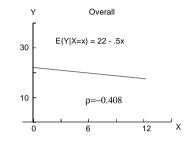
Effect reversal

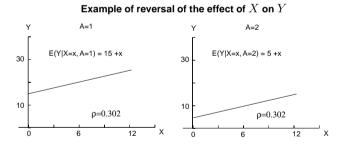
or: why it is important to study relations among explanatory variables

- Example for variables Y, X, A
- Example for variables A, B, C
- Example for variables Y, X, Z
- A general condition when it cannot occur

As a consequence of strongly associated explanatory variables X, A a reversal in the effect of X on Y occurs, when A is ignored



Slide 1



Here X is strongly dependent on A since

 $E(X \mid A = 1) = 5 \text{ and } E(X \mid A = 2) = 11$

and has little variability given $A: \mathrm{var}(X \mid A=1) = \mathrm{var}(X \mid A=2) = 1$

Details to the example

Levels	Me	ans	Vari	ances		
of \boldsymbol{A}	Y	X	Y	X	$\sigma_{X,Y}$	P(A=i)
i = 1	20	5	11	1	1	.5
i = 2	16	11	11	1	1	.5
Overall	18	8	15	10	-5	

Slide 3

with e.g.

$$\sigma_{XY} = E_A \{ \operatorname{cov}(Y, X \mid A) \} + \operatorname{cov}_A \{ E(Y \mid A), E(X \mid A) \}$$

= (.5 × 1 + .5 × 1)
+ {.5 × (20 - 18)(5 - 8) + .5 × (16 - 18)(11 - 8)}
= -5

Slide 4

In two clinics a new treatment (j = 1) is better, but....

	<i>k</i> =	- ,	Clinic k =	inic $k=2$			$\begin{array}{c} \text{counts for } AB \\ \text{ignoring } C \end{array}$		
A, Treat-	B, Treatment		B, Treatment			B, Treatment			
ment	j = 1	j = 2	j = 1	j = 2		j = 1	j = 2		
success	new	conv.	new	conv.	_	new	conv.		
$i=1: {\sf yes}$	60	4	30	200		90	204		
$(P_{1 jk})$	(30%)	(20%)	(75%)	(50%)		(38%)	(49%)		
i=2: no	140	16	10	200	_	150	216		
sum	200	20	40	400	_	240	420		
rel. chance	30/20 = 1, 5		75/50	75/50 = 1, 5			38/49 = 0,78		

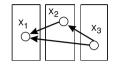
Slide 5

Replicated relative chances are preserved sin	Ince D	and C	are not assoc	lated
---	--------	-------	---------------	-------

		со	counts from					
	k = 1		<i>k</i> =	k = 2		both clinics		
A, Treat-	B, Treatment		B, Tre	atment	В,	B, Treatment		
ment	j = 1	j = 2	j = 1	j = 2	j =	1	j = 2	
success	new	conv.	new	conv.	ne	W	conv.	
$i=1:$ yes $(P_{1 jk})$ i=2: no	6 (30%) 14	40 (20%) 160	30 (75%) 10	200 (50%) 200	(60%	36 %) 24	240 (40%) 360	
sum	20	200	40	400	6	60	600	
rel. chance	30/20 = 1,5		75/50	= 1, 5	60/	60/40 = 1,5		

Overall effect in a Gaussian linear system

For mean-centered variables X_1, X_2, X_3 the **triangular system** with the graph



corresponding linear equations can be written as:

$$E(X_1 \mid X_2, X_3) = \beta_{1|2.3}X_2 + \beta_{1|3.2}X_3$$
$$E(X_2 \mid X_3) = \beta_{2|3}X_3$$
$$E(X_3) = 0$$

Slide 7

The ${\it overall}\ {\it effect}$ of X_3 on X_1 is the sum of effects of 'two paths' since

$$\begin{split} \mathbf{E}(X_1 \mid X_3) &= \mathbf{E}_{X_2 \mid X_3} \mathbf{E}(X_1 \mid X_2, X_3) \\ &= \mathbf{E}_{X_2 \mid X_3} (\beta_{1 \mid 2.3} X_2 + \beta_{1 \mid 3.2} X_3) \\ &= \beta_{1 \mid 2.3} \mathbf{E}_{X_2 \mid X_3} (X_2) + \beta_{1 \mid 3.2} X_3 \\ &= \beta_{1 \mid 2.3} \beta_{2 \mid 3} X_3 + \beta_{1 \mid 3.2} X_3 \\ &\text{or} \\ &\beta_{1 \mid 3} X_3 &= (\beta_{1 \mid 2.3} \beta_{2 \mid 3} + \beta_{1 \mid 3.2}) X_3 \end{split}$$

Slide 8

Suppose a R esponse , T reatment, and B ackround variable are standardized to have mean zero and variance 1; they be linearly related and correlated as

$$\operatorname{cor} = \left(\begin{array}{ccc} 1 & -.32 & .544 \\ . & 1 & -.8 \\ . & . & 1 \end{array} \right)$$

then - by computing least squares regression coefficents - we get

$$\begin{split} E_{lin}(R \mid T,B) &= .32 \times T + .8 \times B \\ E_{lin}(T \mid B) &= -.8 \times B \end{split}$$

and $\beta_{\rm RT}=-.32$, i.e. effect reversal

Slide 9

But for the same $E_{lin}(R \mid T, B)$ with T, B uncorrelated

 $\begin{array}{lll} E_{lin}(R \mid T,B) &=& .32 \times T + .8 \times B \\ \\ E_{lin}(T \mid B) &=& 0 \times B \end{array}$

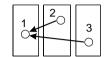
 $eta_{
m RT}=.32$, i.e. effect is preserved

The correlation matrix is

$$cor = \left(\begin{array}{ccc} 1 & .32 & .8 \\ . & 1 & 0 \\ . & . & 1 \end{array} \right)$$

On the overall effect for general distributions

generated over the graph



The joint density is in condensed notation

$$f_{123} = f_{1|23} f_2 f_3$$

The overall effect of variable 3 on variable 1 is the dependence in

$$f_{1|2} = \int f_{1|23} f_3 dx_3$$

Slide 11

 $X_2 \perp \!\!\!\perp X_3$ is sufficient for no effect reversal in the case variable X_1 depends monotonically on X_2 for all (possible reordered) levels of X_3 (Cox and Wermuth, 2003)

This means that at least qualitatively one obtains the same conclusions regarding the direction of dependence of variable 1 on variable 2, no matter whether variable 3 is explicitly considered (with $f_{1\mid 23}$) or not (with $f_{1\mid 2}$)

Without monotonous dependence - as e.g. in the Lienert data - no such conclusions are possible

Slide 10