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Finite Poisson processes

Poisson process models an array of points scattered randomly and
independently with a density proportional to ,u(da:) in a given region X.
More exactly:

Definition: 11 is a Poisson process in [ X, B] with the intensity measure
u(X) < oo if for any disjoint By, ..., B, € B, the number of points of I1

in these sets are independent Poisson random variables
II(B1),...,I(B,;) with parameters u(B1), ..., u(By).
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The definition implies:

e If 1 is diffuse, i.e. u({x}) = 0 for any singleton {x }, then with

probability 1 no realisation of 11 contains multiple points.

e EII(B) = u(B), thatis why p(dx) is also called the mean measure.

[J  We treat each realisation {x1, . . . ,:L'H(X)} of the process 11 as a

(random) counting measure and write [T = 3, d,..., so that I1( B) equals

the number of points in B and
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Palm distribution

Given an event =, for every B € 5 one can define Campbell measure
C(E,B) = E, I=(1I)II(B). This is a measure on B and
C(Z, «) < (), therefore there exists a Radon-Nikodym derivative
dC(Z, +)
dp

which can be chosen to be a probability distribution on events =. be 5

() = PL(E)

called the Palm distribution of 11 and has a meaning of the conditional

distribution of 11 ‘given there is a point of the process in z".

Another interpretation is that of the distribution of a configuration seen from

a typical point of the process.
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Campbell formula

From definition

E /B L (IT) T1(dzr) — /B C(E, dz) = /B P’ (2) u(de)

and thus by the standard monotone class argument

B, [ /@) = [ B f@Mps) @

which is known as Refined Cambell formula — continuous analog of the full

probability formula. In particular, we have Campbell formula:

B, 3 f(e) =B, [ £@)11(do) = [ f(@) ulds).

x;ell
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Slivnyak’s theorem and Mecke’s characterisation

As the points in Poisson process are independent, we should have that the
distribution of I — 0, under P should be just P,,. This is known as
Slivnyak’s theorem and equivalent to the following form of Campbell

formula (1): for any process f(:l}, H), one has

/f:z:H (dx) /f:cH+5)(da;) (2)

Mecke established that (2), in fact, caracterises a Poisson process.
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Expectation

Given a functional /' = F'(II), by the full probability formula

E,F— z:% (u(f!))ne_u(x) /F(é 5.) M/f?):?))

X?’L

_ G_M(X) Z ' / Z 5
n!

n=0

[ weview E,, F' as a function (1) of the intensity measure.

2By definition we have F'(()) for n = 0 in the sum above.
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Variation analysis

Substituting 1 <— (4 + 1) into (3) and assuming, for simplicity, that F' is

bounded we get
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Thus
Eu+?7 F— Eu F

1 n
oy L /X F(S b0, +06) p(day) ... p(day ()
n=0 -

n+1 1=

n+1 1=1

_e—u<X>§_jO - /X F($5 6,,) u(dar) . .. pu(dza)n(dz) +o(nl)

~E, [ [F(1+6,) = FaD]n(dz) + of|n])
We see that E m F' is differentiable and possesses a gradient function
A, (2) = B [F(I+4,) — F(ID)

which we call the expected first difference.
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Analyticity of the expectation

Theorem 1. Assume that there exist a constant b > 0 such that
|F(xPy 0s,) <b™foralln > 0and (21,...,2,) € X™. Then
() = E, F(II) is analytic on My and

(©.@) 1 L N
EWV”?F:ZH /AZ(wl,...,xn)n (dxy...dxn), (4
n=0 xn
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First Fr échet derivatives

In particular,

A, (z) =E,[F(II+4,) — F(IT)] gradient function
A2(z1,20) = By [F(II+ 0y, + 04,) — 2F(I1 + 65, ) + F(IT)]

etc.

L] we call A—Z(xl, ..., Ty ) the expected nth order difference.
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Perturbation analysis

Consider the case a homogeneous Poisson process with intensity A in a
compact X C R? so that the intensity measure is A¢ (¢ is the Lebesgue

measure). Slightly abusing notation, write simply E instead of Ei»,. Then

d 1
L EF =1 —[E F_E F}
N A tlfl(f)lt A+t A

~lim | [ DB, Fltf] + of1)] = / Ea[F(II +6,) — F(I)] da

t]0 t b'e
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Russo’s formula for Poisson processes

Let F'(IT) = M= (1) for some event = and let
T(II) ={z € X : Ig(I1 4 d,) # A=(I1I)}. Then

%PA(E) — /X E\[T=(II + ;) — T=(IT)] dzx

:E)\/ (M= (1T + &) — T=(11))]

:EA/ ]IE(H—I—(sx) ]IT(H)(ZU)dz—EA/ HE(H) ]IT(H)(CIZ)dZU
X X
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By Slivnyak’s theorem (2)

E, / T=(I1 + 6,) Ty () da
X

S N /X Tz (I1) Ty s, () T1(de)

A

1
= 1 B T=(I)N=(11).

where Nz (IT) = card{x; € I1 : Tz(Il) # T=(II — §,,)} is the
number of pivotal points for event = in configuration 11, i. e. the points which

removal would break the occurence of =.
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E, / T=(T1) Ty (1) () d = B T (I Va(ID),
X

where Vz(II) = vol{x € X : T=(I1 + §,) # TM=(II)} is the volume of

the pivotal locations, where adding a point would break the occurence of =.

Finally,
d

—P,(B) =E,\ I=(ID[\"*N=(II) — V=

d

dA
d
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Toy example

Consider a set B of volume V and let = = {II(B) = k}. Surely,

P,\(EB) = ()\l‘c/') exp{—AV}.

d k
L logPA(E) =2 v,
7 108 A(Z2) X % (9)

On the other hand, when = occurs, there are k points in B and removing
any of them would break occurence of =. Thus on =,

N= = E)|Nz= | Z] = k. Similarly, no additional point could be added
anywhere in B without breaking the occurence of =. So on =,

V= = E)\|[Vz | Z] = V and (7) is seen to be equivalent to (9).
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Voronoi flower

By similar method one may de-
rive that the conditional distribu-
tion of the volume of a typical

Voronoi flower (the one at the

origin under P?) given the cor-

responding Voronoi cell has n

sides is Gamma(n, \).
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Set indexed filtration

Consider a continuous time process &;, t > 0 and filtration
Fo) = 01&s, 0 < s < t}. Tisastopping timeif {7 <t} € Fjp 4 Vi
or equivalently, random set [0, 7] is such that { [0, 7] C [0,t]} € Fjg y Vt.

Consider now a homogeneous Poisson process 11 in R? and let
Fp =o{llI(A), A C B} be the natural filtration. We have

e monotonicity: Fx, C Fk, for any two compact K1 C Ko;

e continuity from above: Fix = NS Fg, if K, | K.
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Stopping sets

Definition: A random compact set A is called a stopping set (more
precisely, { F i }-stopping set) if the event { A C K} is Fx measurable
for all compact K.

Let F = VierF i, where K is the collections of compact sets. The

stopping o-algebra is the following collection:

Fa={AeF: An{ACK}eFxkVK €K}.
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Set-indexed martingales

Definition. A set indexed random process X, K € K is called a
martingale (more precisely, a (P, {]:K})-martingale) if for all
K, Ky € Ksuchthat K1 C K5 one has

E(Xk, | Fx,] = Xk, P-a.s

Theorem 2. Let A1, A5 be two a. s. compact stopping sets such that
A1 C Ay almost surely. Let X i be a uniformly integrable martingale (we

omit details here!). Then
E [XA2 | FAJ = XAl a. S. (10)

provided E | XA, | < o0.
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Likelihood ratio

An important example of a uniformly integrable martingale is provided by a
likelihood ratio. Namely, let Q and P be two probability measures on F
such that Q < P, i. e. forany K € K the restriction Q* of Q onto Fx

loc

is absolutely continuous with respect to the restriction PX of P onto the

same ¢-algebra. Denote the likelihood ratio by

_dQt
- dPK’

Lk

For Poisson processes we have that

\\ TT(K)
Ly —> e~ A=K VK e K.
P
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Gamma-type result

Theorem 3. Let A be an a. s. compact stopping set with respect to the
natural filtration of a homogeneous Poisson process 11 with density A in
R, Assume that

P, {II(A) = n} > 0 and does not depend on \.

Then ¢(A) given II(A) = n has Gamma(n, A) distribution.

Remark. Condition (12) is satisfied if A(IT) is equivariant under scaling:
A(tII) = tA(II) for all IT and £ > 0.
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Examples

[1 The minimal closed ball centred in the origin and containing exactly n
Poisson process points is a stopping set and its volume conforms to

Gamma(n, \) distribution (this is trivial).

[1 A typical Voronoi flower is a stopping set and its volume given that the

corresponding Voronoi cell has 1 sides, is Gamma/(n, A)-distributed.
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Proof of the Gamma-type result

Kurtz-Doob theorem 2 implies

A\ ()
E\F=E, (—) e~ A=A P
P

for any F A-measurable F'. By (13) for any 2z we can write

E) [e*/®) T{II(A) = n}]
P {II(A) = n}

E, [eze(m | II(A) = n} —

Ep |:€Z£(A> ]I{H(A) — n})\np—ne—(A—p)ﬁ(A)]

P, {II(A) = n}

Choosing now p = A — z we see that the last expression simplifies to

(1 — z/A)~™ which is the Laplace transform for Gamma(n, \).
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