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Abstract.

We introduce a calculus for real-valued square matrices which we call partial inversion
and apply it to generating different types of statistical joint response models from a
system of recursive linear equations. We also give an associated calculus for binary
matrices to find what we call structural zeros and apply it to determine which elements
of a set of variable pairs constrained by an independence statement before partial
inversion remain so constrained after partial inversion, that is for a given set of new
parameters. This permits the derivation of a wide range of different consequences of an
assumed independence structure and it opens the road to compare and possibly falsify
them with data for small subsets of the variables in the generating system.
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1 Introduction

Methods for solving linear equations, or equivalently for matrix inversion, were
known in China more than 2000 years ago [37], [22]. Into surveying, such
methods have been introduced, for instance under the name of Gauss-Jordan
elimination [21] in German, of Cholesky-factorization [5] in French, and of the
Gauss-Doolittle method [14] in American geodesic literature. In mathematics
and statistics such methods for symmetric matrices have been called successive
orthogonalization [20], [33] and the sweep operator [4], [11]. Aspects of ma-
trix decomposition and computational efficiency have been studied in numerical
analysis and computer science, see e.g. [16], [36], [19]. We introduce a calculus
for partial inversion of real-valued matrices, derive its properties and relate it
to different types of block-triangular decompositions of positive definite matrices.

Such matrix decompositions relate closely in a statistical context to linear
graphical chain models. With graphical chain models [9], [15], [25], [39] one can
formulate relations among many random variables of arbitrary distributional
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form, such that simplifying structure results from conditional independencies
and is captured in graphs in which nodes represent random variables and miss-
ing edges indicate sets of parameters constrained to take value zero, capturing
independence. In such systems, there is typically a direction of dependence be-
tween some but not all pairs of nodes.

These multivariate statistical models combine three essential concepts which
have been developed independently at the beginning of the 20th century. The
geneticist Wright [43] used directed graphs to formulate hypotheses how linear
relations in his data could have been generated. The probabilist Markov [28] in-
troduced the notion of conditional independence to represent seemingly complex
structures by a sequence of univariate dependencies, and the physicist Gibbs [18]
characterized the higher density of a substance by an undirected graph, in which
nodes have a larger number of nearest neighbors. Many properties and estima-
tion algorithms for different subclasses of graphical models have been established
in the statistical literature in the last 30 years, but these have so far not been
connected to properties of matrix operators.

Key questions in statistical modeling are: how is the strength and direction of
dependence between two random variables changed when their set of condition-
ing variables is modified, and in which situations are both properties preserved.
These questions concern the parameters of a model which are free to vary, often
within some range of non-vanishing dependence. Answers are essential for com-
paring results of different empirical studies on the same set of core variables. In
two studies of even the same set of variables, different sequences for the variables
may be used for analysis or only a partial ordering be given, since some variables
are to be considered as joint responses. Or, it may be that some variables are
omitted, i.e. marginalized over, or a sub-population is studied for which some
levels of other variables are held fixed, i.e. are conditioned on.

Closely related are inquiries into change and preservation of independence
constraints specified by a given graph. For this, we introduce a calculus for
finding structural zeros after partial inversion, derive its properties and apply
it to graphical chain models. This calculus operates on binary matrices. Many
preserved independencies typically simplify statistical analysis even when the in-
terpretation of the constraints and of the unconstrained parameters is changed.

Necessary for the new matrix results are a minor modification of the sweep
operator, so that it becomes applicable to real valued, square matrices instead
of only to symmetric matrices, and a minor modification of adjacency matrices,
the binary matrix representations traditional in the graph theoretic literature, so
that matrix products of the new binary matrices, called edge matrices, become
analogous to the real-valued matrix products in partial inversion.

The plan of the paper is to introduce partial inversion in Section 2. In Section
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3, partial inversion is applied to symmetric matrices and related to the statistical
concept of linear least squares regression coefficients, to conditional covariance
matrices and to inverse marginal covariance matrices. Different properties of
these types of parameters motivate the use of independence graphs with several
types of edge. In Section 4, the discussion is extended to parameter and edge
matrices of linear graphical chain models induced after partial inversion. In a
short final section we point to some open problems.

2 Partial inversion and its properties

2.1 Definition and basic properties

Let N = {1, . . . , dN} be the index set of rows and corresponding columns of a
square matrix M , whose principal submatrices are all invertible, i.e. for which
the inverse of Maa = [M ]a,a exists for every nonempty subset a of N , and is
denoted by M−1

aa . Let further N be split into two arbitrary components a and b,
so that, if necessary after permuting rows and columns, we get N = (a, b). For
two real valued vectors x and y split accordingly, we are to introduce below in
equation (2.2) an operation on M , to be called partial inversion and denoted by
inva, such that for

M

(

xa

xb

)

=

(

ya

yb

)

the linear relation after partial inversion is

(2.1) invaM

(

ya

xb

)

=

(

xa

yb

)

.

For this we write M and its inverse M−1 in partitioned form as

M =

(

Maa Mab

Mba Mbb

)

, M−1 =

(

Maa Mab

M ba M bb

)

.

Partial inversion of M on subset a of N and a convenient notation are then
defined by

(2.2) invaM =

(

M−1
aa −M−1

aa Mab

MbaM−1
aa Mbb − MbaM

−1
aa Mab

)

=

(

M−1
aa −Ma↽b

Mb⇁a Mbb.a

)

.

The notation Ma↽b reminds us that the matrix Mab is multiplied from the
left by M−1

aa and Mbb.a is the notation for what is often called a Schur matrix.
That the operator defined in equation (2.2) is of the desired form in equation
(2.1) is verified by writing the component for a from Mx = y as

ya = Maaxa + Mabxb

and substituting it on the left-hand side of equation (2.1).
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One use of partial inversion is to decompose matrix inversion into steps of
the same kind, which lead to the inverse of M if applied in sequence to each
element of N . In the following we study the properties of this operator, derive
several recursion relations from it and show some of its applications to linear
statistical models, to matrix representations of graphs. Some of the results hold
under weaker assumptions, but our main applications concern positive definite
matrices and unit triangular matrices, i.e. triangular matrices having ones along
the diagonal, for both of which all principal submatrices are invertible.

Lemma 2.1. Basic properties of partial inversion.
(i) Partial inversion on component a is undone by reapplying it to a:

invainvaM = M ;

(ii) the matrix M partially inverted on a is the inverse of M after partial inver-
sion on the remaining components b:

invaM = (inv bM)−1;

(iii) partial inversion on component a of M followed by partial inversion on the
remaining components b gives the inverse of M :

inv binvaM = M−1;

(iv) the order of partial inversion on components a and b can be interchanged:

inv binvaM = invainv bM ;

(v) the matrix M partially inverted on a coincides with its inverse M−1 partially
inverted on the remaining components b:

invaM = inv bM
−1;

(vi) inversion and partial inversion can be interchanged:

(inv bM)−1 = inv bM
−1 .

Proof. Properties (i), (iii) and (iv) are direct from equation (2.1), property
(v) results with property (i) applied to partial inversion on b in (iii), and (vi) is
direct from (ii) and (v).
For property (ii) equality results from equation (2.1) and

invbM

(

xa

yb

)

=

(

ya

xb

)

, (invbM)−1

(

ya

xb

)

=

(

xa

yb

)

and the proof is complete.
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It is, however, instructive to prove the basic properties of the operator also
directly by matrix calculations. Then, case (i) results by applying partial inver-
sion to component a of the matrix invaM in equation (2.2). Direct computation
gives property (ii), with

(

M−1
aa −Ma↽b

Mb⇁a Mbb.a

)(

Maa.b Ma⇁b

−Mb↽a M−1
bb

)

=

(

Iaa 0ab

0ba Ibb

)

.

Partial inversion on component b applied to invaM in equation (2.2) can be
written as

(2.3) inv binvaM = invNM =

(

M−1
aa + Ma↽bM

−1
bb.aMb⇁a −Ma↽bM

−1
bb.a

−M−1
bb.aMb⇁a M−1

bb.a

)

and

(Maa Mab)invNM = (Iaa 0ab), (−M−1
bb.aMb⇁a M−1

bb.a)M = (0ba Ibb)

proving that M−1 has the form of the matrix in equation (2.3), so that property
(iii) holds. The exchangeability in case (iv) follows from case (iii) and a as well
as b being arbitrary nonempty subsets of N .

2.2 Directly related results

Partial inversion in equation (2.2) generalizes the sweep operator for symmet-
ric matrices of Beaton [4] for which Dempster [11], [12] has shown that it has
properties (iii) to (v). The remaining properties of Lemma 2.1 do not hold since
sweeping is undone by resweeping, which is similar but not identical to sweeping.
The sweep operator differs from equation (2.2) by the minus sign in the upper
part and gives −M−1 after sweeping on N while partial inversion on N gives
M−1. If N is partitioned into more than two components the definition of both
these operators still applies component by component.

Property (v), written here explicitly for partial inversion of M on b, is a
standard equality for partitioned inverses:

(2.4)

(

Maa.b Ma⇁b

−Mb↽a M−1
bb

)

=

(

(Maa)−1 −(Maa)−1Mab

−M ba(Maa)−1 M bb.a

)

.

Compact explicit forms for the partitioned inverse result from equation (2.3)
and the basic properties (iv) and (v) of partial inversion, such as

(2.5) Maa = M−1
aa.b, −Mab = M−1

aa.bMa⇁b = Ma↽bM
−1
bb.a.

Equation (2.5) permits us to introduce some further notation for components
of partially inverted matrices. For instance, for N = {G, J} with G = {a, b} and
J = {c, d}, component (G, d) in MG↽d = M−1

GGMGd is



6 N. WERMUTH, D. R. COX AND M. WIEDENBECK

(2.6)

(

M−1
aa.b −M−1

aa.bMa⇁b

−M−1
bb.aMb⇁a M−1

bb.a

)(

Mad

Mbd

)

=

(

M−1
aa.bMad.b

M−1
bb.aMbd.a

)

=

(

Ma↽d.b

Mb↽d.a

)

and component (d, G) is

(2.7) Md⇁G =
(

Mda.bM
−1
aa.b Mdb.aM

−1
bb.a

)

=
(

Md.b⇁a Md.a⇁b

)

,

where, e.g., Mad.b = Mad − MabM
−1
bb Mbd. The notation Mb↽d.a reminds us

that partial inversion has first been carried out on a, then by additional partial
inversion on b, the component (b, d) is the matrix Mbd.a multiplied to the left
by M−1

bb.a. Similarly, Md.a⇁b is the matrix Mdb.a multiplied to the right by M−1
bb.a.

For N = {a, K} with K = {b, c, d}, the change of partial inversion on a to
partial inversion on {a, b} = G can now be studied in Theorem 2.2 and Corollary
2.3 below by using the following types of compact expressions for the resulting
matrices

(2.8) invaM =











M−1
aa | −Ma↽b −Ma↽c −Ma↽d

−−− − −−− −−− −−−
Mb⇁a | Mbb.a Mbc.a Mbd.a

Mc⇁a | Mcb.a Mcc.a Mcd.a

Md⇁a | Mdb.a Mdc.a Mdd.a











,

and, by using equation (2.5), we get

(2.9) invGM =











M−1
aa.b −Ma↽bM

−1
bb.a | −Ma↽c.b −Ma↽d.b

−M−1
bb.aMb⇁a M−1

bb.a | −Mb↽c.a −Mb↽d.a
− −−−− −−−−− − −−−−− −−−−−

Mc.b⇁a Mc.a⇁b | Mcc.ab Mcd.ab

Md.b⇁a Md.a⇁b | Mdc.ab Mdd.ab











.

2.3 Main derived properties

Now the main properties of partial inversion can be summarized.

Theorem 2.2. Commutativity, exchangeability and symmetric difference for
partial inversion. Let arbitrary components a, b, c partition N , G = {a, b}, and
the matrix M be accordingly partitioned, then

(i) inva invbM = invb invaM = invabM ;

(ii) [invaM ]G,G = invaMGG;

(iii) invab inv bcM = invacM .

Proof. The commutativity in case (i) results with the change from equa-
tion (2.8) to equation (2.9) and properties (iii) and (iv) in Lemma 2.1. The
exchangeability in case (ii) of a submatrix chosen after partial inversion and
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partial inversion carried out on a submatrix is a consequence of property (i) in
this Theorem and of the definition in equation (2.2) of the operator. The sym-
metric difference property (iii) results from the cases (i) both in this Theorem
and in Lemma 2.1.

Illustration 2.1. For a square matrix M of dimension dN = 3 and elements
mij partial inversion on a = {1, 2}, carried out in two steps by starting with row
and column 1, gives directly from equation (2.2)

inv1M =







1/m11 | −m12/m11 −m13/m11
−−−− − −−−−− −− −−−

m21/m11 | m22.1 m23.1

m31/m11 | m32.1 m33.1






.

Partially inverting this matrix on row and column 2, using equation (2.5) and
exploiting case (i) of Theorem 2.2 gives the compact expression

inv12M =







1/m11.2 −m12/(m11m22.1) | −m13.2/m11.2

−m21/(m11m22.1) 1/m22.1 | −m23.1/m22.1
−−−−−−− −−−−−−−− − −−−−−−

m31.2/m11.2 m32.1/m22.1 | m33.12






.

2.4 Recursion relations

General recursion relations result from explicit expressions of the matrices ob-
tained after successive steps of partial inversion.

Corollary 2.3. Recursion relations obtained by partial inversion. Let the
subsets a, b, c, d partition N and the matrix M be accordingly partitioned. Let
further G = {a, b} , H = {a, b, c}, J = {c, d} and K = {b, c, d}. Then, when M
is partially inverted in sequence on a, b, c, there results

(i) for elements corresponding to (c, d) in MKK.a and in MJJ.G

Mcd.a = Mcd − McaM
−1
aa Mad, Mcd.ab = Mcd.a − Mcb.aM

−1
bb.aMbd.a ;

(ii) for elements corresponding to (a, d) in MG↽J and in MH↽d

Ma↽d.b = Ma↽d − Ma↽bMb↽d.a, Ma↽d.bc = Ma↽d.b − Ma↽c.bMc↽d.ab ;

(iii) for elements corresponding to (d, a) in MJ⇁G and in Md⇁H

Md.b⇁a = Md⇁a − Md.a⇁bMb⇁a, Md.bc⇁a = Md.b⇁a − Md.ab⇁cMc.b⇁a;

(iv) for elements corresponding to (a, a) in M−1
GG and in M−1

HH

M−1
aa.b = M−1

aa − Ma↽bM
−1
bb.aMb⇁a, M−1

aa.bc = M−1
aa.b − Ma↽c.bM

−1
cc.abMc.b⇁a .
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Proof. The relations result by interpreting the modifications due to repeated
partial inversion. The forms of Mcd.ab, Ma↽d.b, Md.b⇁a, and M−1

aa.b are compo-
nents when changing from invaM in equation (2.8) to invbinvaM in equation
(2.9). Similarly, Ma↽d.bc, Md.bc⇁a, and M−1

aa.bc are components when changing
from invGM in equation (2.9) to invcinvGM .

2.5 Directly related matrix decompositions

Direct computations show also that rows and columns of the matrices in a
block-triangular decomposition M = LKk, where K is a block-diagonal matrix,
L is a unit lower block-triangular matrix and k is a unit upper block-triangular
matrix, can be specified in terms of partial inversion. For the following Lemma
and throughout the paper let d arbitrary subsets of N be given. When these are
ordered as (1, . . . , g, . . . , d) then we call the result an ordered partitioning of N .

Lemma 2.4. The relation of block-triangular decompositions to partial inver-
sion. Let an ordered partitioning (1, . . . , g, . . . , d) of N be given, and M = LKk

be a corresponding block-triangular decomposition. Let r denote all indices to
the right and l all indices to the left of g, both excluding g. Furthermore, let
LNg be columns of L and kgN be the rows of k corresponding to g. Then

(2.10) LNg =





0lg

Igg

Mr.l⇁g



 , Kgg = Mgg.l, kgN = (0gl Igg Mg↽r.l).

Thereby we use the convention that the submatrix of indices (l, g) is absent when
g = 1 and the submatrix of (g, r) is absent when g = d.

Illustration 2.2. For instance, for d = 3 and the three blocks denoted by
a, b, c, the decomposition is

M =





Iaa 0 0
Mb⇁a Ibb 0
Mc⇁a Mc.a⇁b Icc









Maa 0 0
0 Mbb.a 0
0 0 Mcc.ab









Iaa Ma↽b Ma↽c

0 Ibb Mb↽c.a

0 0 Icc



 .

The form of M with the partitioning refined so that each block contains a sin-
gle element leads to the following result which is closely related to those given
recently under slightly weaker assumptions [19].

Lemma 2.5. Decomposition of M into a symmetric and a unit triangular
matrix. A square matrix M , whose principal submatrices are all invertible, can
be decomposed into the invertible symmetric matrix S = LKL

T and the unit
upper-triangular matrix k = L

−Tk chosen so that M = Sk. In addition, there is
the decomposition S∗ = kTKk and the unit lower-triangular matrix L = Lk−T

chosen so that M = LS∗, where L, k and K are given by equation (2.10) for
d = dN and e.g. L

−T denotes the transpose of the inverse of L.
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Proof. For d = dN , the matrix L in the decomposition given in equation
(2.10) is unit lower triangular, K is diagonal, and k is unit upper-triangular.
The inverse L

−T of L
T is unit upper-triangular and the product of two unit

upper-triangular matrices is of the same form, so that the symmetric matrix
S = LKL

T has the determinant of M and there is a similar argument for k.

The decomposition of equation (2.10) applied to a symmetric matrix M has
k = L

T, so that M = LKk in Lemma 2.5 reduces with S = S∗ to the usual
triangular decomposition of a positive definite matrix. There is also the inter-
pretation of L

−1 as block-triangularizing M from the left and of k−1 as block-
triangularizing M from the right with

(2.11) ′M = L
−1M = Kk, M ′ = Mk

−1 = LK,

so that ′M is upper block-triangular and M ′ is lower block-triangular.

Now the elements of the block-triangular and triangular decompositions of an
invertible symmetric matrix permit an interpretation in terms of partial inver-
sion, which is to be given in Theorem 4.2 in the following section.

3 Some direct applications to linear models

3.1 Elements of partially inverted covariance matrices

Let Σ be the invertible covariance matrix of a mean-centered column vector
random variable Y , and let Σ−1 be the concentration matrix of Y . Let further
a split of Y be defined by two arbitrary vector components, Ya and Yb. Then,
Lemma 2.1 (v) equates two nonsymmetric matrices

(3.1) invaΣ−1 =

(

(Σaa)−1 −(Σaa)−1Σab

∼ Σbb.a

)

=

(

Σaa|b ΣabΣ
−1
bb

∼ Σ−1
bb

)

= invbΣ.

Here and throughout, the ∼ notation indicates entries in a matrix which is sym-
metric up to the sign, i.e. minus elements given in the upper off-diagonal part
of the matrix.

The off-diagonal matrices specify two different, but equivalent, ways of com-
puting Πa|b, the matrix of regression coefficients of Yb in linear least squares

regression of Ya on Yb [10]. This coefficient matrix is defined by the linear equa-
tion Ya = Π

a|bYb + εa in which cov(εa, Y T
b ) = 0, i.e. with

(3.2) Σab = E(Ya Y T
b ) = Πa|bE(Yb Y T

b ) + E(εaY T
b ) = Πa|bΣbb.

The interpretation of Σbb.a = Σ−1
bb in equation (3.1) as the concentration matrix

of Yb and of (Σaa)−1 = Σaa|b as the covariance matrix of Ya|b = Ya −Πa|bYb had
been derived by Dempster [11] in terms of the sweep operator for symmetric ma-
trices. To distinguish Schur matrices resulting in this context by marginalizing
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and by conditioning, we use the notation Σbb.a and Σaa|b.

With subsets a, b, c, d partitioning N , G = {a, b} and J = {c, d} we denote the
different components of least squares regression coefficient matrices by

ΠG|J =(ΠG|c.d ΠG|d.c), ΠG|J =

(

Πa|J

Πb|J

)

,

so that e.g. Πb|c.d contains the coefficients of Yc in a least squares regression
of Yb on both Yc and Yd. Matrix forms of recursion relations for least squares
regression coefficients [6], for covariances [1], and for concentrations [11], are then
recognized to be consequences of the recursion properties of partial inversion and
are

Πb|d.c =Πb|d − Πb|c.dΠc|d ;

Σbd|c =Σbd − ΣbcΣ
−1
cc Σcd ;(3.3)

Σbd.a =Σbd − Σba(Σaa)−1Σad.

Equations (3.3) provide insight into when regression coefficients, covariances
and concentrations remain unchanged after marginalizing or after conditioning.
Elements in positions (i, j) of invGΣ−1 are proportional to different types of
partial correlation, compare e.g. [1], Sections 2.3, 2.5, [9], Section 3.4, denoted
here by

(i) ρij|J\j for ΠG|J with i ∈ G, j ∈ J ;

(ii) ρij|J for ΣGG|J with i ∈ G, j ∈ G ;(3.4)

(iii) ρij|J\{ij} for ΣJJ.G with i ∈ J, j ∈ J .

Equations (3.4) give the interpretation of different types of edge to represent an
independence structure in invGΣ−1, arrows for ΠG|J and two different types of
undirected graph for ΣGG|J , called a conditional covariance graph, and in ΣJJ.G,
called a marginal concentration graph.

Equations (3.4) and (3.3) jointly capture also how probabilistic independence
statements combine for Gaussian distributions that are nondegenerate, i.e. for
which Σ is positive definite. With Yb independent of Yd given Yc denoted by
b ⊥⊥ d|c,

(i) b ⊥⊥ d and (b ⊥⊥ c|d or c ⊥⊥ d) imply b ⊥⊥ d|c ;

(ii) b ⊥⊥ d and (b ⊥⊥ c or c ⊥⊥ d) imply b ⊥⊥ d|c ;(3.5)

(iii) b ⊥⊥ d|ac and (b ⊥⊥ a|cd or d ⊥⊥ a|bc) imply b ⊥⊥ d|c .

3.2 Relations to triangular decompositions of Σ and of Σ−1

Partial inversion applied repeatedly to symmetric matrices leads in particular
to the following interpretations of the resulting matrix components.
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Theorem 3.1. Interpretation of block-triangular decompositions of invertible
Σ and Σ−1. Let an ordered partitioning (1, . . . , g, . . . , d) of N be given. Let
further r denote all indices to the right and l all indices to the left of g excluding
g in this new ordering, and the unit block-triangular decompositions be Σ−1 =
kTHk, compare Illustration (2.2), and Σ = L

TKL. Then

(i) H = K−1 and L
T = k

−1;

(ii) Hgg = Σgg.l, kgN = (0gl Igg − Πg|r);

(iii)Kgg = Σgg|r, LgN = (ΠT
l|g.r Igg 0gr),

where Σgg.l and Σgg|r are the concentration matrix and the covariance matrix
of Yg|r.

Illustration 3.1. For instance, for d = 4, the lower block-triangular decom-
position (H, k) of Σ−1 is

(3.6) H =









Σaa 0 0 0
.Σbb.a 0 0
. .Σcc.ab 0
. . .Σdd.abc









, k =









Iaa−Πa|b.cd−Πa|c.bd−Πa|d.bc

0 Ibb −Πb|c.d −Πb|d.c

0 0 Icc −Πc|d

0 0 0 Idd









,

where, here, and throughout, the . notation indicates entries in a symmetric
matrix, i.e. elements given in the upper off-diagonal part of the matrix. For the
block-triangular decomposition (K, LT) of Σ we have

(3.7) K =









Σaa|bcd 0 0 0
. Σbb|cd 0 0
. . Σcc|d 0
. . . Σdd









, L =















Iaa 0 0 0

ΠT
a|b.cd

Ibb 0 0

ΠT
a|c.d

ΠT
b|c.d

Icc 0

ΠT
a|d ΠT

b|d ΠT
c|d Idd















.

Proof. Case (i) of Theorem (3.1) is direct by matrix inversion. Case (ii) is
proven by Lemma 2.4. Furthermore, since the concentration matrix of Yb has
with Σbb.a the same form as Σ−1, the same type of argument applies to it and,
similarly, to Σgg.l. In this way, the block-triangular decomposition of equation
(2.10) is built up for Σ−1. To prove case (iii), we note that the form of the
block-triangular decomposition of Σ results by matrix inversion from case (ii)
and by the recursion relations for regression coefficients in equation (3.3).

3.3 Relations to triangularized forms of Σ and of Σ−1

With a given ordered partitioning N = (1, . . . , g, . . . , d) block g is associated
with the vector variable Yg. For such a sequence of vector variables we de-
note the left-triangularized form of the concentration matrix by ′Σ−1 and the
right-triangularized form of the covariance matrix by Σ′, and next derive their
components before and after partial inversion.
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Corollary 3.2. Interpretation of partial inversion for ′Σ−1 and Σ′. Let
the matrices ′Σ−1 = Hk and Σ′ = KL be defined from the block-triangular
decompositions of Theorem 4.2 for an invertible covariance matrix Σ. Then

(i) [′Σ−1]g,N = (0gl Σgg.l Σgr.l);

(ii) Σ′
gN = (Σgl|r Σgg|r 0gr);

(iii)[invlg
′Σ−1]g,N = (0gl Σgg|r Πg|r),

where Σgr.l gives the concentrations of Yg and Yr, while Σgl|r gives the covari-
ances of Yg|r and Yl|r; all other submatrices are as defined for Theorem 4.2.

Illustration 3.2. For d = 4, the left block-triangularized matrix ′Σ−1 in (i)
and the right-triangularized matrix Σ′ in (ii) are

′Σ−1 =









Σaa Σab Σac Σad

0 Σbb.a Σbc.a Σbd.a

0 0 Σcc.ab Σcd.ab

0 0 0 Σdd.abc









, Σ′ =









Σ
aa|bcd

0 0 0

Σ
ba|cd

Σ
bb|cd

0 0

Σ
ca|d Σ

cb|d Σ
cc|d 0

Σda Σdb Σdc Σdd









.

The matrices of case (iii) are, for this example of four blocks, the matrices K
and k in equations (3.6) and (3.7).

Proof. From the block-triangular decomposition Σ−1 = kTHk, where k is
unit upper block-triangular, the matrix ′Σ−1 = Hk is upper block- triangular.
The interpretation in (i) follows from the product Hk by using the definition of
least-squares regression coefficient matrices in terms of concentrations. A sim-
ilar argument applies to the block-triangular decomposition Σ = L

TKL, where
L = k−T is unit lower block-triangular by using the definition of least-squares
regression coefficient matrices in terms of covariances for the product KL.

The upper block-triangularity of ′Σ−1, the definition of partial inversion in
equation (2.2) and the exchangeability property in Theorem 4.2 case (ii) imply
for l̄ = N \ l that

[inv1,...,g
′Σ

−1
]l̄,l̄ = invg[

′Σ
−1

]l̄,l̄ =

(

Σgg|r Π
g|r

0rg
′Σrr.lg

)

,

and hence the form given in (iii).

4 Relations to linear graphical chain models

The partial inversion results in the previous section relate directly to linear
stepwise data generating processes and to different types of statistical joint re-
sponse models which can be generated by them.



PARTIAL INVERSION TO DESCRIBE LINEAR STRUCTURES 13

4.1 Relations to linear triangular systems

With a partitioning of N refined to contain only single elements, one obtains
from Theorem 4.2 (ii) a triangular decomposition of Σ−1, where k is upper-
triangular and H = ∆−1 is a diagonal matrix with all diagonal elements posi-
tive. This gives the parameters in a stepwise generating process for a covariance
matrix which has been called a path analysis model by the geneticist Wright
[43], [44], a system of linear recursive equations with uncorrelated residuals by
the econometrician Wold [42], or, more recently, a linear triangular system [41].

For a mean-centered random column vector Y and ordering (1, . . . , dN ), such
a process can be written in matrix notation as

(4.1) AY = ε, with cov(ε) = ∆.

having

Σ = cov(Y ) = A−1∆A−T, and Σ−1 = con(Y ) = AT∆−1A.

In our notation, A is unit upper-triangular, so that from Theorem 4.2, and also
k and L

T of Illustration (3.1), the elements of aij of A and aij of A−1 are

(4.2) aij = −βi|j.r(i)\j , aij = βi|j.r(j),

where βi|j.C denotes the coefficient of Yj in linear least squares regression of
Yi on Yj and YC and C refers possibly to a vector variable, and where r(k) =
{k + 1, . . . , d}. The diagonal elements of ∆ are δii = σii|r(i), the residual vari-
ances in the corresponding linear regressions.

When (1, . . . , d) refers to a time order, then Y1 is the most recent response
variable and Yd is the variable in the past, being most distant from it. The
joint concentration matrix is directly generated by a sequence of univariate least
squares regressions with Yi as response to Yi+1, . . . , Yd. Expressed differently,
A contains the generating equation parameters and (A, ∆−1 gives the unique
triangular decomposition of Σ−1 for one fixed order of the variables.

When there is zero contribution of a potentially explanatory variable Yj for Yi,
this is represented by a zero value in position (i, j) in the upper triangular part
of A. Variables with a nonzero contribution are called the parents of i, denoted
by par(i). Equation (4.2) represents then an unconstrained model containing as
a special case the reduced model [7] with

(4.3) aij = −βi|j.par(i)\j when j ∈ par(i), 0 = ρij|par(i) = ρij|r(i)\j else.

In general, availability of direct checks of goodness of fit of constraints is an
important advantage of knowing a more general model for which explicit uncon-
strained estimates are available.
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With In[M ] denoting the indicator matrix of a matrix M , obtained by replac-
ing every nonzero element of M by a one, the edge matrix of the independence
graph of the generating process is A = In[A] in which node i corresponds to vari-
able Yi. The graph is often called the parent graph since it shows the directly
explanatory variables of Yi by arrows starting in the parent node set par(i) and
pointing to node i. It defines also the linear independence structure in a family
of matrices in which the unconstrained equation parameters aij in equation (4.3)
are free to vary, provided only that they lead to positive residual variances.

4.2 Relations to joint response models

Sequences of joint responses occur in different types of graphical chain mod-
els, used to study multivariate statistical dependence. These have been defined
for more general than linear relations, but we discuss here only the linear case
and introduce some more terminology first. All graphical chain models have
in common that the variables are arranged in a sequence of say d chain com-
ponents, named g, each containing one or more variables. Several variables in
the same chain component are considered as joint responses, i.e. to be on equal
footing, so that within chain components undirected associations are of interest
and between chain components directed associations. Each missing edge in an
associated chain graph captures a conditional independence constraint and each
edge present a conditional association, the precise conditioning depends on the
type of chain graph.

For d = 1, models with zero constraints on Σ−1 have been introduced as co-
variance selection models by Dempster [12]. Corresponding recursive sequences
of such models for 1 < d < dN are blocked-concentration chains defining ′Σ−1

[26], [17], [38], [35].

For d = 1, models with zero constraints on Σ have been introduced as hy-
potheses linear in covariances by Anderson [2] and studied later as independence
models [24], [31]; we call corresponding recursive sequences of such models for
1 < d < dN [23] blocked-covariance chains defining ′Σ.

Models with zero constraints on H = Σgg|r(g) and Πg|r are multivariate regres-
sion chains, which include seemingly unrelated regressions [8],[9], [31]. We speak
of concentration-regression chains for models with zero constraints on elements
of either component of the block-triangular decomposition (H, k) of Σ−1 [3],
while the partial regression chains with zero constraints on the block-triangular
decomposition (K, LT) of Σ appear to not have been studied by statisticians.

Matrix relations between parameters in linear chain graph models to those of
a generating linear triangular system [41] are not repeated here, instead, the
relations to partial inversion are spelled out.
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Corollary 4.1. Induced joint response models related to partial inversion.
Let (1, . . . , g, . . . , d) be an ordered partitioning of N , defining block decomposi-
tions Σ = L

TKL and Σ−1 = kTHk of Theorem 4.2 and ′Σ−1 = Hk, Σ′ = KL,
then unconstrained parameters induced in

(i) ′Σ−1, for a blocked concentration chain;
(ii) H and k for a concentration-regression chain;
(iii) Σ′, for a blocked covariance chain;
(iv) K and L

T for a partial regression chain;
(iv) K and k, for a multivariate regression chain,

are in one-to-one correspondence to unconstrained specific parameters A, ∆ of a
given saturated triangular system and are obtainable by partial inversion.

Proof. It is implied by the partial inversion results of Theorem 4.2 and
Corollary 3.2 that each of the sets of parameters is obtained by a one-to-one
transformation of the covariance matrix.

One important consequence of Corollary 4.1 for statistical analysis is, that un-
constrained parameters, estimated by equating observed to expected moments,
are in one-to-one correspondence for all these the different types of saturated
models. Also, from the interpretation of the parameters in each of these model
types, obtained with equation (3.4), we know the corresponding conditional in-
dependence statement when a parameter is constrained to be zero for a joint
Gaussian distribution. And, more importantly, this provides the interpretation
of each missing edge in all of the different types of chain graphs, in general.

4.3 Edge matrices induced after partial inversion for linear triangular systems

For the study of when and how independence constraints of a given stepwise
generating process are preserved after partial inversion, we introduce for unit
binary matrices M a structural zero operator written analogously to (2.2) as

(4.4) zeraM =

(

¯
M−1

aa Ma↽b

Mb⇁a Mbb.a

)

= In

(

(M
∗
aa)−1

¯
M−1

aa Mab

Mba
¯
M−1

aa Mbb + Mba
¯
M−1

aa Mab

)

where M∗
aa is an invertible matrix chosen such that In[M∗

aa] = Maa and
(M∗

aa)−1 ≥ 0. We conjecture that it is always possible to find such a ma-
trix M∗ and prove existence for the two cases of interest for graphical chain
models, that is for M symmetric and for M non-symmetric, but a permuted,
unit upper-triangular matrix.

When M = A is upper-triangular, it is the edge matrix of a parent graph,
which is directed and acyclic and has a full ordering of the nodes. When M =
S is symmetric, it is the edge matrix of an undirected graph. Corresponding
invertible matrices A∗ and S∗ with an unchanged zero structure and exclusively
non-negative elements in their inverses are

(4.5) A∗ = 2I − A, S∗ = (d + 1)I − S,
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where I denotes the identity matrix. The binary matrices In[A∗] and In[S∗] are
edge matrices of what is sometimes called the transitive closure of the graphs
with edge matrices A and S, respectively.

Proof. The matrix A∗ is the matrix form [32], p. 97, of Neumann’s limit of
a geometric power series [29], p. 29, and power r of (A−I) counts for each pair
its number of direction-preserving paths in r + 1 nodes. To prove the claimed
property of S∗, note that for a single undirected path the edge matrix S∼ is a
tri-diagonal matrix of ones and the eigenvalues and eigenvectors of S∗

∼ are known
in explicit form. Then (S∗

∼)−1 multiplied by the determinant of S∗
∼ is a matrix of

positive integers with the smallest element in position (1, d) equal to one. With
additional ones added, the inverse of S∗ in equation (4.5) remains nonnegative,
the explicit form for the case without any zeros being again known in explicit
form. For a graph consisting of several disconnected subgraphs, the edge matrix
is of incomplete block-diagonal form and the same type of argument applies to
the edge matrices of each connected subgraph. The matrix S∗ is then complete
block-diagonal and non-negative.

The structural zero operator in equation (4.4) shares the commutativity (i)
and the exchangeability (ii) properties with partial inversion when it defines
partial closing of paths in graphs, i.e when M = S or M = A. But, the op-
eration cannot be undone when it is reapplied to the same rows and columns.
The reason is that it is defined in terms of sums and products of nonnegative
matrices so that zeros present in M may be preserved or removed but no new
zeros can be generated. We conjecture that the following properties hold for
general unit binary matrices as well.

Theorem 4.2. Commutativity, exchangeability and contraction/expansion
for structural zeros preserved after partial inversion. Let arbitrary components
a, b, c, d partition N , G = {a, b}, and the matrix M be accordingly partitioned,
then

(i) zera zerbM = zerb zeraM = zerabM;

(ii) [zeraM]G,G = zeraMGG;

(iii) zerab zer bcM = zerabcM .

Whenever a linear joint response chain is generated by a linear triangular
system with independence structure, then the variable pairs for which indepen-
dence constraints are preserved in the derived chain graph can be obtained by
applying the structural zero operator. Consider any chain component, for which
the relation of response Yα on Yβ given YC is specified, and some variables YM

are omitted, then N = (M, α, β, C) becomes the relevant ordering of the node
set. For each chain component the sets to be marginalized over, M , and to be
conditioned on, C, are to be redefined as well as m = {M, α}, c = {C, β} and
B = zermA. The derived edge matrix components [41] for invαcon(Yα|C , Yβ|C)
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can then be written as

Sαα|βC =In[Bmmzerm(Imm + BT
cmBcm)BT

mm]α,α ;

Sββ.αM =In[BT
cc zerc(Icc + BcmBT

cm)Bcc]β,β ;(4.6)

Pα|β.C =In[Bmc + BmmBT
cmzerc(Icc + BcmBT

cm)Bcc]α,β .

5 Discussion

The statistical importance of the derived or induced graphs of linear joint re-
sponse chains defined with equations (4.6) is that they apply not only to Gaus-
sian distributions but also to distributions of arbitrary form, provided that they
are associated with the same parent graph [41]. This means that they satisfy all
independencies specified by the given parent graph and that these independen-
cies may be combined as in a non-degenerate Gaussian distribution [34].

Markov equivalence of two chain graphs means that the missing edges in the
two graphs lead to the same set of independencies, i.e. specify an identical inde-
pendence structure. For different special subclasses of chain graphs, criteria and
algorithms to decide on Markov equivalence have been derived. For instance, a
concentration graph model is Markov equivalent to a triangular system if and
only if the concentration graph is chordal, i.e. it contains no chordless cycle in 4
or more nodes. Criteria for chordality of graphs have been given early, see e.g.
[13], but efficient algorithms applicable to large graphs have been derived much
later, see e.g. [27], [30].

Similarly, the explicit forms of edge matrices, given in equations (4.6) for joint
response chain graphs generated by a given parent graph, need to be comple-
mented by computationally efficient algorithms for applications to large matrices.
A general computational problem is to start with the zero structure in any given
triangular decomposition of Σ−1 and to obtain the implied structural zeros in a
new block-triangular decomposition of Σ−1 or of Σ, i.e. to find the zeros that
would be retained by corresponding symbolic matrix inversion. The problem
is considerably more complex than checking for chordality of a concentration
graph because of the blocking structure and because different components of
block-triangular decompositions may require different types of edge.
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6. W. G. Cochran, The omission or addition of an independent variate in multiple
linear regression, Suppl. J. Roy. Statist. Soc., 5 (1938), pp. 171–176.

7. D. R. Cox and N. Wermuth, An approximation to maximum-likelihood estimates in
reduced models, Biometrika, 77 (1990), pp. 747–761.

8. D. R. Cox and N. Wermuth, Linear dependencies represented by chain graphs (with
discussion), Statistical Science, 8 (1993), pp. 204–218; 247–277.

9. D. R. Cox and N. Wermuth, Multivariate Dependencies: Models, Analysis, and
Interpretation, Chapman and Hall, London, 1996.

10. H. Cramér, Mathematical Methods of Statistics, Princeton University Press, Prince-
ton, NJ, 1946.

11. A. P. Dempster, Elements of Continuous Multivariate Analysis, Addison-Wesley,
Reading, MA, 1969.

12. A. P. Dempster, Covariance selection, Biometrics, 28 (1972), pp. 157–175.

13. G. A. Dirac, On rigid circuit graphs, Abhandlungen, Mathematisches Seminar Ham-
burg, 25 (1961), pp. 71–76.

14. M. H. Doolittle, Explanations and illustrations of method employed in the office in
solution of normal equations and the adjustment of a triangulation, U.S. Coast and
Geodetic Survey, Appendix 8 (1878), pp. 115–120.

15. D. Edwards, Introduction to Graphical Modelling, 2nd ed., Springer, New York,
NY, 2000.

16. L. Fox, H. D. Huskey, and J. H. Wilkinson, Notes on the solutions of algebraic
linear simultaneous equations, Quart. J. Mech. Appl. Math., 1 (1947), pp. 149–173.

17. M. Frydenberg, The chain graph Markov property, Scand. J. Statist., 17 (1990),
pp. 333–353.

18. W. Gibbs, Elementary Principles of Statistical Mechanics, Yale University Press,
New Haven, CT, 1902.

19. G. H. Golub and J. Y. Yuan, Symmetric-triangular decomposition and its applica-
tions Part I: Theorems and algorithms, BIT, 42 (2002), pp. 814–822.
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