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Abstract: Many aspects of statistical design, modelling, and inference have close and important
connections with causal thinking. These are analyzed in the paper against a philosophical back-
ground that regards formal mathematical models as having dual interpretations, reflecting both
objectivist reality and subjectivist rationality. The latter aspect weakens the need for an objective
theory of probabilistic causation, and suggests that a traditional image of causes as deterministic
mechanisms should remain primary. It is argued that such causes should guide much preformal
thinking about what to include in formal statistical models, especially of dynamic phenomena.
The statistical measurement of causal effects is facilitated by good statistical design, incuding ran-
domization where feasible, and requires other méthodologies for controlling and assessing uncer-
tainties, for example in model construction and inference. Illustrative examples include case
studies where the problem is to assess retrospectively the causes of observed events and where the
task is to assess future risks from controllable factors.

Key words: Causal inference; causal effects; subjectivity; objectivity; randomization; experi-
mentation.

1. Introduction

Why should statisticians analyze causality? The first reason is practical. Causal
thinking is deeply embedded in scientific understanding of the problems of applied
statistics. Would a reduction of alcohol consumption by women eliminate or post-
pone some cases of breast cancer? Were discriminatory employment practices a
cause of the male-female differentials at the Harris Bank that led a decade later to
a 14 million dollar settlement (New York Times, Jan. 11, 1989)? Was the death of
the patient analyzed by Lane (1989) caused by an adverse reaction to the drug
amodiaquine? Will the build-up of cardon dioxide in the earth’s atmosphere cause
catastrophic climate changes in the next hundred years? Statistical data collection
and analysis constitute much of the empirical basis of credible attempts to answer
such questions. As the examples show, familiarity with the language and ideas of
causality is essential to full participation in inference and decision-making.
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Statisticians typically bring a range of qualifications to the task of analyzing and
explaining causation that may in important ways improve upon those of philos-
ophers. Statisticians participate directly and indirectly in scientific developments in
many fields where statistical methodology is applied, so are well placed to develop
a philosophy of science, including statistical science, that accords with the realities
of practice. Wisdom on the possibilities and pitfalls of passing from empirical rela-
tions to causal inference has been clearly articulated by statistical writers (e.g.,
Cochran, 1965). Many statisticians have strong mathematical training, and hence
are equipped to appreciate the power of abstract models to represent and shape
scientific perceptions and analyses. Finally, applied statisticians frequently confront
scientific uncertainty, and in particular must deal implicitly and explicitly with com-
peting and interacting subjectivist and stochastic conceptions of probability. In-
ferences about deterministic causal phenomena are often uncertain inferences that
must be viewed, whether formally or informally, in subjectivist terms, while the
stochastic models that permeate modern science can be interpreted as objective
causal random mechanisms (Good, 1961/2, 1988, or Suppes, 1970, 1988). The
examples mentioned above, and further discussed below, document the pervasive in-
teractions of uncertainty and causal analysis, yet many books on the philosophy of
science virtually ignore probabilistic uncertainty.

I accept as fundamental the common sense view that causes are primitive elements
of scientific thinking from which informal and then formal understanding of
dynamic phenomena develops. The central idea of causation is the mental image of
a causal mechanism acting in a deterministic physical way that necessarily and
regularly produces a defined subsequent effect. It is implicit that had the mechanism
been absent, or different, the effect might also have been different (Holland, 1986).
An illustrative quote from Fisher (1918) on the ‘causes of human variability’ is:

If we say, ‘“This boy has grown tall because he has been well fed,”” we are not merely trac-
ing out the cause and effect in an individual instance; we are suggesting that he might quite
probably have been worse fed, and in that case he would have been shorter.

Many writers are impatient with the common sense view, labelling it the ‘meta-
physical idea of Causation’ (Herschel, 1851 quoted by Porter, 1986) or ‘prescientific’
(Russell, 1948). Pearson (1911) criticizes both ‘spiritualist’ and ‘materialist’ con-
ceptions:

Force as cause of motion is exactly on the same footing as a tree-god as cause of growth
- both are but names that hide our ignorance of the why in the routine of our perceptions.
The necessity in a law of nature has not the logical must of a geometrical theorem, nor
the categorical must of a human law-giver; it is merely our experience of a routine, whose
stages have neither logical nor volitional order.

These writers imply that abstract representation has rendered causal analysis un-
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important. I agree that causal thinking is largely preformal, but formal analyses
are never firm, especially in statistics, so must remain in close touch with their
preformal roots. Hence these roots deserve to be considered important aspects of
the process. ‘

The spectacular successes of mathematical models and mathematical expressions
of scientific laws brought in their wake the idea that abstract representations should
replace mechanistic causal images as the central elements of scientific explanation.
But, whereas a causal mechanism can be seen as explaining a small piece of a scien-
tific mosaic, a formal mathematical model describes its own complete small world.
And, whereas available procedures for manipulating, observing, recording, and
analyzing indicate that the external world is complex without limit, mathematical
explanation simplifies understanding at the cost of limiting discussion to a universe
that is a priori unrealistic. The problem of small worlds is vexing for mathematical
scientists (Savage, 1954, Shafer, 1986). Mathematical modelling is fundamentally
important, but does not itself supplant the notion of causal mechanism. The latter
feeds the former in an endless quest to catch up with real world complexity.

Causal analyses are guides to higher understanding. Although mathematical
models provide formal representations whose precision and efficiency far surpass
the reach of nonmathematical language, they are understanding-neutral in the sense
of not explaining how and why their features capture key aspects of reality. Causal
thinking is a fundamental tool in the development of balanced representations that
neither omit essentials nor obscure with unnecessary complexity. An account of
causality requires an explanation of how mathematical models relate both to real
world processes under study and to the memory and reasoning capabilities of the
community of scientists who perceive and use such models. The following discussion
explores these themes.

2. Philosophical context

Because views on causality are necessarily linked in complex ways with views on
many other philosophical issues, causation cannot be studied in isolation from the
network of basic concepts and positions that make up a philosophical viewpoint.
Working scientists, including statisticians, typically operate in modes imparted by
their teachers and textbooks, which in turn depend on philosophical positions that
may be implicit, unexamined, and naive. One can agree with Glymour (1986) that
“‘statistics runs with a lot of philosophy, too much of it tacit, and bad philosophy
is best avoided by explicitness’’. Yet much contemporary philosophical writing is
largely turned in on itself. Disputing the validity of colleagues’ positions is a fun-
damental mode of discourse among professional philosophers. Scientific disputes
can also be sharp, but there is a greater sense that science works towards a consensus
on achievable progress. Perhaps it is better to run with scientists turned philosophers,
or philosophers whose inspiration derived from accurate descriptions of scientific
thought and method.
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Philosphers like to debate the strengths and weaknesses of ‘isms’ such as realism,
rationalism, empiricism, or instrumentalism. An alternative form of discourse, since
each such term flags important aspects of a working philosophy, is to mold these
diverse but relevant aspects into a coherent overall position. Such an integrated view
is necessarily complex, and hence expensive to define and communicate, thus
resembling science itself. It is interesting that, although the various ‘isms’ of philos-
ophy were developed through examples that overlap little with current issues in
statistics, they often appear as implicit underpinnings of opposing positions in
statistics. Accordingly, since complexity is necessary anyway, it may cost little to
reorient statistical debates, away from one-issue confrontations, and towards more
subtle difficulties.

For example, a realist position treats phenomena that science seeks to understand
as having an objective hard existence in the outside world, whence science achieves
objectivity by concentrating on the construction of accurate reflections of objective
reality. Statisticians of this persuasion are likely to stress the desirability of explain-
ing statistical phenomena exclusively through long run frequencies computable in
principle from objective counts and measurements, with the idea of getting at real
objective truth. By constrast, if realism is as much metaphor as scientific necessity,
then a less fettered approach to understanding how the scientist relates to the exter-
nal world may yield important insights.

A rationalist might seek to elevate correct reasoning to the position of supreme
guide to correct science. One version, not much in vogue, holds that some scientific
knowledge is true a priori, and is objective because we all possess it, hard-wired,
from birth. Persons holding ‘necessary’ (a term used by Savage, 1954) views of
probability conform to this type of rationalism. Other rationalists seek truth in the
form of axiom systems that can be directly perceived as objectively valid and whose
consequences include all the right reasoning required to generate scientific know-
ledge. Modern Bayesian statisticians often argue their case on such grounds. My
own view is that understanding axiomatics is philosophically less important than,
and certainly does not displace, efforts to explain the complex system of model con-
struction and inference tasks that constitute reasoning about phenomena.

Empiricism enters statistics through the widespread ethic that statisticians should
limit their activities to reporting and analyzing facts. A concomitant position is
strongly entrenched in the field, namely, that the science of statistics is almost ex-
clusively devoted to specifying appropriate methods of statistical analysis for each
available data collection scheme. In particular, the inductive method of classical
empiricism is reduced to extended study of the properties of methods. I find the
absence of reasoning about actual circumstances from this widespread account of
statistical practice astonishing. Another side of empiricism stresses the necessity of
careful observation and experiment, and is faultless in its desirability and impor-
tance. But there is much more to the story of how science is done.

Instrumentalism asserts that the methods of science are no more than tools that
make possible inferences about outcomes and quantities that are not directly ob-
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served. A movement exists within statistics that stresses ‘predictive inference’ as the
central activity, the idea being that estimation of parameters in models may be sen-
sitive to model choice, whereas inference about not-yet-observed quantities is opera-
tionally relevant and facilitates testing of models. Again, the metaphor is appealing,
but contains no hints about how to construct instruments, nor about the nature of
the skills required to use them with effect.

An important philosopher whose views accord well on many dimensions with my
untutored positions is Gaston Bachelard (1884-1962). Bachelard came late to philos-
ophy and his basic writing on the philosophy of science appeared between his 1927
thesis and his 1940 appointment to a chair at the Sorbonne. His later writing em-
phasized psychoanalytic and aesthetic themes and was translated earlier, but his
centenary year brought forth a translation of a 1934 work (Bachelard, 1984) and an
excellent exposition of his scientific ideas (Tiles, 1984).

Bachelard (1984) starts by outlining the ‘‘essential complexity of the philosophy
of science’’, so that ‘‘every man who attempts to use science makes use not of one
but of two metaphysical systems. Both are natural and cogent, implicit rather than
explicit, and tenacious in their persistence. And one contradicts the other.”” He
quotes Bouty (1908): ¢‘Science is a product of the human mind, a product that con-
forms to both the laws of thought and the outside world. Hence it has two aspects,
one subjective, the other objective; and both are equally necessary, for it is as im-
possible to alter the laws of the mind as it is to change the laws of the Universe.”’

An essential Bachelardian idea is that scientific analysis grows from a complex
interaction between subject and object, between the working scientist and the world
of phenomena. The nature of the interaction has evolved and will continue to evolve
through history, with periods of rapid change or discontinuity. The subjectivism of
science differs sharply from common sense reasoning and untrained psychological
judgement. In particular, scientific reasoning makes use of modern mathematics
whose constructed abstractions lead to scientific representations very distant from
those of earlier times. Bachelard says that modern rationalism is non-Euclidean,
symbolizing the changes that have come with modern mathematical thought. Like-
wise, current views of technical objectivity are non-Baconian because empirical con-
tent is not all, and progress involves more than induction from observations.
Thirdly, contemporary epistemology is non-Cartesian. The social processes by
which we acquire scientific knowledge do have a complex type of objectivity, but
a full philosophical description must incorporate processes of active reflection,
analysis, criticism, and correction that take place within and between individual sub-
jective minds.

Bachelard does recognize causality as a fundamental driving force of modern
scientific thinking, one reason being that causal thinking is able to bridge the gap
between determinism and indeterminism. Causation goes deeper than deterministic
explanation because statistical explanation extends the range of deterministic laws
to include the explanation of mass phenomena, such as entered physics through the
kinetic theory of gases and Heisenberg’s uncertainty principle. Such fundamental
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indeterminacies are for him nonetheless causal. Although probability is not a sub-
ject of much concern in Bachelard’s writing, he touches it briefly in connection with
determinism vs indeterminism, and he tentatively asserts, ‘“The rationalizations of
empirical statistics probably must proceed by establishing a correspondence between
probability and frequency’’ (Bachelard, 1984, p. 118), thus agreeing with the non-
subjectivist positions of contemporaries such as Reichenbach and von Mises.
(Reichenbach (1949) goes further and asserts that such probabilism replaces
causalism.)

It thus appears that Bachelard assigns probability, and its associated mathematical
theory, an important role on the realist side of the rationalist/realist dualism. In the
two books that I have reviewed, however, there is no sign that he gives any heed
to subjective probability. It seems paradoxical that he argues forcefully for the im-
portance of subjectivism, yet omits discussion not only of subjective probability,
but of both determinate Boolean logic and nondeterminate probabilistic logic. His
recognition of the power of mathematics on the realist side is not balanced by ap-
preciation of the powerful forms of certain and uncertain reasoning that can be
represented by mathematical logic and probability theory. Instead, according to
Tiles (1984, p. 25) he develops ‘‘non-formal characterisations of the epistemological
structure of thought and of the relation between experimental and theoretical prac-
tices, together with an account of the dynamic epistemological role of critical reflec-
tion’’.

Bachelard’s ‘‘non-formal characterisations’’ are insightful and accurate, but it
seems unBachelardian to leave out of the picture coexisting formal structures that
are valuable in speeding deductive or computational tasks and in preventing errors
to which unaided common sense reasoning is often prone. My sense is that the omis-
sion is a simple consequence of the tradition of teaching in the natural and mathe-
matical sciences that existed in Bachelard’s time, and continues dominant to this
day. In fact, there is a real ‘discontinuity’, of the sort that Bachelard himself saw
as characteristic of ‘‘progress’’ in fields of science, between traditionalists, whose
subjectivism is strictly informal, and the small fractured minority, including myself,
who argue that parts of science should be expressed in formal subjectivist terms.

It is a challenging task of historical analysis, exceeding my present knowledge and
historical skills, to sort out the processes of change among leading thinkers that pro-
duced the widespread 20th century belief that subjective probability is a discredited
concept. The original seminal innovators such as Jacob Bernoulli and Laplace cer-
tainly thought in subjectivist terms, and the views and methods of Laplace in par-
ticular were widely transmitted outside of mathematics, for example, to Quetelet,
and to outstanding British scientists such as Maxwell and Herschel, as traced by
Porter (1986). Keynes (1921, p. 172) quotes ‘‘from a letter written by Maxwell in
his nineteenth year (1850)’’ to the effect that ‘‘the true logic for this world is the
calculus of Probabilities, which takes account of the magnitude of the probability
which is, or ought to be, in a reasonable man’s mind.”” Boole (1854) went far
towards integrating deterministic and probabilistic logic. Soon, however, much of
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the scientific community switched, in effect narrowed, from subjectivist to stochastic
and frequentist conceptions of probability. The causal role of influential writers
such as Cournot in France, and Ellis, Venn, and Mill in Britain, in effecting the
switch deserves further analysis.

The historical puzzle does not center on probability alone, however, because
neither the deterministic or probabilistic sides of Boole’s paradigm took permanent
hold in the working vocabularies of active members of the scientific establishments
and disciplines that grew rapidly from the middle of the 19th century. Mathematical
logic has flourished as an isolated specialty motivated by the desire to mathematically
model mathematical proof, whereas attempts by proponents of artificial intelligence
to apply the theory to external phenomena appear to have established only a few
scientific toeholds. Historically, it appears that both deterministic and nondeter-
ministic aspects of formal subjectivist reasoning retreated simultaneously into
minority status, presumably for connected but as yet not well traced reasons.

My sense is that determinate and indeterminate logics should redevelop, along
lines initiated by Laplace and Boole, into a canonical formal theory that will increas-
ingly contribute to scientific progress in many fields. In particular, subjectivist prob-
ability is not an alternative to frequentist probability, but is complementary in a way
that requires only a simple reinterpretation of random phenomena in mixed rationa-
list and realist terms, as discussed below. These issues are somewhat tangential to
the main topic of causality, but understanding causality has at least as much to do
with causal reasoning as with causal processes, or with rationality as with reality,
hence it is important at the outset to introduce and stress the dualism of causal
analysis.

3. Causality and scientific uncertainty

In many simple repeatable controlled experiments, such as those of school science
courses, an action A is invariably followed by an effect B. In others, such as experi-
ments where the observation is a particle count, or a measurement subject to error,
an action A produces different possible effects B that under replication appear con-
sistent with independent random draws from an unvarying distribution. The latter
type of experiment may be said to produce statistical regularity. Thinking about
such examples leads scientists to imagine that deterministic and probabilistic causal
mechanisms have objective real world existence. In the probabilistic case before each
experiment the outcome is uncertain, but the experimenter who possesses long run
frequencies may make objective probability statements. Indeed, since no outcome
is completely certain, deterministic causation can be no more than a limiting form
of probabilitic causation where the probability approaches one. Thus it is easy to
be seduced into thinking that the external world is fundamentally stochastic.

According to Bachelard (1984), however, ¢‘the psychology of probability remains
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rather obscure, for it stands in opposition to the whole psychology of action. Homo
faber has been hard on homo aleator; realism has been hard on speculation. There
are physicists whose minds are closed to ideas of probability,”” and he notes ‘‘Lord
Kelvin’s strange incomprehension in this regard.”” Thus stochastic probability can-
not rest exclusively on the realist side. The working scientist needs a working mean-
ing for stochastic probability, relating each probability to an uncertain outcome that
it aims to characterize. To me, this implies no escape from involving the subject in
the formal analysis, for it is the subject who carries out the reasoning. The wide-
spread nonrationalist tradition of teaching and thinking has encouraged many scien-
tists to ignore the problem of interpretation, so there is much discomfort when no
solution appears short of overturning tradition and associating mathematical prob-
abilities with the subjectivist side of the basic duality, thus normalizing a formal
machinery of uncertain reasoning. We then enter a world of science that is radically
new for the traditionalist, even the traditionalist who has accepted that the real
world is to a degree random.

In another sense the situation is made simpler, however, for the necessity of a con-
cept of fundamental, even physical, randomness is much diminished. Specifically,
there is little or no need to operate with a concept of stochastic causal mechanism,
and one can retain as the basic primitive of causality the familiar image of deter-
ministically acting causal mechanisms. Apparent randomness is explained, and so
rationalized, by subjective probability, but is due to “‘our ignorance of the true
causes’’ (Laplace, 1951), not to probabilistic causation per se. For example, at con-
ception, the genetic makeup of a child is determined by the pairing of chromosomes
from its mother and father. The unknown value of a particular marker for a newly
conceived child would often be assigned a probability .5, or some different specific
numerical value determined by a simple stochastic model (ignoring empirical studies
that might indicate small deviations from such theoretical numbers). A traditionalist
could choose to regard the gene matching process as a physical random mechanism.
But this is something of a mystery, because scientific understanding of the biology
is more fully reflected by a deterministic description of sperm selection and move-
ment. When the descriptive realism is disentangled from the epistemic subjectivism,
however, and neither is distorted to take over the domain of the other, the mystery
disappears. The probabilities simply reflect Laplacian ‘ignorance’, and can be ap-
plied either before the event of conception, or after, as long as we remain ignorant.
The language of chance mechanisms may convey illuminating analogies to familiar
games of chance that are conventionally described as random, but one may remain
agnostic and skeptical about the realism of physical randomness as a causal
phenomenon.

Laplace’s subjectivist attitude was widely held in the 19th century. For example,
it was spelled out at length by W.F. Donkin (1851), who was Savilian Professor of
Astronomy in the University of Oxford, to rebut frequentist critics. For Karl Pearson
(1911), “proof’ in the establishment of ‘cause and effect’ is the ‘‘demonstration of
overwhelming probability’’, and he rehearsed the Bayesian argument in detail in
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Pearson (1920). I believe (Dempster, 1989) that the remarkable 20th century innova-
tions of R.A. Fisher were fundamentally driven by the subjectivist interpretation.
His was a struggle to transcend the confining Bayesian models of his 19th century
forbears, but his book on inference (Fisher, 1956) can be read as a remarkable
celebration of the subjectivist tradition of probabilistic thinking. Most statisticians
will regard this view as wrong, even sacrilegious, but really it is commonplace when
viewed merely as part of the subjectivist character of all aspects of model construc-
tion. Consider for example the obviously true proposition that Fisher continually
used terms like “‘scientific induction’ that showed his fundamental concern for
both rationalist and realist aspects of the scientific enterprise.

Probabilistic uncertainty is very prominent due to its associated highly developed
mathematical theory. Models that apply the theory are constructed, and often pass
through stages from tentative and speculative to firm and well supported. Other un-
certain aspects of scientific model construction that are even more fundamental also
exhibit a progression from soft and partially formed structures to hard mathematical
representations. For example, the statistician identifies and labels types of units,
such as individual persons, or groups such as families or households. The statistician
also identifies variables that characterize differences among units of the same type.
Relations among the values of variables, whether deterministic relations holding by
definition, or empirical relations with lesser degrees of precision, are likewise
developed and modified over time. Knowledge structures are painfully constructed
in this way and are stored in memories along with instructions for use so they can
pass from person to person and generation to generation. There is no sharp distinc-
tion in the uncertain processes of scientific model construction between probabi-
lities, that are described here as subjective, and the other equally basic aspects, such
as units and variables, that traditionalists accept as completely objective. Elements
of each type are constructed according to prescriptions that are both informal/
formal and subjectivist/objectivist. In fact, the whole modelling enterprise is ac-
curately perceived only as taking place against a background of interacting internal
and external realms that tentatively advance and modify formal mathematical repre-
sentations.

Part of the illusion that some scientific analyses are completely objective comes
from contemplating circumstances that appear to approximate ideals such as
perfectly controlled experiments. Actual practice, especially in statistics, always in-
volves imperfectly controlled data collection schemes reflecting phenomena of great
comp'lexity. Preformal analysis must then proceed to sift through many hypothetical
causal images that hopefully can be shaped into a network of interacting effects to
explain partially the workings of apparently random phenomena. Physical science
presents many good examples in the area of ‘ill-posed inverse problems’ (Tikhonov
and Goncharsky, 1987), exhibiting a range from situations with precise deterministic
mathematical models, to others with loosely formed and tentative models, in either
case with random measurement errors overlaid. A good working philosophy must
be prepared to cope with such a range. Statistical problem analyses are not always
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satisfactory, but even speculative analyses are necessary steps on the way to more
trustworthy solutions.

4. Statistical analysis and causation

A good entry point to the statistical literature on how to detect and measure
causal effects is Holland (1986), including the appended discussion. As with much
20th century statistical science, the original impetus came from R.A. Fisher, in par-
ticular from his introduction at Rothamsted of basic techniques of statistical design
of experiments, including such key notions as blocking and randomization (Fisher,
1935). An ongoing problem, discussed for example in Rubin’s (1984) review of the
writing of W.G. Cochran, is to understand how to assess limitations on the validity
of inferences about causal effects, given that the conditions of ideal experimentation
have not been maintained. The motivating concern is practical: to assure that
nominated causal effects will stand up under replication.

Since the practical side of causal analysis does not exist in a vacuum, statisticians
need also to understand and respect the preformal side. As Bachelard notes (1984,
p. 112), ““Scientists do not spend all their time making measurements. The seek first
to understand how phenomena are interrelated and often conceptualize such inter-
relationships in qualitative rather than quantitative terms.” Such causal thinking
leads to models: “‘the use of causality in the sense of cause as explanation is very
critical in the development of mathematical models” (Kempthorne, 1984). From
models we can proceed to inference: ‘“The inductive method exalts experiment into
a position of supreme importance, but it is sometimes forgotten that the aim is
generalization” (Fisher and Stock, 1915). Thus it is important to expose and clarify
the connections between causal thinking and principles of statistical design, and
then equally important to understand other connections, for example, to modelling
and inference.

“That correlation is not causation is perhaps the first thing that must be said”
(Barnard, 1982, p. 387) is a wise statement in need of clarification. A more fun-
damental statement is that correlation does not guarantee repeatability. To warn
against confusing correlation and causation is to warn against believing that
future interventions will be effective. But similar caution is in order for predictions
generally. An effect visible in immediate data need not replicate in new data,
whether the effect refers to noncausal predictions or to predictions of causal effects
of interventions. In an important sense, therefore, the statistical principles that ex-
plain why it is difficult to make real world inductions from empirical correlation are
not closely tied to the concept of causation. I believe this explains the paradoxical
insistence of Holland (1986, p. 959) that the proper concern of statisticians is with
“studying the effects of causes rather than the traditional approach of trying to
define what the cause of a given effect is.”” We need also to be concerned with the
latter, but through principles complementing those ably reviewed by Holland.

Induction from an empirical relation, such as from a scatterplot of (x, y) pairs,
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assumes knowledge of another sort, namely, of a relation between the set of units
that define the data and the target unit or set of units to which the inference will
be made. Loosely, each set is assumed to be representative of a common population.
An ideal form of representativeness is the assumption of random sampling, a sub-
jectivist probability assessment asserting that the observed units were a priori ex-
changeable with any subset of a specified population of units. A canonical form of
induction is a Bayesian posterior distribution for the y value of a target unit, given
the x value for the unit and given the (x, y) pairs for the data set. If the target is
a set of units, the inferences may be directed at individual members, or at aggregates
over the target sample, or in the limit at a full target population. If inferences are
drawn about a single target unit, it is critical that the unit is judged to be a random
draw from the same population represented by the data set, or at least a random
draw from the subset of the population conditioned on the x value of the target unit.
Throughout, formal probabilistic inferences require precise inputs of formal prob-
abilistic knowledge (or ‘assumptions’ in traditional terminology).

In an experiment to assess causal effects, there are at least two data sets, where
in one the units receive treatment ¢ (‘the treatment’) and in the other receive treat-
ment ¢ (‘the control’). Each set must be representative of an available population
in a precise sense that permits formal induction. The underlying reason for R.A.
Fisher’s advocacy of randomized treatment assignment is precisely that it affords
the subjective probability assessor the luxury of a real world basis plainly visible to
fellow scientists. It thus becomes possible to make uncertain inferences about the
consequences that would have ensued had ¢ been applied to the set that actually
received ¢, and vice versa. These inferences, which were criticized by Glymour (1986)
as counterfactual, are not however the main point. A greater practical issue con-
cerns prediction of the consequences of applying treatments 7 or ¢ in the future to
a further set of representative target units, whence the desirability, often difficult
to achieve, of random sampling of experimental units. For example, the validity of
policy analyses that inform institutional decisions rests on the ability to produce ap-
propriately predictive inferences.

Comparative predictions can be assessed with varying degrees of specificity. The
most specific treatment comparison is a prediction for a single prospective target
unit with known x, but comparisons for different levels of aggregation and varying
degrees of knowledge of x can be interesting and important. A key observation is
that causal thinking points first at single units: while a causal action may be broad
in the sense of affecting many units simultaneously, and while a causal story some-
times nees the complexity of allowing for interactions among units, the basic mental
picture is of a reactive process that occurs within a single unit. Hence the term causal
effect refers in a direct sense to single units, and only by aggregation to sets of units.
Statisticians by contrast are conditioned to think first about description, and descrip-
tion starts from population aggregates. On this point, I believe that the beautifully
clear Rubin-Holland account of causal inference, as concisely presented in Rubin
(1986) and the rejoinder of Holland (1986), may seem to promise more than it can
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deliver. The robustness claimed by Rubin (1978) as a benefit of randomization for
a Bayesian is most effective at the level of comparing aggregates, but the later exten-
sion to causal effects at the level of individual units requires the strong stable-unit-
treatment-value-assumption (SUTVA) of Rubin (1980). The theory is clear, but the
difficulty of providing an objective basis for this assumption contrasts sharply with
the objective basis of the exchangeability assumption provided by randomization.

The simplicity of SUTVA also stands in contrast with the spirit behind the dictum
of Fisher quoted by Cochran (1965, p. 252): “Make your theories elaborate.’”” As
Cochran remarks of studies of smoking, “‘In the largest studies, we can compare
the death rate (i) of men who smoked different amounts for the same time, (ii)
among smokers of the same amount, of men who had beens moking for different
lengths of time, (iii) of exsmokers and current smokers of the same amount, (@iv)
among ex-smokers, of those who had previously smoke different amounts, and (v)
among ex-smokers of the same amount, of those who had stopped recently and
those who had stopped for longer periods.”” Cochran remarks that predictions of
causal effects across such varied categories of units can be of great value in sorting
through hypotheses about alternative causal mechanisms. But the complexity of the
desired inferences greatly increases the modelling task of the Bayesian statistician.
Scientific inference from comparative studies is difficult precisely because an objec-
tive basis for such models can be constructed only with much patient labor.

An important truth emphasized by Rubin (1978) is that randomization, when
achievable, assures prior independence of treatment assignment and other attributes
of the units, including attributes that reflect causal factors other than the experimen-
tal treatment. Thus randomization is one guarantor of the validity of mathematical
representations of interacting effects of several observed causal factors, and similarly
allows modelling of effects of unobserved causal factors as random error, both in
a manner that can often extend to target units to be treated in the future. There is
a catch, however, because the posited statistical modelling requires not only good
statistical control of unit selection, treatment, and observation processes, but also
demands samples sufficiently large that the modelling tasks can be carried out with
acceptable levels of objectivity. When the phenomena are complex and dynamic, the
technical problems of achieving and analyzing adequate samples are often beyond
the current state of the methodologies involved.

Statistical modelling of complex systems has advanced rapidly in recent decades.
Important current work is by Wermuth and Lauritzen (1989) on modelling, and
Lauritzen and Spiegelhalter (1988) on computation. The current state of dynamic
statistical modelling is surveyed in Spall (1988). Deterministic and stochastic models
that postulate separate observables and unobservable ‘state’ vectors have long been
used in physical and engineering sciences (Tikhonov and Goncharsky, 1987) and
should form an important growth area for statistical modelling of biological and
behavioral phenomena. The type of subjectivist/objectivist modelling advocated in
this paper has a natural fit with the type of causal thinking that was regarded as
basic by leading practitioners such as Cochran and Fisher.



A.P. Dempster / Causality and statistics 273

5. Examples

The picture of statistical problem analysis developed in this paper is distant from
the picture created by most of the literature of statistics with its emphasis on the
selection and application of methods and the study of properties of methods. In-
stead, I have been stressing mathematical modelling of reality, and rationalist inter-
pretations of models, so that the introduction of causal thinking becomes natural.
I close with some examples where causality is primary, and where the advocated
principles are natural, and probably necessary, tools of analysis.

5.1. Breast cancer and alcohol

The abstract of Willett et al. (1987) reads, “‘In 1980, 89538 US women 34 to 59
years of age, with no history of cancer, completed a dietary questionnaire that in-
cluded the use of beer, wine, and liquor. During the ensuing four years, 601 cases
of breast cancer were diagnosed among cohort members. Among the women con-
suming 5 to 14 g of alcohol dialy (about 3 to 9 drinks per week), the age-adjusted
relative risk of breast cancer was 1.3 (95 percent confidence limits, 1.1 and 1.7).
Consumption of 15 g or more per day was associated with a relative risk of 1.6 (95
percent confidence limits, 1.3 and 2.0; Mantel extension chi for linear trend = 4.2;
P<0.0001). Adjustment for known breast cancer risk factors and a variety of nutri-
tional variables did not materially alter this relation. Significant associations were
observed for beer and liquor when considered separately. Among women who were
without risk factors for breast cancer who where under 55 years of age, the relative
risk associated with consumption of 15 g of alcohol a day was 2.5 (95 percent limits,
1.5 and 4.2). These prospective data derived from measurements of alcohol intake
recorded before the diagnosis of breast cancer confirm the findings of several
previous case-control studies. Viewed collectively, they suggest that alcohol intake
may contribute to the risk of breast cancer.”

It appears that the authors have taken a complex view, looking for alternative
explanations of their findings, establishing consistency across subgroups, and in-
dicating a suggestion of a dose-response relation that would support a biological
mechanism. Yet Feinstein (1988) strongly criticizes Willett et al. for the lack of
«fundamental scientific standards used to specify hypotheses and groups, get high-
quality data, analyze attributable actions, and avoid detection bias.”’ Feinstein in-
dicates also that the message from competing epidemiological investigations is more
ambiguous than the abstract admits, or even then the body of the paper allows. The
dispute is ongoing, and is unlikely to be resolved in a way that fully vindicates either
side. Further data, better analyses, and improved biological understanding will
change the terms of the debate.

What are the lessons for statisticians? The absence of randomized treatment
assignment is a necessity, and the sample is not a random sample but is probably
adequately representative of middle class cohorts of urban US women. Surely
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medical research is better off with the data than without, even when weighed in the
cost scale against competing priorities. Perhaps modest improvements can be made
towards Feinstein’s ‘standards’, and certainly subjectivist assessments and related
computations could serve to quantify the possible effects of alleged defects.

At a more fundamental level, there are substantial opportunities for developing
analyses that go much further towards meeting the underlying science. Attention is
being given, in this and other areas of epidemiology, to the problems of measuring
exposure to potential causal agents. The problem is not simply the accuracy of the
diet questionnaire in reflecting alcohol consumption in a specific year, but includes
in principle the task of assessing true alcohol consumption as a function of time
back to puberty for each study member. It is equally important to tie analyses to
models of carcinogenesis as a multistage process. As reviewed by Armitage (1985),
several approaches to modelling are under active development. In particular, the
type of model advocated by Moolgavkar (1986) has been related to epidemiological
incidence data and to biological phenomena at the genetic level. In principle, there
is no bar to developing Bayesian analyses of the data set of Willett et al. that treat
the underlying phenomenon as generated by Moolgavkar’s model and experiment
with subjectivist assessments of model parameters and true exposure histories.
Developing feasible computational procedures might take several man years of
highly skilled labor, and the immediate payoff regarding alcohol and breast cancer
might not be large since the analyses of Willett et al. presumably do exhibit the main
statistical relations in the data. The long term benefits are more promising, since the
use of subjectivist modelling permits the study of detailed causal mechanisms of in-
itiation and promotion that may suggest improved hypotheses and empirical studies
to test them.

5.2. Employment discrimination and statistical science

For several decades, the US Government has sought through legislation and
regulation to equalize employment opportunities for women and minorities as com-
pared to white males. In particular, sanctions can be imposed through judicial pro-
ceedings against corporations that are found to engage in discriminatory practices
in hiring, advancement, or remuneration. Such practices can be identified at the
level of individual employment decisions, but plaintiffs typically attempt to use
statistics to demonstrate a consistent pattern of discrimination across large segments
of a corporation. The positions taken on interpreting the data reflect the scientific
standards offered by competing expert witnesses, legal arguments and reasoning put
forth by opposing lawyers, and partisan interpretations from plaintiffs and defen-
dants often reflecting political attitudes and paying little heed to reason.

The outlook for good statistical science in this area is bleak, even assuming the
existence of statistical standards resistant to legal and political manipulation. The
sample generally has no scientific credentials, typically being a set of employer ad-
ministrative records that happen to be available. The treatment whose causal effect
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is at issue is often a largely unrecorded process, including nonscientific subjective
judgements by a decision-maker, leading up to an outcome which is a recorded
employment decision. In the epidemiology example a direct measurement of treat-
ment dose is available, whereas in discrimination studies gender and minority status
themselves are used as proxies for treatment assignment. Because the goal is to show
a stable association between the dose of discriminatory behavior and the proxy, it
is clear that any analysis will be heavily model dependent. Nor are simple hypotheses
like SUTVA a priori plausible.

Dempster (1984) pointed out some of the difficulties, much as Feinstein did for
the epidemiological example. In Dempster (1988), I tried to set out the elements of
a scientific Bayesian analysis in a simple situation. It should be evident that courts
are interpreting data in favor of plaintiffs beyond permissible limits of scientific
credibility.

5.3. Retrospective analysis of a possible adverse drug reaction

Lane (1989) illustrates a subjectivist Bayesian methodology using the case of a
French woman age 38 who had lived in Gabon for about 2 years and who developed
hepatitis and died in March, 1984, about 2 months after her first symptoms were
noted. About 3 months before her death, she had switched drugs for malaria pro-
phylaxis from chloroquine to amodiaquine. Lane developed his analysis as moderator
of a panel of experts from the Montreal medical research community. There were
two main hypotheses: (i) that the hepatitis was a direct adverse reaction to amodia-
quine, this being the reason for the original study of the case by experts in France
where the patient was taken 5 days before her death, and (ii) that the hepatitis was
a form of viral hepatitis labelled NAND that is fairly common in Gabon and not
ruled out by the tests recorded for the patient. The panel assessed relative odds of
0.24 for (i) vs (i) given the bare facts without details of the clinical history for the
three months course after initiation of amodiaquine, and a further likelihood odds
multiplier, given the details, of 6.3, yielding final odds of 1.5 in favor of (i). The
clinical details included a record of the advance, decline, and fatal advance of the
disease in relation to the timing of an interruption of amodiaquine treatment, and
also tests relevant to hepatitis. Lane gives many fascinating details about the wide
range of medical knowledge invoked and how it fits into the various stages of his
processes of problem formulation and analysis.

The presentation is limited to one question: which of two nominated causes ac-
tually operated? Other retrospective causality assessments, for example concerning
the Challenger space shuttle disaster or the Chernobyl nuclear plant explosion, start
with a broad range of possibilities that quickly move to a single main candidate as
data-gathering and analysis proceed. We are thus reminded that the informal sub-
jective phase of problem formulation often stops before any question of formal
probability assessment emerges. In the Challenger case, there was a convincing
demonstration after the fact that a careful probability risk assessment ought to have
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been done before launch (Dalal et al., 1989). Likewise, when competing hypotheses
survive careful informal analysis, the explicitness of formal analysis is likely to
result in fewer errors of omission and of logic than thoroughgoing informal sub-
jectivism.

The explicitness of Lane does not guarantee that other analysts would not have
been led to to consider and use other epidemiological and theoretical knowledge
than was used by the Montreal panel. Lane does discuss two replications of his
methodology in France applied to the same case without major differences. Possibly,
however, some quite different vantage point would have led to a different analysis.
Suppose the intial focus had been on assessing all the evidence about hepatitis as
a side effect of amodiaquine. This seems a more natural place for a statistician to
start, and might well have raised issues that were not raised by the medical panels,
that could in turn have changed the subsequent course of analysis. Thus nonmedical
mathematical scientists might have useful roles beyond that illustrated by Lane. For
now, the conclusion on the particular patient is close to a toss-up, until such time
as new knowledge and arguments significantly shift the analysis.

5.4. The greenhouse and climate change

As we progress through the examples 5.1 to 5.2 to 5.3, the concept of a relevant
statistical sample becmes increasingly indefinite, whence the possibility of valid in-
ferences directly from statistical analysis becomes more remote. In the case of possi-
ble effects of the buildup of atmospheric CO, and other greenhouse gases, there is
by definition no possibility of replicated systems. Only the actual system is avail-
able, and we must predict alternative future climates given alternative possible
futures of atmospheric buildup. Nevertheless, the amount of available data from the
past is huge and growing, as is the store of reliable knowledge about physical pro-
cesses that affect climate. Thus the situation is reversed from the ideal of the Rubin-
Holland analysis, where randomization alone carries most of the burden of assess-
ing causal effects. Here, by contrast, the desired inferences about the effects of con-
tinued buildup of greenhouse gases is heavily dependent on modelling and analysis,
needing strong inputs of prior knowledge, of a single highly structured and multi-
variate time series.

Just as induction from a sample of units to further sample units depends on a
representativeness assumption, most often a random sampling hypothesis, so does
prediction from an observed time series depend on a time invariance assumption,
namely, that any stochastic mechanism postulated to underly the observations should
be invariant under time shifts. The anthropogenic inputs of greenhouse gases over
the past century or so have been accelerating in a way that has not been replicated
in available records, and hence, for example, a bivarijate time series model of global
temperature and atmospheric CO, would need to be treated as a very questionable
guide to forecasting. The problem does not lie with time series methods per se, but
rather with their premature application before the time homogeneity assumption is



A.P. Dempster / Causality and statistics 277

plausible. If there is a reason for optimism that prediction is possible, it must come
from a belief that the basic principles governing the biosphere are time homo-
geneous. Consequently, modelling must be carried to levels of detail sufficiently fine
that the underlying time series can be trusted for reliable prediction because they are
based on accumulations of tested scientific knowledge and understanding. An ex-
cellent introduction and review of current knowledge and modelling efforts on the
greenhouse effect is given by Kondratyev (1988). Perhaps the models are not yet suf-
ficiently advanced that acceptable forecasts are possible, but it is not too soon for
statisticians to be studying the models in order to understand how valid time series
models and associated Bayesian forecasts could develop from the underlying science.
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