges present, ¹s, tº 2 E,
and zero otherwise.

Two seemingly quite different models are generated over such an undirected graph G. For a continuous random vector
X of dimension d, with realization x, the density function f.x/ for a mean-centred joint Gaussian distribution is

f.x/ D .2�/�d=2j†j�1=2 exp.�1
2
xT†�1x/ , (1)

with † the covariance matrix of elements �st, the inverse of a matrix M denoted by M�1 and its determinant by jMj.

In this paper, we take the variables to have also unit variances so that † coincides with the correlation matrix. In both
situations, it holds for the elements of †�1, denoted by �st and called concentrations, that ¹s, tº … E ” �st D 0.
Together with �ss > 0 and �st ¤ 0 for ¹s, tº 2 E of the covariance matrix, these constraints define a unique matrix
(Dempster, 1972; Lauritzen et al., 2017). As a consequence for any Gaussian Markov random field, not only the
covariances, corresponding to edges present in the graph, but also the variances are matched in a maximum likelihood
estimate (MLE) to the observed ones. This implies that working with a correlation matrix instead of a covariance
matrix leaves the estimated conditional independences and the estimated correlation matrix unchanged.

For palindromic Ising models, X taking values x D .i1, : : : , id/ with is 2 ¹�1, 1º, the joint probability function p.x/ is

p.x/ D Z.�/�1 exp
�P

s<t �stisit
�

, (2)

where �st are the two-factor, log-linear interactions for which ¹s, tº … E ” �st D 0 and � denotes the vector of �st.
The normalizing constant Z.�/ assures that the probabilities add to one. General Ising models may have additional
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one-factor, log-linear �s terms in the joint probabilities and hence non-zero means. For palindromic Ising models, X
has mean zero, unit variance and

p.i1, : : : , id/ D p.�i1, : : : ,�id/, for all .i1, : : : , id/ 2 ¹�1,C1ºd (3)

so that the list of the joint probabilities in any lexicographical order stays unchanged when it is reversed.

An important characterizing feature of a palindromic binary distributions is that all odd-order log-linear – as well
as linear interactions – vanish, that is, they are constrained to be zero (Marchetti & Wermuth, 2016, proposition
2.2), while in palindromic Ising models, all even-order, higher than two-factor, log-linear interactions vanish as well.
Arguably, models of equal edge strength, define one of the simplest, non-trivial subclasses.

Palindromic Ising models have been used extensively in statistical physics, where they are known as models of
ferromagnetism without external magnetic field, also called zero-mean Ising models; see, for instance, Globerson &
Jaakkola (2007) and Johnson et al. (2016). The equal edge-strength models are also known as Curie-Weiss models.
Cyclic models of this type are discussed here in Section 3.2. Zero-mean Ising models are also useful to summarize
well-fitting Gaussian Markov random fields in terms of median-dichotomized variables, such as for the averaged grades
reported in Marchetti & Wermuth (2016). These data happen to display total positivity of order two, and for such
data, no effect-reversal can ever arise after median dichotomizing; see Fallat et al. (2017), proposition 3.2(iii).

Because in cycles – triangles or chordless cycles – every node has precisely two neighbours, not only the conditional
odds ratios are constant at all levels of the remaining variables in the palindromic Ising model, but also the condi-
tional two-factor expectations are linear and constant at all levels of the remaining variables. This assures that these
conditional correlations coincide with a single partial correlation coefficient; see Baba et al. (2004), theorem 1.

3 The two likelihood functions in cyclic models
3.1 The Gaussian cyclic model of equal edge strength
For the Gaussian density of equation (1), where we assumed that X has components with mean zero and unit variance,
the covariance matrix, †, coincides with the correlation matrix. For a random sample x1, : : : , xN of size N and no
independence constraints, the log-likelihood function becomes, disregarding the common factor N,

`.†/ D 1
2

log j†�1j � 1
2
tr.†�1R/ , (4)

where R D
P

x xxT=N and tr.M/ denotes the trace of a symmetric matrix M. The elements rst of R are simple observed
correlation coefficients if the sample values are also standardized to have mean zero and unit variance.

For a chordless cycle, maximization is for symmetric positive definite matrices † such that the inverse K D †�1 has
elements �ss > 0 and �st D 0 whenever edge .s, t/ is missing in the graph. Partial correlations given all remaining
variables are then zero as well because they can be computed from the elements of K as

�st D ��st.�ss�tt/
� 12 . (5)

For a proof of equation (5), see, for instance, Wermuth et al. (2006), section 2.3.

For all Gaussian cyclic models in d > 3 variables having equal edge-strength dependences, the partial correlation
matrix ‚ has equal, non-zero elements, � , so that the second term in the likelihood equation (4) reduces to
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tr.†�1R/ D d .1 � 2� Nr/ �, (6)

where Nr, the sufficient statistic, is the average of the observed correlations corresponding to the edges present in the
graph G and � is one of the identical elements along the diagonal of the concentration matrix †�1.

Specifically, for the chordless 4-cycle in Figure 1 with equal edge strength, the model implies

‚ D

0
BB@
1 � 0 �

. 1 � 0

. . 1 �

. . . 1

1
CCA , † D

0
BB@
1 � �� �

. 1 � ��

. . 1 �

. . . 1

1
CCA , � D

�

1 � 2�2
, �� D

2�2

1 � 2�2
, �1

2
< � < 1

2
. (7)

In symbolic form, the correlations in † result generally best from the partial correlations in ‚ by computing M D
.2I �‚/�1j‚j, where I denotes the identity matrix, and standardizing the elements of M to give �st D mst=

p
mssmtt.

By using † of equation (7), one obtains for the two terms in the log-likelihood function of equation (4):

j†�1j D

�
1 � 2�2

�4
.1 � 4�2/

3
, tr.†�1R/ D

4.1 � 2�2/.1 � 2Nr�/
1 � 4�2

,

where Nr is the average of the observed correlations at edges present in the labelled 4-cycle of Figure 1:

Nr D .r13 C r14 C r23 C r24/=4. (8)

The log-likelihood function of equation (4) is then

`.�/ D
4
�
2�2 � 1

�
.2Nr� � 1/

4�2 � 1
� 3 log

�
1 � 4�2

�
C 4 log

�
1 � 2�2

�
.

The likelihood equations for O� result by setting the derivative of `.�/ with respect to � to zero:
�
8�4 � 2�2 C 1

� �
2Nr�2 C � � Nr

�
.2�2 � 1/ .4�2 � 1/

2
D 0.

For �1
2
< � < 1

2
, the equation 8�4 � 2�2 C 1 D 0 has no real solution, so that the MLE O� solves 2Nr�2 C � � Nr D 0.

Because the average correlation for the edges present must satisfy �1 < Nr < 1, there is a single solution:

O� D

p
8 Nr2 C 1 � 1

4Nr
. (9)

3.2 The palindromic cyclic Ising model of equal edge strength
For a palindromic Ising model, we assume that the sample data are arranged in a table of counts n.x/, where x denotes
a cell and N D

P
x n.x/. Let the parameters �st be arranged as elements in a symmetric matrix ƒ with zeros along the

diagonal. Then, under multinomial sampling and no further constraints, the log-likelihood function for equation (2) is

`.ƒ/ D 1
2
N�1

P
x n.x/xTƒx � log¹

P
x exp.1

2
xTƒx/º, (10)

where the second term on the right-hand side is log Z.ƒ/. For any cyclic model in d variables, maximization is for real
symmetric matrices ƒ such that �st D 0 for edges .s, t/ missing in the graph.
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With the additional assumption of equal edge strength, �rs D � for ¹r, sº 2 E, so that ƒ D �A, where A is the
adjacency matrix of the cycle, the log-likelihood function reduces to

`.�/ D 1
2
�tr¹ABº � log Z.�/ , (11)

where B D N�1
P

x n.x/xxT. Equation (11) uses
P

x n.x/xTƒx D �
P

x n.x/tr.xTAx/ D �tr¹A
P

x n.x/xxTº.

The matrix B contains uncorrected sums of squares and cross products, but it may also be interpreted as an empirical
correlation matrix R for data corresponding to the symmetrized counts, Nn.x/ D ¹n.x/C n.�x/º=2. One obtains

R D N�1
P

x Nn.x/xx
T D N�1 1

2

P
x¹n.x/C n.�x/ºxxT D B.

Thus, the log-likelihood function in equation (11) can be written as

`.�/ D d Nr � � log Z.�/ , (12)

where Nr is the average of elements of R at edges present in the cycle, like in equation (8) for the Gaussian case.

In the special case of d D 4, the term from the normalizing constant, log Z.�/, simplifies as well, giving

`.�/ D dNr� � log¹2 exp.�4 �/C 2 exp.4 �/C 12º.

We use next a simple relation between partial correlations and log-linear interactions, derived in Section 4, � D
1
2

tanh.2�/, to reparametrize this log-likelihood function as

`.�/ D 2Nr tanh�1.2�/ � log
�
4.4 � 8�2/

1 � 4�2

�
.

After setting the derivative of `.�/ with respect to � to zero, the likelihood equations for O� are

�
4
�
2Nr�2 C � � Nr

�
8�4 � 6�2 C 1

D 0 .

The single solution is identical to the one in equation (9). Thus, provided that the sample correlation matrices R
coincide for the Gaussian variables and for the symmetrized binary variables, there is the same explicit MLE of ‚ for
the Gaussian and for the palindromic Ising model generated over 4-cycles of equal edge strength.

4 Some more explanations and some extensions
In palindromic Ising models generated over d-cycles, the conditional correlations are constant at all level combinations
of the remaining variables so that each of them coincides with a corresponding single partial correlation coefficient
(Wermuth & Marchetti, 2017). For the 4-cycle of equal edge strength in Figure 1, the partial and marginal correlations
are identical to those in equation (7) for the corresponding Gaussian model. In addition, the joint probabilities and
the dependence structure may be expressed in terms of the single conditional odds ratio, a > 1, as in the next table,
where the lower level is written as zero to save space and c.a/ D 2.a2 C 6aC 1/ is the sum of the table entries.

�
x : 0000 1000 0100 1100 0010 1010 0110 1110 0001 1001 0101 1101 0011 1011 0111 1111

c.a/ p.x/ : a2 a a a a 1 a a a a 1 a a a a a2

	
.
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Thus, the partial correlations are zero for pairs .1, 3/ and .2, 4/, and the relations between � and a > 1 are

� D 1
2
.a � 1/=.aC 1/, a D .1C 2�/=.1 � 2�/.

With effect coding, ˙1, of all variable levels, � D log.a/=4 and a D e4� so that one obtains directly:

� D 1
2
.e4� � 1/=.e4� C 1/ D 1

2
tanh.2�/, � D 1

2
tanh�1.2�/. (13)

These relations hold in all equal edge-strength d-cycles, and extensions will be explored in a forthcoming paper.

There is an extremely attractive property of maximum-likelihood estimation: the MLE O� relates in the same ways to
the MLEs Oa and O� that hold for the corresponding parameters (Fisher, 1922). This implies here in particular that also
the MLE of the joint probability vector is available in closed form.

With all odds ratios a in 0 < a < 1, the sign of all non-zero partial correlation � changes, as well as the order of terms
in a2, a and 1, but the independence structure remains unchanged. The contingency table, having as smallest entry a
one, is then as shown in the second row of the next table, where also c.a/ is unchanged.

The structure in the third row of the next table has d.a/ D 8.1C a/ and ‚ D †; the edge strength is equal to � for
pairs .1, 2/, .2, 3/, .3, 4/, while for pair .1, 4/, it is �� .

2
4 x : 0000 1000 0100 1100 0010 1010 0110 1110 0001 1001 0101 1101 0011 1011 0111 1111

c.a/ p.x/ : 1 a a a a a2 a a a a a2 a a a a 1

d.a/ p.x/ : a a 1 a 1 1 1 a a 1 1 1 a 1 a a

3
5 .

Thus, there is the same 4-cycle in both the partial and marginal correlations, and the MLE of � turns into

O� D O� D Qr with Qr D .r12 C r23 C r34 � r14/=4 for � 1=2 < Qr < 1=2 ,

where Qr is a signed average of observed correlations at edges present in the cycle for the symmetrized counts in the
palindromic Ising model or, as can also be shown, for the observed correlations in a corresponding Gaussian model.

Going back to the equal edge-strength model for the 5-cycle, the MLE O� is also identical for the Gaussian and for the
palindromic Ising model: it solves a different quadratic equation, which uses again an average of correlations for the
edges present, Nr, which is the solution of

.Nr � 1/�2 C .NrC 1/� � Nr D 0 for � 3=5 < Nr < 1 and � 1=2 < � < 1=2. (14)

For every positive definite observed 5 � 5 correlation matrix, Nr > �1=4 so that a single solution exists. For the equal
edge-strength 6-cycle, a cubic equation is to be solved for the MLE O� . We have not explored the details of the solutions
for d > 6.

5 Discussion
Cyclic models are probability distributions generated over graphs in the simplest subclass of non-chordal graphs, that
is over chordless cycles. In general, iterative procedures are required for obtaining an MLE in all chordless cycles.
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Mean-zero Ising models, also known as palindromic Ising models, are joint distributions of symmetric binary variables
within the quadratic exponential family. Recent results prove, surprisingly, that pairwise conditional independences
given all remaining variables show as zeros in their overall partial correlation matrices just as for joint Gaussian
distributions. This holds not only for simple models like Markov chains but also for cyclic models.

For chordless 4-cycles of the binary variables and dependences of equal strength at edges present, we derived a
closed-form MLE for the correlation matrix of symmetrized counts. We could show that an identical MLE arises when
starting with an observed correlation matrix of the same form for a standardized joint Gaussian distribution, that is, in
spite of the quite different likelihood functions. There is an even simpler, identical form MLE when there is a chordless
4-cycle in both partial and marginal correlations because the dependence at one edge agrees only in absolute value
with the others: the MLEs of the partial correlations are then signed averages of the simple correlations corresponding
to edges present.

For 4-cycle models of equal edge strength, one can show also that simple correlations induced for the missing edges
are positive, no matter whether the starting non-zero partial correlations are all positive or all negative. We could
however not find general conditions assuring this if the given negative partial correlations are not of the same size.

A most attractive feature of the studied palindromic Ising models is the closed-form relation between a non-zero
partial correlation and the constant conditional log-linear, two-factor interaction because this leads directly to the full
contingency table from the matrix of partial correlation, for both parameters and their maximum likelihood estimates.
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