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Summary

Unnoticed confounding may severely distort the direction and strength of the dependence of a response

on some of its explanatory variables, given from a stepwise data generating process. This holds both

for direct confounding connected mainly to observational studies and for indirect confounding which

we define and study in this paper and which may also be present in intervention studies. We provide

graphical and matrix criteria to decide on the absence or presence of indirect confounding. For

linear systems with indirect confounding, we derive the corrections for linear least squares regression

coefficients that are needed to recover the coefficients of the generating process.
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1 Introduction

The paper concerns consequences of stepwise data generating processes for a sequence of random

variables (Y1, . . . , Yd), when some background variables are unobserved. Of the generating

dependencies, i.e. those that are part of the process for all d variables, some remain for the

observed variables but may become confounded, that is mixed with effects of paths containing

unobserved variables.

Confounding arises when for a response variable Yi with a generating dependence on Yj,

there is in the process also a (partly) unobserved path of a special type connecting this variable

pair (Yi, Yj). For example in linear systems, such a confounding path generates a residual

correlation that destroys the interpretation of least squares regression coefficients as measuring

a generating dependence. We speak of direct confounding when the confounding path concerns

exclusively variables omitted from the generating process and of indirect confounding when the

path contains, in addition, some observed variables of a special kind.
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When direct confounding is present, it may not be possible to recover the generating de-

pendence from the remaining observed variables alone. Possibilities and limitations for the

estimation of a generating dependence in the presence of so-called instrumental variables, have

for such cases been discussed in an extensive literature which builds on early work by Sargan

(1958). We show in this paper that even if there is no direct confounding, similar distortions of

generating dependencies may occur by indirect confounding and we derive corrections on the

basis of the observed variables, that are needed for linear least squares coefficients.

We assume that the structure of the generating process is captured by a graph of nodes

and edges, in which node i corresponds to variable Yi and an ij-edge for i < j is an arrow

starting at node j and pointing to node i. There are some potentially explanatory variables for

Yi, denoted by Yr(i) with r(i) = (i + 1, . . . , d). From each node in a subset of these, called the

parents of i and denoted by par(i), an arrow points to i; the parent nodes identify which of the

potentially explanatory variables are directly explanatory for Yi. Then, either a joint density

f is generated, written in a condensed notation of nodes, as

f =
∏d

i=1fi|r(i) =
∏d

i=1fi|par(i), (1)

or a linear system of recursive equations is generated with regressions of Yi on vector variables

Ya, so that conditional expectations in mean-centered variables are expressable with row vectors

Πi|a of least squares regression coefficients (Cramér, 1946, p. 302) as

E(Yi|Yr(i)) = Πi|par(i)Ypar(i). (2)

Processes given by equations (1) and (2) form a subclass of graphical Markov models, called

triangular systems; see Wermuth and Cox (2004) for derivations and discussions of different

types of properties and consequences.

By construction, the corresponding directed graph in ordered nodes V = (1, . . . , d), called

the parent graph, GV
par, is acyclic, i.e. it contains no directed cycles. Densities of arbitrary

form (1) and least squares equations (2) are said to be generated over a given parent graph,

by starting with the last background variable, Yd, continuing with Yd−1, up to Y1, a response

of primary interest.

We speak of a generating dependence of Yi on Yj in the system, if and only if j is a parent

of offspring i, i.e. for i≺ j and i < j. A path in the graph is a sequence of edges. A node j

is called an ancestor of node i if there is a direction-preserving path leading from j to node i,

i.e. for i≺ ◦≺ . . .≺ ◦≺ j. Then, one says alternatively that node i is a descendant of

j and that the sequence of edges is a descendant-ancestor path. An edge is viewed as path of

length one, so that a parent is also an ancestor. There is an only indirect dependence of Yi on

Yj if and only if node j is a forefather of i, i.e. when j is an ancestor but not a parent in GV
par.

We suppose further that the purpose of an empirical study is to investigate the generating

dependence of the primary response Y1 on one or several of its directly explanatory variables
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Yj , when only the first dN variables are observed, i.e. when we have an ordered split

V = (N,M), N = (1, . . . , dN), M = (dN + 1, . . . , d)

and variables YM are unobserved since marginalized over in the generating process.

A whole set of background variables may be unobserved, for instance in a controlled clinical

trial when some information on the health status of the patients is unavailable because it would

require previous records that were never obtained in the country of study, or that would need

tests which are considered to be too time-consuming before treatment. In a marketing study in

a particular region, information on previous buying behaviour may be unavailable for a whole

range of products as well as on related advertisement campaigns. In a study of the performance

of used cars, some information may no longer be accessible which only first owners can provide.

Then some of the generating dependencies may remain unchanged, others may appear modi-

fied. Such changes are essential for an understanding of processes, especially but not exclusively

when they are to be interpreted causally (Cox, 1992; Cox and Wermuth, 2001, 2004) or they

are used for comparing results of studies with smaller sets of background variables to those of

the generating process. Related issues have been discussed as so-called over-conditioning (Ed-

wards, 2000) or as changes in probability distributions when intervening on instead of observing

a stepwise generating process for densities (Lindley, 2002).
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Figure 1: Two examples of direct confounding. a) In the parent graph with Y1 dependent on both

Y2 and U , with Y2 dependent on U alone, the generating coefficient α of Y1 on Y2 becomes directly

confounded by βγ since the common parent path connecting (Y1, Y2) via U is unobserved; b) the

generating coefficient α becomes confounded by βγθ since the common ancestor path connecting

(Y1, Y2) via U, V is unobserved; c) the graph generated by marginalizing over the unobserved nodes in

both, Figures 1a) and 1b), the double edge points to direct confounding

It is well known that an unobserved variable which affects both a response Y1 and one of

its directly explanatory variables Y2 may severely distort a generating dependence. This case,

shown in GV
par of Figure 1a), is an example of direct confounding. In both Figures 1a) and

1b), the two parents graphs include some unobserved variables and standardized least squares

regression coefficients are attached to each arrow. Both lead to the same graph 1c) for the

remaining observed variables. Dashed lines indicate in linear systems correlated residuals. The

double edge, an arrow and a dashed line, points to a directly confounded dependence.

3



Graphical criterion 1: Detecing direct confounding in the parent graph. An offspring-parent

pair (i, j) (a pair with i≺ j) is directly confounded if it is connected in GV
par by an unobserved

common-ancestor path, i.e. by a path like

i≺ 6 6◦ ≻j or i≺ 6 6◦ . . .≺ 6 6◦ ≻ . . . 6 6◦ ≻j,

where the unobserved variables are shown as circles crossed out.

For linear systems of equations, the amount of confounding is compactly described in terms

of regression coefficients for variables standardized to have mean zero and variance one. For

Figure 1a) the generating equations are

Y1 = αY2 + βU + ε1

Y2 = γU + ε2 (3)

U = εu

with each residual, εi, being uncorrelated with the explanatory variables in the equation and

hence with each other. When the unobserved variable U is regarded as part of a new residual

the following two linear equations in observed variables result, which are an example of so-called

recursive regressions with correlated residuals (Goldberger, 1964)

Y1 = αY2 + η1

Y2 = η2 (4)

where the residuals, η, are correlated since both contain the unobserved variable U of the parent

graph in Figure 1a),

η1 = βU + ε1, η2 = γU + ε2.

In linear equations generated over any parent graph, each coefficient of dependence is a

least squares regression coefficient. For standardized variables in equations (3) and the parent

graph in Figure 1a), we have in particular α = (ρ12 − ρ1uρ2u)/(1 − ρ2
2u), where ρ denotes a

correlation coefficient. The generating coefficient α is preserved in the structural equations (4),

obtained by marginalizing in the generating equations (3) over U . But with α and the residual

correlation, there are more parameters than can be estimated, given observations for Y1 and Y2

alone.

By contrast, in the linear least squares equation for the dependence of Y1 on Y2

Y1 = ρ12Y2 + ε,

the standardized regression coefficient, ρ12, may be estimated, but is a confounded measure of

the generating coefficient α, since from equations (3) or (4) ρ12 = α+βγ. For the linear system
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to Figure 1b), one finds in a similar way that ρ12 = α+βγθ, so that the amount of confounding

of the generating coefficient α for this standardized least squares coefficient given is by βγθ.

A least squares regression coefficient may be substantially changed in magnitude or even in

sign compared to the generating coefficient. Whether such changes are of qualitative importance

for interpretation depends on the strengths of the unobserved parts of the generating process

and could be studied by sensitivity analysis (Rosenbaum, 2002).

An example of a generating system, in which marginalizing over variables U, V does not lead

to direct confounding, is described by the parent graph in Figure 2. It is for five quantitative

variables and one binary variable A which captures whether a bladder substitute leads to

continent or incontinent urine diversion.

Y, physical QoL

after surgery

Z, bodily

complaints

U, depressive

coping

A, diversion

X, physical QoL

before surgery

V, age

Figure 2: A potential generating process for physical quality of life after surgical removal of the

bladder as given for a subgroup of male patients with a bladder tumor; data by Hardt et al. (2004)

When both U and V are unobserved, there is no direct confounding of the generating

dependencies for pairs (Y,X) and (Y,A); see the graphical criterion 1. In the graph of the

remaining observed variables, no double edge is generated. Instead, two pairs with a missing

edge in the parent graph, (Y, Z) and (A,Z), become coupled, i.e. joined by an edge. The

new path from A to Y via Z causes confounding for (Y,A) in linear least squares regression

of Y on both A,X. Expressed differently, marginalizing over U, V and conditioning Y on

A,X generates indirect confounding of the generating dependence of Y on A. The dependence

of main substantive interest, of quality of life, Y , on the type of bladder restoration, A, is

confounded even though there is no direct confounding. It is an example of what we study in

this paper as indirect confounding, to be defined formally in Section 3.

The plan of the paper is to introduce some general notation and previous results in Section

2. In Section 3 linear systems of equations generated by unobserved background variables are

studied further to obtain least squares regression equations that are parameter equivalent, to

find corrections for indirectly confounded coefficients, and to derive the graphical criteria to

decide on the absence or presence of indirect confounding. In Section 4 we discuss briefly some
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related results. In an appendix we give a numerical example in which a least squares regres-

sion coefficient is indirectly confounded and has similar strength, but a reversal in direction,

compared to the generating dependence.

2 Some notation and previous results

2.1 Linear triangular systems

For a linear triangular system we take without loss of generality the d×1 vector random variable

Y to be mean-centered. The system of equations, corresponding to the conditional expectations

(2) and written in matrix form, is

AY = ε, (5)

where A is an upper-triangular matrix with unit diagonal elements and ε is a vector of zero-

mean, uncorrelated random variables, called residuals. The diagonal form of the residual co-

variance matrix cov(ε) = ∆ is equivalent to specifying that each row of A in (5) defines a linear

least squares regression equation.

With βi|j.c denoting the least squares regression coefficient of Yj when response Yi is regressed

on Yj and Yc, i.e. on all variables with indices listed after the conditioning sign, we build on

the Yule-Cochran notation for such coefficients. Then for instance, the matrix version of the

complete system of equation (3) generated over the graph in Figure 1a) for mean-centered

variables, is

AY =









1 −β1|2.3 −β1|3.2

0 1 −β2|3

0 0 1

















Y1

Y2

U









=









ε1

ε2

εu









,

The nonzero elements of A for i < j are in general

−aij = βi|j.r(i)\j = βi|j.par(i)\j , (6)

Zero values aij in the upper triangular part of A represent the vanishing contributions to the

regression of Yi on Yr(i) of all variables that do not correspond to parent nodes of i. Individual

regression coefficients may be collected in the row vector denoted by Πi|a. For instance in the

case a = (3, 5), the individual components of Πi|a are Πi|a = (βi|3.5 βi|5.3). For a split of a into

two components, each with possibly more than one element, a = b∪̇c, we write alternatively

Πi|a = Πi|b,c = (Πi|b.c Πi|c.b).

In this notation the vector version of Cochran’s (1938) recursion relation for linear least squares

regression coefficients (for a proof see Wermuth and Cox, 2004), becomes

Πi|c = Πi|c.b + Πi|b.cΠb|c. (7)
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It shows in particular that Πi|c = Πi|c.b if Πi|b.c = 0 and thereby proves equation (6).

The matrix pair (A,∆−1) may be obtained by successive orthogonalization (Gram, 1883;

Schmidt, 1907; Dempster, 1969, chapter 4) of Σ and the pair defines a triangular decomposition

of the concentration matrix with Σ−1 = AT∆−1A . This decomposition is unique for the given

fixed order (d, d− 1, . . . , 1).

Linear triangular systems have been introduced as path analyses in genetics (Wright, 1923;

1934) and as linear recursive equations with uncorrelated residuals in econometrics (Wold,

1954). They form a subclass of linear structural equations, see e.g. Goldberger (1964). Early

studies of their properties include Tukey (1954), Wermuth (1980), Kiiveri et al. (1984).

A matrix representation, A, of the parent graph GV
par, associated with any given linear

triangular system, is binary, i.e. has zero-one elements, and is of upper-triangular form. It is

obtained as the indicator matrix of A in equation (5)

A = In(A).

It has been called the edge matrix of the parent graph, sometimes denoted by Ed(GV
par), and it

gives the defining structural zeros of the family of real-valued matrices of which A is a member.

2.2 Generating processes for linear recursive regressions with correlated residuals

If in a linear triangular system (5) common background variables are unobserved, then linear

recursive equations with correlated residuals are generated, another subclass of linear struc-

tural equations. More generally, let (N,M) be an ordered split of V so that YN denotes the

first dN variables of the generating process that remain observed and YM denotes the vari-

ables marginalized over in the generating process so that they are now unobserved. Then, the

recursive equations induced by the generating system (3), are

ANNYN = ηN , (8)

where
ηN = εN − ANMA

−1
MMεM , κ = cov(ηN ) = ∆N + (ANMA

−1
MM)∆M(ANMA

−1
MM)T,

and ANM = [A]N,M denotes the submatrix of A of rows N and columns M , both ANN and AMM

are upper-triangular submatrices of A. Orthogonality, i.e. uncorrelatedness, of the parameters

in equations (8) to those in YM , may be recognized by direct computations or as a special case

of Corollary 1 in Wermuth and Cox (2004).

We denote the graph in nodes N of these induced recursive regressions by GN
rec. It has two

types of edge, arrows for dependencies, corresponding to ANN and dashed lines for associations,

corresponding to κ, both defined in terms of submatrices of the generating edge matrix A, as

Ed(GN
rec) = {ANN , K = In[INN + (ANMAMM)(ANMAMM)T]}, (9)
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where

AMM = In[(2IMM −AMM)−1],

and e.g. INN denotes the identity matrix of size dN ; for a proof see Lemma 4b) and equation

(33) of Wermuth and Cox (2004).

The upper triangular edge matrix for the arrows, ANN , gives the subgraph induced by

nodes N in the parent graph so that there is an ij-arrow in GN
rec if and only if there is an

ij-arrow in GV
par. The symmetric edge matrix, K, has an off-diagonal ij-one, i.e. gives a dashed

line edge for nodes i, j, if and only if an unobserved common-ancestor path connects nodes i

and j in GV
par. To see this, note equation (9), where an ik-one in ANM points to an ik-arrow

in the parent graph with i in N and k in M and a kl-one in AMM points to a descendant-

ancestor path connecting k to l with all nodes in M , so that there is a nonzero ij-entry in

(ANMAMM)(ANMAMM)T for a common-ancestor path with all nodes along it in M .

Recursive regression graphs generated in this way by equations (9) may have double edges;

see equations (3) as the simplest example. For graphs associated with general Gaussian struc-

tural equation models, Koster (1999) has shown how to read off all independencies. Also Smith

(1989) has pointed out that criteria for reading probabilistic independencies off graphs may, in

addition, be used for reading linear independencies off the same graph for corresponding linear

equations, in which no distributional form is specified for the residuals. Essential for implied

independencies are configurations defining so-called collision nodes t

◦ ≻t≺ ◦, ◦ t≺ ◦, ◦ t ◦ .

Separation criterion for GN
rec (Koster, 1999). The recursive regression graph (9) implies for all

Gaussian equations (8) that Yi independent of Yj given another (vector) variable YC , if and

only if i and j are separated by C in GN
rec, i.e. along every path from i to j there is either a

collision node, which is together with all its descendants outside C, or there is a non-collision

node within C (or both).

A pure collision path in GN
rec is a path for which all nodes along it, i.e. all nodes except the

path endpoints, are collision nodes. One consequence of the separation criterion is that nodes

i and j are not separated by nodes in C when there is a pure collision path connecting (i, j),

with each collision node along it having a descendent in C. For linear systems, where each edge

present in GN
rec corresponds to a nonzero parameter in equations (8), such a path connecting

(i, j) means a nonzero contribution to the partial correlation of Yi, Yj given YC .

3 Indirect confounding in the absence of direct confounding

In this Section we can now study linear recursive regression equations (8) for which the graph

GN
rec, with edge matrix given by equation (9), has at most one edge for each node pair so that

there is no direct confounding of generating dependencies.
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3.1 The amount of indirect confounding

To simplify notation we write the induced recursive regressions (8), in observed variables Y

and without direct confounding, as

HY = η, (10)

with cov(η) = κ and H = ANN so that the observed covariance matrix ΣNN and its inverse,

the overall concentration matrix, are

ΣNN = H−1κH−T, Σ−1
NN = HTκ−1H,

with elements σij of ΣNN and κij of κ relating to nodes i and j of the generating process. Lack

of direct confounding implies that for each pair (i, j) we can have hij 6= 0 or κij 6= 0 but not both.

Graphical criterion 2. Detecting indirect confounding in a recursive regression graph without

double edges. An offspring-parent pair (i, j) (a pair with i≺ j) is indirectly confounded if it

is connected in GN
rec by a collision-forefather path, i.e. by

i ◦ ◦ . . .◦ j, or i ◦ . . .◦ ◦≺ j,

where all nodes along the path are forefather nodes of i, i.e. ancestors but not parents.

For equations (10), where each edge in the corresponding recursive regression graph corre-

sponds to a nonzero parameter, the two types of paths shown above are association-inducing.

There is only one further type of a pure collision path. It has the configuration i ◦, in the

path above on the right-hand side, replaced by i ≻◦, but then not all nodes along the path

could be forefathers of node i. Therefore, the two types of path of the graphical criterion 2, are

the only types of path which can lead to indirect confounding of the generating dependence for

(i, j) by marginalizing over M and conditioning on the parents or the ancestors of i, present in

the recursive regression graph.

To derive the amount of confounding, we note first that for i = dN , we have by the triangu-

larity of H that σii = κii. For i = dN − 1, the relations between σii, βi|i+1 and κii, hi,i+1, κi,i+1

depend on the zero constraints, i.e. on whether hi,i+1 = 0 or κi,i+1 = 0 or both, and are readily

obtained. Next, we assume that for some other node i the submatrices of ΣNN , H and κ are

given which correspond to nodes in N larger than i, so that we can consider the relations for i

together with its ancestor nodes in GN
rec.

For this, we denote by a = anc(i) the set of ancestor nodes of node i in the recursive

regression graph, by S = (i, anc(i)) of size dS, the ordered set that we call its stem family, and

by O the set of nodes outside this family, O = N \ S. Since no directed path leads from any

node in O to S, it is possible to omit YO from the system without affecting relations within
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YS. This follows by orthogonalizing the two systems in O and S, which have HSO = 0, and are

written in the order (O, S) as

(

HOO HOS

0 HSS

)(

YO

YS

)

=

(

ηO

ηS

)

.

If we denote by (GSS,∆
−1
SS) the triangular decomposition of κ−1

SS, obtained by starting with

the last component in S and proceeding to the first, then the two representations

κ−1
SS = GT

SS∆−1
SSGSS, Σ−1

SS = HT
SSκ

−1
SSHSS

can be combined to give a triangular decomposition of the concentration matrix of YS with

(PSS,∆
−1
SS) for the same fixed order. By the uniqueness of these decompositions

PSS = GSSHSS. (11)

with

GSS =

(

1 −γi|a

0 Gaa

)

, HSS =

(

1 hia

0 Haa

)

, PSS =

(

1 −Πi|a

0 Paa

)

,

where γi|a = κiaκ
−1
aa denotes the least squares regression coefficient vector of ηa when regressing

the residual ηi on ηa.

The key relation between the least-squares regression coefficients in Πi|a and the equation

parameters in hia is then from (11)

−Πi|a = hia − γi|aHaa. (12)

This quantifies the amount by which the least squares regression coefficients are indirectly

confounded. One component of Πi|a is the vector of generating dependencies hia, the other

contains contributions of confounding paths. For purposes of estimation it is useful to study

parameter equivalence of the least squares and the recursive regression equations.

3.2 Parameter equivalent equations

In the case of parameter equivalence of two sets of parameters, each parameter of the first set

can be obtained in terms of those in the second set and vice versa. Here we consider a linear

system with constraints specified by the graph GN
rec without double edges and show parameter

equivalence of the ith least squares equation involving (Πi|a, δii) and the i-th recursive regression

equation with parameters (hia, κia, κii), both given Σaa and its decompositions. If we start

with the recursive regression equation, then the parameters of the least squares regression

equation are given by equation (12) and δii = [∆]i,i.
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Conversely, given the parameters of the i’th least squares equation each parameter in the

i’th recursive regression equation may also be obtained. To see this, we define hia and kia using

the matrix Qaa = κ−1
aaHaa, possibly in reordered form. We consider two cases separately.

First, let GN
rec have no missing edge for node i and nodes in a = b∪̇c, where b denotes nodes

with arrows pointing to node i and c denote nodes with dashed lines connecting node i to

ancestors of i in GN
rec, then κib = 0, hic = 0 and

κic = Πi|c.bQ
−1
cc

−hib = Πi|b.c + Πi|c.bQ
−1
cc Qcb

κii = σii + σiah
T
ia + hiaH

−1
aa κai. (13)

The result follows by using the zero constraints on equation parameters and residual covariances

and rewriting equation (12) as

−(Πi|b.c Πi|c.b) = (hib 0) − (0 kic)Qaa.

This gives

−Πi|b.c = hib − kicQcb, −Πi|c.b = −kicQcc,

and therefore the first two equations. The last equation results from kSi = [HSSΣSSH
T
SS]S,i.

Second, let there be some ancestor nodes of i not coupled to node i, i.e. there be a a subset

d of a with ij-missing edges in GN
rec, so that we can take a = b∪̇c∪̇d with b and c as in the first

case. Then, with

−(Πi|b.cd Πi|c.bd Πi|d.cb) = (hib 0 0) − (0 kic 0)Qaa

we get Πi|d.cb = −κicQcd, in the first two equations of (13) the coefficients Πi|c.b are replaced by

Πi|c.bd and Πi|b.c by Πi|b.cd, while the last equation remains unchanged.

Parameter equivalence implies that maximum-likelihood estimates are in the same one-to-

one correspondence (Fisher, 1922; p. 327). This applies here to the two types of equation

parameters given Σaa in Gaussian systems and it is possible to justify these estimates also for

non-Gaussian linear systems.

If we define next an upper-triangular matrix F by adding −Πi|a from equation (12) to row

i of the identity matrix INN for i = 1, . . . , N − 1, then, in general, this matrix does not give

the equation parameters in a triangular decomposition of the overall observed concentration

matrix Σ−1
NN . Instead,

F ΣNNF
T = τ (14)

may contain some nonzero residual covariances τij and therefore defines a subclass of recursive

regression models without direct confounding, in which each equation parameter coincides with

a least squares coefficient in the observed variables.
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It follows by the separation criterion given in Section 2.2 and by construction that linear

equations with F from (14) preserve the independencies of the corresponding system of re-

cursive equations (10). The key relation (12) between rows in F and in H implies that the

intepretation of equation parameters in F may be drastically changed compared to the gen-

erating dependencies in H (see the numerical example in the appendix), but that in linear

systems it is always possible to correct for this indirect confounding to recover the generating

dependencies.

3.3 Illustrations for the correction of indirect confounding

We give two small examples as illustrations. The first is a linear system to a parent graph as in

Figure 2, the second is an example for indirect confounding as it may occur in an intervention

study.

Illustration 1. In the following equations in four observed variables and two uncorrelated

unobserved variables U and V , all variables are mean-centred

Y1 = αY2 + γY3 + βU + ε1, Y2 = δY4 + ε2, Y3 = θV + ε3, Y4 = ψU + ξV + ε4. (15)

An interpretation of equation parameter α, for instance, is α = β1|2.3U = β1|2.34U , since

Y2, Y3 and U are the directly explanatory variables of Y1 and this response is generated without

a contribution of variable Y4. Figure 3a) shows the corresponding parent graph.

(a)

1

2
4

VU
3

(b)

1

2

4

3

a

g

d

Figure 3: (a) Parent graph of the generating equations (15) in four observed and two unobserved

variables (U, V ). (b) Recursive regression graph of equations (16) in observed variables, derived from

parent graph in (a) by marginalizing over (U, V ); indirect confounding, present for linear least squares

regression coefficients in observed variables measuring dependence of Y1 on Y3 given Y3, Y4, can be

corrected to recover the generating dependence γ.

The corresponding system of recursive equations are obtained from the generating equations

(15) by using

η1 = (βU + ε1), η2 = ε2, η3 = (θV + ε3), η4 = (ψU + ξV + ε4)

to give

Y1 = αY2 + γY3 + η1, Y2 = δY4 + η2, Y3 = η3, Y4 = η4, (16)
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so that cov(η) = κ is not a diagonal matrix, there are nonzero residual correlations κ14 and κ34.

In this example we have AMM = IMM so that equation (9) reduces to

K = In[INN + A T
NMA T

NM ],

and indicates unobserved common-parent paths.

The ancestors of node i = 1 are anc(1) = (2, 3, 4), the coefficient matrix HSS for the

recursive regressions to graph 3b) and the triangular decomposition matrix GSS of κ−1
SS (see e.g.

Wermuth et al., 2005) are

GSS =













1 0 κ14κ34/D34 −κ14D3/D34

0 1 0 0

0 0 1 −κ34/D4

0 0 0 1













, HSS =













1 −α −γ 0

0 1 0 −δ

0 0 1 0

0 0 0 1













,

where D denotes determinants of submatrices of κ; Di = κii, Dij = κiiκjj − κ2
ij . Thus, from

element (1,3) of PSS = GSSHSS or from equation (12), we get the required correction of β1|3.24

to recover γ = −h13 as

γ = β1|3.24 + κ14κ34/D34,

while it is seen from element (1,2) of PSS that β1|2.34 is an unconfounded measure of α. Since

Figure 3b) implies β2|3.4 = 0, it follows, in addition, from equation (7) that β1|3.24 = β1|3.4.

Illustration 2. As a second illustration we use in Figure 4 an example due to Robins and

Wasserman (1997).

(a) (b)

Y, outcome of

main interest

X, intermediate

outcome

Tp, past treatment

Tr, recent  treatment

U, health status

Y

X

Tp

Tr

a

g

d

q

Figure 4: (a) Generating directed graph of Illustration 2 in four observed variables and U . (b)

Recursive regression graph in observed variables, derived from graph (a) by marginalizing over U ;

indirect confounding, present in the least squares regression coefficient in observed variables measuring

dependence of Y on Tp given Tr and X can be corrected to recover the generating dependence γ.

The authors introduced it to show that the coefficient of dependence of the main outcome

variable, Y , on past treatment, Tp, given a more recent treatment, Tr, and the health status
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of a patient, U , cannot be consistently estimated by any least squares regression coefficient in

observed variables, that is for U unobserved, in spite of using randomization when administering

the two treatments.

The past treatment Tp is decoupled from U due to full randomized allocation of treatments

to patients, there is an intermediate outcome, X. The recent treatment Tr is decoupled from

Tp and U since allocation of treatments to patients is randomized conditional on the level of

intermediate outcome X. The purpose is to estimate treatment effects as present in the data

generating process, i.e. given the health status U .

For (Y, Tr, X, Tp) = (1, 2, 3, 4) and i = 1, we have anc(i) = (2, 3, 4), the coefficient matrix

HSS for the recursive regressions to graph 2b) and the triangular decomposition matrix GSS of

κ−1
SS are

GSS =













1 0 −κ13/D3 0

0 1 0 0

0 0 1 0

0 0 0 1













, HSS =













1 −α 0 −γ

0 1 −δ 0

0 0 1 −θ

0 0 0 1













,

so that from element (1,4) of GSSHSS we get the required correction to obtain γ = −h14 as

γ = β1|4.23 + κ13θ/D3.

Estimates are obtained by least squares regressions, using equations (13).

3.4 Matrix criteria for paths of indirect confounding

The key relation (12) for the amount of indirect confounding in linear systems without direct

confounding specifies the vector of regression coefficients Πi|a in a univariate linear least squares

regression of Yi on its directly and indirectly explanatory variables Ya. A corresponding edge

matrix Pi|a can be viewed as the part of a univariate regression graph, connecting offspring

node i to its parent and forefather nodes.

From the edge matrix results in Wermuth and Cox (2004) we denote by clos(Kaa), the edge

matrix of an undirected graph, obtained by closing each path in the graph with edge matrix

Kaa by an edge, and get for −Πi|a = hia − κiaκ
−1
aaHaa the corresponding edge matrix as

Pi|a = In[Hia + Kia clos(Kaa)Haa]. (17)

Here, Hia and Haa point to arrows present in the parent graph as well as in the recursive

regression graph, i.e. to generating dependencies. The added matrix product can be translated

into paths of indirect confounding. The first two components, Kia clos(Kaa) give an undirected

path from a node in a to i in the graph with edge matrix K which generates a nonzero regression

coefficient when regressing residual ηi on ηa. The edge matrix Haa points to arrows present
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in the recursive regression graph. Then for j in a, the matrix product are seen to define the

following two types of path

i a a . . . a j, i a a . . . a a≺ j,

which are the two types of paths derived before in Section 3.1 using the separation criterion.

Since these paths apply to all linear systems generated over a given parent graph and leading

to the recursive regression graphs of equations (10), they also apply to distributions of arbitrary

form when generated over the same graph (see Wermuth and Cox, 2004; Theorem 4). Such

paths are association inducing only if the bivariate densities along the path belong to, what are

called, complete families of distributions.

4 Discussion

Special cases of what we call indirect confounding of least squares coefficient have been rec-

ognized early, see Haavelmo (1943), van de Geer (1971), and Robins and Wasserman (1997).

In a more recent discussion of confounding by Greenland, Robins and Pearl (1999) this is not

considered in detail, its existence being, however, mentioned in the conclusion. The results in

this paper provide general path criteria to decide on the presence of confounding.

The result in this paper relate to the ancestral graphs and models of Richardson and Spirtes

(2002), in that they provide recursive regression graphs, which are independence equivalent to

ancestral graphs under appropriate conditions, as well as the means of adjusting linear least

squares regression coefficients for indirect confounding.

Since identification is another necessary but not sufficient condition for parameter equiva-

lence, our results on parameter equivalence supplement also graphical conditions for the iden-

tification of linear recursive equations with correlated residuals; see Brito and Pearl (2002) and

Stanghellini and Wermuth (2005).

The recursive regression graphs to equations (10) are special graphs obtainable by marginal-

izing and conditioning. Corresponding computational tools to construct induced graphs have

been made available as open source software for the R Project by Marchetti (2005), see also

Marchetti and Drton (2003).

The graphical criteria developed here for detecting indirect confounding apply to distribu-

tions of any form generated over a given parent graph. However for other than linear relations,

corrections of observed dependencies, needed to recover the generating dependencies, still have

to be derived. First results in this direction involve generalizations of Cochran’s recursion re-

lation for regression coefficients (Cox and Wermuth, 2003).
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Appendix. Illustration of effect reversal due to indirect confounding

The following numerical example to Illustration 1 shows a case of effect reversal for standardized

variables. The negative values of the linear least squares coefficients in the generating system

to Figure 3a) are in A, where Σ−1 = AT ∆−1A is the inverse of a correlation matrix.

A =























1 −.30 −.36 0 −.90 0

0 1 0 −.60 0 0

0 0 1 0 0 −.90

0 0 0 1 .65 .75

0 0 0 0 1 0

0 0 0 0 0 1























,
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diag(∆) = (.2685, .6400, .1900, .0150, 1, 1).

The observed variables correspond to rows and columns 1 to 4 of A, variable U to column 5 and

variable V to column 6. The matrix H of equation parameters to Figure 3b) is the submatrix

of A for the observed variables and for i = 1 with a = anc(i) = (2, 3, 4) we also have HSS = H.

The correlation matrix ΣNN to Figure 3b) of the four observed variables and the coefficient

matrix F of the triangular decomposition of Σ−1
NN , which coincides in the example with PSS for

i = 1, are

ΣNN =













1 −.1968 .2385 −.6480

. 1 −.4050 .6000

. . 1 −.6750

. . . 1













, PSS =













1 −.3000 .3654 1.0746

0 1 .000 −.6000

0 0 1 .6750

0 0 0 1













.

The diagonal elements of ∆SS are

δ11 = .4498, δ22 = .6400, δ33 = .5444, δ44 = 1.

Nothing peculiar can be detected in the correlation matrix of the observed variables: there are

no very high individual correlations and there is no strong multicollinearity.

The covariance matrix of residual covariances, κ = HΣNNH
T , and the matrix GSS of the

triangular decomposition of κ−1 are

κ =













1.0785 0 0 −.5850

. .6400 0 0

. . 1 −.6750

. . . 1













, GSS =













1 0 .7254 1.0746

0 1 0 0

0 0 1 .6750

0 0 0 1













.

The generating coefficients of dependence of Y1 on Y2 and Y3 given U are, respectively, β1|2.3U =

.3000 and β1|3.2U = .3600. The least squares regression coefficient of Y3, when regressing Y1 on

Ya, is, from equation (12) or from element (1,3) of PSS = GSSHSS, instead β1|3.24 = −.3654, a

reversal in sign and similar in strength compared to the generating dependence, whereas β1|2.34

measures β1|2.3U without any confounding.
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