
Effect reversal

or: why it is important to study relations among explanatory variables

• Example for variables Y, X, A

• Example for variables A, B, C

• Example for variables Y, X, Z

• A general condition when it cannot occur
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Example of reversal of the effect of X on Y
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Here X is strongly dependent on A since

E(X | A = 1) = 5 and E(X | A = 2) = 11

and has little variability given A: var(X | A = 1) = var(X | A = 2) = 1
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As a consequence of strongly associated explanatory variables X, A

a reversal in the effect of X on Y occurs, when A is ignored
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Details to the example

Levels Means Variances

of A Y X Y X σX,Y P (A = i)

i = 1 20 5 11 1 1 .5

i = 2 16 11 11 1 1 .5

Overall 18 8 15 10 -5

with e.g.

σXY = EA{cov(Y, X | A)} + covA{E(Y | A), E(X | A)}

= (.5 × 1 + .5 × 1)

+{.5 × (20 − 18)(5 − 8) + .5 × (16 − 18)(11 − 8)}

= −5
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In two clinics a new treatment (j = 1) is better, but....

C, Clinic counts for AB
k = 1 k = 2 ignoring C

A, Treat- B, Treatment B, Treatment B, Treatment

ment j = 1 j = 2 j = 1 j = 2 j = 1 j = 2

success new conv. new conv. new conv.

i = 1 : yes 60 4 30 200 90 204
(P1|jk) (30%) (20%) (75%) (50%) (38%) (49%)
i = 2: no 140 16 10 200 150 216

sum 200 20 40 400 240 420

rel. chance 30/20 = 1, 5 75/50 = 1, 5 38/49 = 0, 78
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Replicated relative chances are preserved since B and C are not associated

C, Clinic counts from

k = 1 k = 2 both clinics

A, Treat- B, Treatment B, Treatment B, Treatment

ment j = 1 j = 2 j = 1 j = 2 j = 1 j = 2

success new conv. new conv. new conv.

i = 1 : yes 6 40 30 200 36 240
(P1|jk) (30%) (20%) (75%) (50%) (60%) (40%)
i = 2: no 14 160 10 200 24 360

sum 20 200 40 400 60 600

rel. chance 30/20 = 1, 5 75/50 = 1, 5 60/40 = 1, 5
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Overall effect in a Gaussian linear system

For mean-centered variables X1, X2, X3 the triangular system with the

graph

corresponding linear equations can be written as:

E(X1 | X2, X3) = β1|2.3X2 + β1|3.2X3

E(X2 | X3) = β2|3X3

E(X3) = 0
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The overall effect of X3 on X1 is the sum of effects of ’two paths’ since

E(X1 | X3) = EX2|X3
E(X1 | X2, X3)

= EX2|X3
(β1|2.3X2 + β1|3.2X3)

= β1|2.3EX2|X3
(X2) + β1|3.2X3

= β1|2.3β2|3X3 + β1|3.2X3

or

β1|3X3 = (β1|2.3β2|3 + β1|3.2)X3
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Suppose a Response , T reatment, and Backround variable are standardized

to have mean zero and variance 1; they be linearly related and correlated as

cor =











1 −.32 .544

. 1 −.8

. . 1











then - by computing least squares regression coefficents - we get

Elin(R | T, B) = .32 × T + .8 × B

Elin(T | B) = −.8 × B

and βRT = −.32, i.e. effect reversal
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But for the same Elin(R | T, B) with T, B uncorrelated

Elin(R | T, B) = .32 × T + .8 × B

Elin(T | B) = 0 × B

βRT = .32, i.e. effect is preserved

The correlation matrix is

cor =











1 .32 .8

. 1 0

. . 1











Slide 10

On the overall effect for general distributions

generated over the graph

1
2

3

The joint density is in condensed notation

f123 = f1|23f2f3

The overall effect of variable 3 on variable 1 is the dependence in

f1|2 =

∫

f1|23f3dx3
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X2 ⊥⊥ X3 is sufficient for no effect reversal in the case variable X1 depends

monotonically on X2 for all (possible reordered) levels of X3

(Cox and Wermuth, 2003)

This means that at least qualitatively one obtains the same conclusions

regarding the direction of dependence of variable 1 on variable 2, no matter

whether variable 3 is explicitly considered (with f1|23) or not (with f1|2)

Without monotonous dependence - as e.g. in the Lienert data - no such

conclusions are possible
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