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Σ-CONVERGENCE

GABRIEL NGUETSENG AND NILS SVANSTEDT

Abstract. We discuss two new concepts of convergence in L
p-spaces,

the so-called weak Σ-convergence and strong Σ-convergence, which are
intermediate between classical weak convergence and strong conver-
gence. We also introduce the concept of Σ-convergence for Radon mea-
sures. Our basic tool is the classical Gelfand representation theory.
Apart from being a natural generalization of well-known two-scale con-
vergence theory, the present study lays the foundation of the mathemat-
ical framework that is needed to undertake a systematic study of deter-
ministic homogenization problems beyond the usual periodic setting. A
few homogenization problems are worked out by way of illustration.

1. INTRODUCTION

To systematically pass to the limit in a product of two weakly convergent
sequences one classically requires that (at least) one of the two sequences
converges strongly. More precisely, let Ω be an open set in theN -dimensional
numerical space RN (N ≥ 1), let (uε)ε>0 be a sequence in Lp (Ω) (Ω provided

with Lebesgue measure) and let (vε)ε>0 be a sequence in Lp
′
(Ω), where

1 < p < ∞ and 1
p′ = 1 − 1

p . It is a classical fact that if uε → u in Lp (Ω)

(strong) and vε → v in Lp
′
(Ω)-weak as ε → 0, then uεvε → u0v0 in L1 (Ω)-

weak.
However, in a great number of situations arising in mathematical analysis

it is often crucial to investigate the limiting behaviors of products of the
preceding form in spite of the fact that none of the two sequences is allowed
to strongly converge. For example in homogenization theory [36, 14, 37, 3,
35, 38, 2, 21] it is frequent to have to compute limits such as

(1.1) lim
0<ε→0

∫

Ω
uε (x)ψ

(
x,
x

ε

)
dx,

where uε → u in Lp (Ω)-weak as ε → 0, and ψ ∈ Lp
′
(Ω; Cper (Y )) with Y =(

−1
2 ,

1
2

)N
, Cper (Y ) being the space of those continuous complex functions

f on RN that are Y -periodic, i.e., that satisfy f (y + k) = f (y) for y ∈ RN

and k ∈ ZN (Z denotes the integers), Cper (Y ) provided with the supremum
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norm. It is of interest to recall here that

(1.2) ψε → ψ̃ in Lp
′
(Ω) -weak as ε→ 0,

where ψε (x) = ψ
(
x, xε

)
and ψ̃ (x) =

∫
Y ψ (x, y) dy for x ∈ Ω (see, e.g., [26]).

Furthermore, unless ψ is constant with respect to the periodicity variable
y = (y1, ..., yN ) (this is a quite trivial occurrence), it is hopeless to try to get
strong convergence in (1.2) (see, e.g., [3]). Thus, it is beyond the classical
resources of mathematical analysis to compute the limit in (1.1).

It was precisely to overcome such difficulties that the first author intro-
duced in 1989 basic ideas on two-scale convergence (see [27]). Shortly after,
the direction pointed out by further pioneering papers (see [28, 1]) on two-
scale convergence initiated a great activity that increased in interest over
the years. See, e.g., [23] and the references therein.

Without going to deeply into details, let us recall the main ideas under-
lying two-scale convergence theory. To begin, for the benefit of the reader it
should be reminded that a sequence (uε)ε>0 in Lp (Ω) (1 ≤ p <∞) is said to
weakly two-scale converge in Lp (Ω) to some u0 ∈ Lp (Ω;Lpper (Y )) (Lpper (Y )
stands for the space of Y -periodic complex functions in Lploc

(
RN
y

)
) if as

ε→ 0,
∫

Ω
uε (x)ψε (x) dx→

∫ ∫

Ω×Y
u0 (x, y)ψ (x, y) dxdy

for all ψ ∈ Lp
′
(Ω; Cper (Y )). A sequence (vε)ε>0 in Lq (Ω) (1 ≤ q <∞) is

said to strongly two-scale converge in Lq (Ω) to some v0 ∈ Lq (Ω;Lqper (Y ))
if for all η > 0 and f ∈ Lq (Ω; Cper (Y )) satisfying ‖v0 − f‖Lq(Ω×Y ) ≤

η
2 , one

can find some α > 0 such that ‖vε − f ε‖Lq(Ω) ≤ η provided 0 < ε ≤ α.

If (uε)ε>0 and (vε)ε>0 are as above (with the respective assigned two-scale
convergence properties), it can be shown that when ε → 0, the sequence
(uε)ε>0 weakly converges to ũ0 in Lp (Ω) (with ũ0 (x) =

∫
Y u0 (x, y) dy, x ∈

Ω) whereas (vε)ε>0 weakly converges to ṽ0 (defined as ũ0) in Lq (Ω) and
further, there is no reason for our assuming that one of those two sequences
is strongly convergent. Nevertheless, letting 1

r = 1
p + 1

q and assuming that

r ≥ 1, it can be shown that when ε → 0, the sequence (uεvε)ε>0 weakly
converges in Lr (Ω) to the function z (x) =

∫
Y u0 (x, y) v0 (x, y) dy (x ∈ Ω).

As might be expected, strong two-scale convergence implies weak two-
scale convergence. The function u0 (resp. v0) above is unique and is referred
to as the weak (resp. strong) two-scale limit of the sequence (uε) (resp. (vε)).
One of the major results in two-scale convergence theory is the so-called two-
scale compactness theorem ([27], [23, Theorem 7], [26, Theorem 1]): from
any bounded sequence (uεn)n∈N

in Lp (Ω) (1 < p <∞), where 0 < εn → 0
as n→ ∞, one can extract a subsequence that weakly two-scale converges in
Lp (Ω). The two-scale compactness theorem is the corner stone of a by now
well-known homogenization approach, the so-called two-scale convergence
method (see, e.g., [11, 12, 13, 25, 39, 23]).
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In fact, weak two-scale convergence is intended to supply the deficiency of
usual weak convergence (observe that the former implies the latter) whereas
strong two-scale convergence is fitted to temper the stiffness of usual strong
convergence (indeed, the latter implies the former). For further results
concerning two-scale convergence we refer to [9, 40, 23] and the references
therein.

The present study is intended to generalize the two-scale convergence
theory to nonperiodic settings, so true is it that two-scale convergence is
strictly relevant to periodic structures. It goes without saying that such an
undertaking requires appropriate materials, the usual material for two-scale
convergence theory being obsolete in the forthcoming general framework.
In this connection a fundamental role will be played by so-called homog-
enization algebras. One of our main tools will be the classical Gelfand
representation theory (see, e.g., [22, 15]). Most of the main results proved
here are stated (without proofs) in some articles by the first author with
reference to an unpublished paper [29] as regards the proofs. Algebras with
mean values were first introduced in [41] but a complete theory adapted for
e.g. homogenization theory in the present form was first introduced in [29].

The rest of the paper is organized as follows. Section 2 deals with ho-
mogenization algebras introduced earlier in [30]. Several concrete examples
of homogenization algebras are considered. The special case of almost peri-
odic homogenization algebras is discussed. In Section 3 we discuss weak Σ-
convergence and strong Σ-convergence in Lp. It is of great interest to stress
here that all the main results achieved in two-scale convergence theory carry
over mutatis mutandis to Σ-convergence theory. Thus, it is no wonder that
the Σ-convergence method is a mere adaptation of the two-scale convergence
method. In Section 4 we introduce the concept of Σ-convergence of mea-
sures. Finally, in Section 5 we show how Σ-convergence theory is applied to
study homogenization problems beyond the usual periodic setting.

Except where otherwise stated, vector spaces are considered over C (the
complex numbers) and scalar functions are assumed to take complex values.
We will mostly follow the standard notation. For example if X and F denote
a locally compact space and a Banach space, respectively, we write C (X;F )
for the space of continuous mappings of X into F , B (X;F ) for the space
of bounded continuous functions of X into F , and K (X;F ) for the space
of compactly supported continuous functions of X into F . The norm in
B (X;F ) will be the supremum norm ‖u‖∞ = supx∈X ‖u (x)‖, where ‖.‖
stands for the norm in F . K (X;F ) is provided with the usual inductive
limit topology. For shortness we will write C (X) for C (X; C), B (X) for
B (X; C) and K (X) for K (X; C). Likewise we will put Lp (X) for Lp (X; C),
and Lploc (X) for Lploc (X; C). We generally refer to [4, 5, 18] for integration
theory.
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2. HOMOGENIZATION ALGEBRAS

2.1. Preliminaries. Let N be a positive integer. For any real ε > 0, we
set

(2.1) Hε (x) =
( x1

εα1
, ...,

xN
εαN

)
, x = (x1, ..., xN ) ∈ RN ,

where (αi)1≤i≤N is a given family of positive integers. This gives a family

H =(Hε)ε>0 of mappings of RN into RN with the following properties:

(H)1 limε→0 |Hε (x)| = +∞ for any x ∈ RN with x 6= ω, where |.| and ω
denote the Euclidean norm and the origin in RN , respectively.

(H)2 limε→0

∣∣∣H 1
ε
(x)

∣∣∣ = 0 for all x ∈ RN .

For u ∈ L1
loc

(
RN
y

)
(RN

y denotes the space RN of variables y = (y1, ..., yN )),
we will put for simplicity

uε (x) = u (Hε (x))
(
x ∈ RN

)
.

Now, the family H = (Hε)ε>0 generates a mean value on RN as follows.

Let Π∞ = Π∞
(
RN
y ;H

)
be the space of those functions u ∈ B

(
RN
y

)
for

which a complex number ũ exists such that uε → ũ in L∞
(
RN
x

)
-weak ∗ as

ε→ 0. This yields a linear operator M from B
(
RN
y

)
to C whose domain is

D (M) = Π∞ and whose value at u ∈ D (M) is M (u) = ũ (the above limit).
It is not hard to check that Π∞ is a closed vector subspace of B

(
RN

)

containing the constants. Furthermore, the following properties are trivial:
M (u) ≥ 0 for u ∈ Π∞ with u ≥ 0, M (1) = 1. Finally, Π∞ is translation
invariant, i.e., we have τau ∈ Π∞ whenever u ∈ Π∞ and a ∈ RN

y (where

τau (y) = u (y − a) for y ∈ RN ), and further M (τau) = M (u). This follows
immediately by a simple adaptation of the proof of [31, Theorem 4.1]. Thus,
M is a mean value on RN (see Definition 2.1 of [31]). Specifically, M is the
mean value on RN for H.

2.2. Definition and basic properties of a homogenization algebra.
Let the basic notation be as above.

Definition 2.1. We term a homogenization algebra (or an H-algebra) on
RN (for H), any closed subalgebra A of B

(
RN
y

)
with the following properties:

(HA)1 A with the supremum norm is separable.
(HA)2 A contains the constants.
(HA)3 If u ∈ A, then u ∈ A (u the complex conjugate of u).
(HA)4 A ⊂ D (M) = Π∞.

In the sequel the H-algebra A is assumed to be equipped with the supre-
mum norm. Thus, A is a commutative C∗-algebra with identity. We denote
the spectrum of A by ∆ (A) (the set of all nonzero multiplicative linear forms
on A), the latter being endowed with the Gelfand topology, i.e., the relative
weak ∗ topology on A′ (topological dual of A). As is classical (see, e.g., [22,
p.71], [15, p.304]), ∆ (A) is a compact space. The Gelfand transformation
on A will be denoted by G. For the benefit of the reader we recall that G is
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defined to be the mapping of A into C (∆ (A)) such that G (u) (s) = 〈s, u〉
for s ∈ ∆ (A) and u ∈ A, where the brackets stand for the duality pairing
between A′ and A. One classical result on which we will greatly lean is
the so-called commutative Gelfand-Naimark theorem [22, p.277], which says
that G is an isometric isomorphism of the C∗-algebra A onto the C∗-algebra
C (∆ (A)). It results from this that the space C (∆ (A)) is separable, thanks
to (HA)1. We deduce using a classical result (see, e.g., [6, TGX. 24]) that
the compact space ∆ (A) is metrizable.

Except where otherwise stated, ∆ (A) is provided with the so-called M -
measure for A, denoted below by β. It is worth reminding that β is the
positive Radon measure on ∆ (A), of total mass 1, such that

M (u) =

∫

∆(A)
G (u) (s) dβ (s) (u ∈ A) .

We refer to [30] for more detail about β.
The next proposition includes a few other useful properties of H-algebras.

Proposition 2.1. Let p ∈ R, p > 0. For u ∈ A, we have |u|p ∈ A with
G (|u|p) = |G (u)|p and M (|u|p) =

∫
∆(A) |G (u) (s)|p dβ (s).

Proof. For p and u as stated, it is clear that |G (u)|p lies in C (∆ (A)). There-
fore, we may consider v ∈ A such that G (v) = |G (u)|p. For y ∈ RN , it
follows v (y) = G (v) (δy) = |G (u) (δy)|

p = |u (y)|p, where δy denotes the
Dirac measure on RN at y. Hence the proposition follows readily.

We turn now our attention to a concept of degeneracy.

Definition 2.2. The H-algebra A is said to be nondegenerate if the only
function u ∈ A verifying u ≥ 0 and M (u) = 0 is the zero function in
B

(
RN

)
. Otherwise A is termed degenerate.

Proposition 2.2. The following two assertions are equivalent.
(i) A is nondegenerate.
(ii) Suppβ = ∆ (A).

Proof. Suppose (i) holds. We claim that (ii) is true. Otherwise let r be
some point in ∆ (A) lying off Suppβ (the support of β). By Urysohn’s
lemma we may consider some ϕ ∈ C (∆ (A)) such that ϕ ≥ 0, ϕ (r) = 1 and
ϕ = 0 on Suppβ. Clearly β (ϕ) ≡

∫
∆(A) ϕ (s) dβ (s) = 0. Therefore, letting

u = G−1 (ϕ), it follows M (u) = 0. Since u ≥ 0 (indeed, it is a classical
fact that G and G−1 are order preserving), we see by (i) that u = 0. Hence
ϕ (s) = G (u) (s) = 0 for any s ∈ ∆ (A), a contradiction and so (ii) is true.
Reciprocally, assume (ii) and let u ∈ A with u ≥ 0 and M (u) = 0. Then
ϕ = G (u) ≥ 0 and β (ϕ) = 0. Consequently ϕ = 0 on Suppβ (see, e.g., [4,
p. 69]); hence ϕ (s) = 0 for all s ∈ ∆ (A), according to (ii). Therefore u = 0
and so (i) follows.
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2.3. Almost periodic H-algebras. Our purpose is to present typical ex-
amples of H-algebras. First of all, we recall that by an almost periodic
continuous function on RN is meant any u ∈ B

(
RN

)
whose translates{

τau : a ∈ RN
}

(recall that τau (y) = u (y − a) for y ∈ RN ) form a rela-

tively compact set in B
(
RN

)
. The space of such functions is commonly

denoted by AP
(
RN

)
, and is a Banach space under the supremum norm.

Specifically, AP
(
RN

)
with the supremum norm and the usual algebra op-

erations in B
(
RN

)
is a commutative C∗-algebra with identity. On the other

hand, given u ∈ AP
(
RN

)
, it can be shown that the closed convex hull of{

τau : a ∈ RN
}

in B
(
RN

)
contains one and only one constant m (u) called

the mean of u (see [20, p.94] and [31]). This yields a mapping u→ m (u) of
AP

(
RN

)
into C, which is linear, positive, translation invariant, and which

attains the value 1 on the constant function 1. Therefore, this determines
a mean value m on RN with D (m) = AP

(
RN

)
, called the mean value (on

RN) for AP
(
RN

)
. Interesting enough, M (the mean value on RN for H) is

an extension of m, as shown below.

Proposition 2.3. We have AP
(
RN

)
⊂ Π∞ and m (u) = M (u) for all

u ∈ AP
(
RN

)
.

Proof. To begin, let Γ be the algebra of all functions u : RN → C of the
form

u (y) =
∑

k

ck exp (2iπk·y)
(
y ∈ RN

)
,

where k ranges over a finite subset of RN (depending on u), and the dot
denotes the usual Euclidean inner product in RN . Each such u is called
a trigonometric polynomial on RN . We have Γ ⊂ AP

(
RN

)
and further

Γ is dense in AP
(
RN

)
(see, e.g., [20, chap.5], [22, chap.10]). Thus, the

proposition is proved if we can check that for each u ∈ Γ, we have uε → m (u)
in L∞

(
RN

)
-weak ∗ as ε → 0. Clearly it is enough to verify this for u = γk(

k ∈ RN
)
, where γk (y) = exp (2iπk·y) for y ∈ RN . In other words, the

whole problem reduces to showing that, given any arbitrary f ∈ L1
(
RN
x

)
(f

independent of ε), we have as ε→ 0,
∫
γεkfdx→ m (γk)

∫
fdx

for all k ∈ RN . This is trivial if k = ω (the origin in RN), because m (1) = 1.
So assume that k 6= ω. Recalling that m (γk) = 0 in this case, we see that the
proposition is proved once we have verified that limε→0 Ff (−Hε (k)) = 0,
where Ff stands for the Fourier transform of f . But this follows immedi-
ately by the Riemann-Lebesgue lemma.

Thus, AP
(
RN

)
is a closed subalgebra of B

(
RN

)
verifying properties

(HA)2-(HA)4. Unfortunately AP
(
RN

)
fails to carry out (HA)1 and hence

we are led to restrict ourselves to some specific subalgebras.
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Let R be a countable subgroup of the additive group RN
y . We define

APR

(
RN

)
=

{
u ∈ AP

(
RN

)
: Sp (u) ⊂ R

}

with Sp (u) =
{
k ∈ RN : M (γku) 6= 0

}
(spectrum of u). Note that the

spectrum of any function in AP
(
RN

)
is a countable set, and so the definition

of APR

(
RN

)
makes sense. Now, let ΓR be the set of all functions of the

form
∑

k ckγk with ck ∈ C and γk (y) = exp (2iπk·y)
(
y ∈ RN

)
, where k

ranges over an arbitrary finite subset of R. The set ΓR is a subalgebra of
AP

(
RN

)
, and APR

(
RN

)
coincides with the closure of ΓR in B

(
RN

)
(see,

e.g., [20, p.93, Proposition 5.4]). Hence, recalling Proposition 2.3, it becomes
an elementary exercise to verify that APR

(
RN

)
is a homogenization algebra

on RN (for H). We will refer to APR

(
RN

)
as the almost periodic H-algebra

attached to R.
Before going any further, let us recall a classical notion we will need.

If G is a locally compact Abelian group, we denote its dual by Ĝ, i.e.,

Ĝ is the group of all continuous homomorphisms of G into the unit circle

U = {ξ ∈ C : |ξ| = 1}. With the topology of compact convergence on G, Ĝ

is a locally compact Abelian group. Points in Ĝ are the so-called continuous

characters of G. If γ ∈ Ĝ and y ∈ G, it is customary to denote γ (y) by
〈γ, y〉 or 〈y, γ〉.

Having made this point, let us keep in mind that the countable subgroup
R of RN introduced above is naturally provided with the discrete topology.

Consequently, its dual group R̂ is compact (see, e.g., [22, p.122]). We will

also need the (group) homomorphism ϕ : RN → R̂ defined at each y ∈ RN

by
〈ϕ (y) , k〉 = γk (y) = exp (2iπk·y) (k ∈ R) .

The function ϕ maps continuously RN into R̂ and, on the other hand,

ϕ
(
RN

)
is dense in R̂ (this is a classical result; use, e.g., [16, p.98, (22.11.5)] if

need be). Finally, the canonical isomorphism of R onto
̂̂
R (dual group of R̂)

will be denoted by ψ. It is well to recall that ψ is given by 〈ψ (k) , γ〉 = 〈γ, k〉

for k ∈ R, γ ∈ R̂. We are now in a position to prove the following result.

Proposition 2.4. Let A = APR

(
RN

)
. Then, the compact space ∆ (A) can

be provided with a group operation under which it is an Abelian group and
further the Haar measure on ∆ (A) is precisely the M-measure β.

Proof. For each function of the form u =
∑

k ckγk (ck ∈ C), where k ranges
over a finite subset of R depending solely on u, let T (u) =

∑
k ckψ (k). This

defines a linear mapping T : ΓR → C(R̂) such that ‖T (u)‖∞ = ‖u‖∞ and

(2.2) T (u) (ϕ (y)) = u (y)
(
y ∈ RN

)

for all u ∈ ΓR. Thanks to the fact that ΓR is dense in A, we see that we
can extend T by continuity to a continuous linear mapping, still denoted by

T , of A into C(R̂). Moreover, the latter is an isometric homomorphism of



8 GABRIEL NGUETSENG AND NILS SVANSTEDT

the C∗-algebra A into the C∗-algebra C(R̂), and (2.2) holds for all u ∈ A.

By using the classical property that
̂̂
R is total in C(R̂), it can be shown

without difficulty that T is surjective and therefore an isometric isomorphism

of the C∗-algebra A onto the C∗-algebra C(R̂). This being so, let L be

the mapping of C (∆ (A)) into C(R̂) defined by L (f) = T
(
G−1 (f)

)
for

f ∈ C (∆ (A)), where G is the Gelfand transformation on A. This mapping
is clearly an isometric isomorphism of the C∗-algebra C (∆ (A)) onto the C∗-

algebra C(R̂). Consequently, according to [22, p.90, Theorem 4.1.4], there

exists a homeomorphism h of R̂ onto ∆ (A) such that L (f) (t) = f (h (t))

(t ∈ R̂) for any f ∈ C (∆ (A)). Now, for s1, s2, s ∈ ∆ (A), put s1 + s2
= h (t1t2) and −s = h

(
t−1

)
(observe that R̂ is a multiplicative group),

where ti = h−1 (si) (i = 1, 2) and t = h−1 (s). This defines a binary relation
+ under which ∆ (A) is an Abelian topological group (with the Gelfand

topology) and h is a group homomorphism of R̂ onto ∆ (A). It remains to
verify that the Haar measure on ∆ (A) coincides with β (the M -measure for
A). Clearly it amounts to verifying that β is translation invariant. For this
purpose, introduce the mapping j : RN → ∆ (A) defined by j (y) = δy (Dirac
measure at y ∈ RN ). We need to show that j is a group homomorphism.
It suffices to check that j = h ◦ ϕ (usual composition). Fix freely y ∈ RN .
Letting û = G (u), we have û (h (ϕ (y))) = L (û) (ϕ (y)) = T (u) (ϕ (y)) =
u (y) = û (j (y)) for any u ∈ A. Hence j (y) = h (ϕ (y)) and so j is a group
homomorphism, as claimed. With this in mind, let u ∈ A and a ∈ RN .
Then, clearly

(
τ j(a)G (u)

)
(j (y)) = G (τau) (j (y)) for all y ∈ RN . By the

density of j
(
RN

)
in ∆ (A) (this is a classical result), it follows G (τau) =

τ j(a)G (u) for all a ∈ RN and all u ∈ A. Therefore, using the fact that M

is translation invariant, we deduce β (τ sf) = β (f) for all s ∈ j
(
RN

)
where

f is freely fixed in C (∆ (A)). Hence, the translation invariance of β (i.e.,
β (τ sf) = β (f) for f ∈ C (∆ (A)), s ∈ ∆ (A)) follows from the facts that
j
(
RN

)
is dense in ∆ (A) and the mapping s → β (τ sf) sends continuously

∆ (A) into C. This completes the proof.

As a direct consequence of the above proposition, there is the following
corollary.

Corollary 2.1. The H-algebra A = APR

(
RN

)
is nondegenerate (see Defi-

nition 2.2).

Proof. Considering that the support of a Haar measure on a locally com-
pact group is just the said group (this is a classical result), we see that
the corollary follows immediately by Proposition 2.4 and use of Proposition
2.2.

Remark 2.1. In the course of the proof of Proposition 2.4 we have found

that ∆ (A) = R̂ (up to a topological group isomorphism), where A = APR

(
RN

)
.
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The basic case of periodic H-algebras. Let A = Cper (Y ) (see Section

1) with Y =
(
−1

2 ,
1
2

)N
. It is an easy exercise to check that A is an H-algebra.

We have here M (u) =
∫
Y u (y) dy for u ∈ A. Now, we observe that this H-

algebra is only a particular almost periodic H-algebra. More precisely, we
have Cper (Y ) = APR=ZN

(
RN

)
, as is easily verified. Hence, according to

Remark 2.1, ∆ (A) = TN (the N -torus) with A = Cper (Y ), of course; indeed

R̂ = TN ≡ (R/Z)N for R =ZN (see, e.g., [20]). Let us stress that the above
equality between ∆ (A) and TN actually proceeds from an identification by
means of a (topological) group isomorphism. In this connection, let π be the
isometric isomorphism of Cper (Y ) onto C

(
TN

)
such that π (u) (p (y)) = u (y)(

y ∈ RN
)

for u ∈ Cper (Y ), where p denotes the canonical homomorphism of

RN onto TN . Then, for any u ∈ A = Cper (Y ), we have
∫

Y
u (y) dy =

∫

∆(A)
G (u) (s) dβ (s) =

∫

TN

π (u) (z) dz,

where dz denotes Haar measure on the compact group TN .

Remark 2.2. More generally, let {b1, ..., bN} be a (nonnecessarily orthogo-
nal) basis of RN (viewed as an N -dimensional vector space over R). Let S

be the set of all k ∈ RN of the form k =
∑N

i=1 tibi (ti ∈ Z), and let

Y =

{
y ∈ RN : y =

N∑

i=1

ribi, −
1

2
≤ ri ≤

1

2

}
.

A continuous complex function u on RN is said to be Y -periodic if u (y + k) =
u (y) for all y ∈ RN and all k ∈ S. We define PY

(
RN

)
to be the

space of all such functions. There is no serious difficulty in showing that
PY

(
RN

)
= APR=S∗

(
RN

)
where S∗ =

{
l ∈ RN : l·k ∈ Z for all k ∈ S

}
(the

dot denotes the usual Euclidean inner product in RN). Thus, PY
(
RN

)
is

an H-algebra on RN (for H). It can be shown that the above development
regarding Cper (Y ) carries over mutatis mutandis to the present general set-
ting.

2.4. Further examples of homogenization algebras. The space A in
each of the following examples has proved to be an H-algebra on RN for H
(see, e.g., [30]).

Example 2.1. Put A = B∞

(
RN
y

)
, where B∞

(
RN
y

)
denotes the space of

those continuous complex functions on RN
y that converge (to a finite number)

at infinity. We have here M (u) = lim|y|→∞ u (y) for u ∈ A, and it is evident
that A is a degenerate H-algebra.

Example 2.2. Let A = B∞,per (Y ) be the closure in B
(
RN
y

)
of the space

of functions of the form u =
∑
ϕiui with a summation of finitely many

terms, where ϕi ∈ B∞

(
RN
y

)
, ui ∈ Cper (Y ) with Y =

(
−1

2 ,
1
2

)N
. This is an

H-algebra.
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Example 2.3. More generally, let R be a countable subgroup of the additive
group RN . Define B∞,R

(
RN

)
to be the closure in B

(
RN
y

)
of the space of

functions u =
∑

finite ϕiui with ϕi ∈ B∞

(
RN

)
, ui ∈ APR

(
RN

)
. The space

A = B∞,R

(
RN

)
is an H-algebra.

Remark 2.3. The H-algebras of examples 2.2 and 2.3 are degenerate.

Example 2.4. Let A1 be an H-algebra on RN−1, and let B∞ (R;A1) be the
space of all continuous functions u : R → A1 such that limτ→∞ ‖u (τ) − ς‖∞ =
0, where ς ∈ A1 (ς depending on u). The space A = B∞ (R;A1) is an H-
algebra on RN .

2.5. The spaces X
p
A

(
RN
y

)
(1 ≤ p <∞). The present and next subsections

are concerned with function spaces of great interest in deterministic homog-
enization theory.

For each real p ≥ 1, we first of all introduce the space Ξp
(
RN
y

)
of those

functions u ∈ Lploc
(
RN
y

)
for which the sequence (uε)0<ε≤1 (uε defined in

subsection 2.1) is bounded in Lploc
(
RN
x

)
. This is clearly a vector subspace

of Lploc
(
RN
y

)
. Let

‖u‖Ξp = sup
0<ε≤1

(∫

BN

|u (Hε (x))|p dx

) 1
p (

u ∈ Ξp
(
RN
y

))
,

whereBN denotes the open unit ball of RN
x . This defines a norm on Ξp

(
RN
y

)
,

which makes the latter a Banach space (the verification is a routine exercise
left to the reader).

Now, let A be an H-algebra on RN (for H). For each real p ≥ 1, we define
X
p
A

(
RN
y

)
(or simply X

p
A, or even X

p when there is no danger of confusion)

as being the closure of A in Ξp
(
RN
y

)
. Provided with the Ξp-norm, X

p
A is a

Banach space.
Let us turn to the proofs of some fundamental results that were pointed

out earlier in [30].

Proposition 2.5. The mean value M on RN for H (see subsection 2.1)
viewed as defined on A, extends by continuity to a (unique) continuous linear
form on X

p
A still denoted M . Furthermore, given u ∈ X

p
A and a fixed bounded

open set Ω in RN
x , we have uε → M (u) in Lp (Ω)-weak as ε → 0, where uε

is considered as defined on Ω.

Proof. For ψ ∈ A, we have
∣∣∣∣
∫

BN

ψ (Hε (x)) dx

∣∣∣∣ ≤ |BN |
1
p′ ‖ψ‖Ξp (0 < ε ≤ 1) ,

where |BN | stands for the measure of BN (with respect to Lebesgue measure

on RN ). As ε→ 0, it follows |M (ψ)| ≤ |BN |
− 1

p ‖ψ‖Ξp , from which we deduce
the first part of the proposition by extension by continuity. Now, let u and
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Ω be as stated above. If u ∈ A, then it is evident that uε →M (u) in Lp (Ω)-
weak as ε→ 0. So, in what follows we assume that u is an arbitrarily given
function in X

p
A. Let ϕ ∈ Lp

′
(Ω) ( 1

p′ = 1 − 1
p), ϕ assumed to be a nonzero

function. Fix freely η > 0. Thanks to the density of A in X
p
A, we may

consider some ψ ∈ A such that
(∫

Ω
|uε − ψε|p dx

) 1
p

≤
η

3 ‖ϕ‖Lp′ (Ω)

(0 < ε ≤ 1)

and ∣∣∣∣M (u− ψ)

∫

Ω
ϕdx

∣∣∣∣ ≤
η

3
(use the first part of Proposition 2.5).

On the other hand, as pointed out above, there is some real 0 < r ≤ 1 such
that ∣∣∣∣

∫

Ω
ψεϕdx−M (ψ)

∫

Ω
ϕdx

∣∣∣∣ ≤
η

3

for all 0 < ε ≤ r. Hence, by writing∫

Ω
uεϕdx−M (u)

∫

Ω
ϕdx =

∫

Ω
(uε − ψε)ϕdx+

∫

Ω
ψεϕdx

−M (ψ)

∫

Ω
ϕdx+M (ψ − u)

∫

Ω
ϕdx,

we see immediately that∣∣∣∣
∫

Ω
uεϕdx−M (u)

∫

Ω
ϕdx

∣∣∣∣ ≤ η

for all 0 < ε ≤ r. The proposition follows thereby.

Proposition 2.6. The Gelfand transformation G : A → C (∆ (A)) extends
by continuity to a (unique) continuous linear mapping of X

p
A into Lp (∆ (A))

still denoted by G.

Proof. Let u ∈ A. Then,∫

BN

|u (Hε (x))|p dx ≤ ‖u‖pΞp (0 < ε ≤ 1) .

Letting ε→ 0, it follows M (|u|p)
1
p ≤ |BN |

− 1
p ‖u‖Ξp , hence

‖G (u)‖Lp(∆(A)) ≤ |BN |
− 1

p ‖u‖Ξp , according to Proposition 2.1. The propo-

sition follows by extention by continuity, A being dense in X
p
A.

Remark 2.4. The mapping G : X
p
A → Lp (∆ (A)) derived from Proposition

2.6 is referred to as the canonical mapping of X
p
A into Lp (∆ (A)).

The preceding proposition has three important corollaries.

Corollary 2.2. We have M (u) =
∫
∆(A) G (u) dβ for u ∈ X

p
A, where M

and G denote the extension mappings constructed in Propositions 2.5-2.6,
respectively.
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Proof. This is straightforward by the said propositions and use of the defi-
nition of the measure β (see subsection 2.2).

Corollary 2.3. Let 1 < p, q < +∞ with 1
p + 1

q = 1
r ≤ 1. If u ∈ X

p = X
p
A

and v ∈ X
q, then uv ∈ X

r and G (uv) = G (u)G (v).

Proof. This follows readily by Proposition 2.6 and use of Hölder’s inequal-
ity.

Corollary 2.4. The following assertions are true for 1 ≤ p <∞ :
(i) If u ∈ X

p, then u ∈ X
p and G (u) = G (u).

(ii) If u ∈ X
p, then |u|p ∈ X

1 and G (|u|p) = |G (u)|p.
(iii) If ψ ∈ A and u ∈ X

p, then ψu ∈ X
p and G (ψ)G (u) = G (ψu).

(iv) If u ∈ X
1 and further u is real valued, then G (u) is real valued. If

moreover u ≥ 0 a.e. (almost everywhere), then G (u) ≥ 0 a.e.
(v) If u ∈ X

1 ∩ L∞, then G (u) ∈ L∞ (∆ (A)) and

‖G (u)‖L∞(∆(A)) ≤ ‖u‖L∞ .

Proof. (i) follows by Proposition 2.6 and use of the equality G (u) = G (u)
for u ∈ A. We turn now to the proof of (ii). Let u ∈ X

p. Choose some
sequence (un) in A such that un → u in Ξp

(
RN

)
as n → ∞. By taking

a = un (y) and b = u (y) (where the integer n > 0 and the point y ∈ RN are
arbitrarily fixed) in the simple inequality

||a|p − |b|p| ≤ p |a− b| (|a| + |b|)p−1 (a, b ∈ C)

and then using an obvious Hölder’s inequality, we get

‖|un|
p − |u|p‖Ξ1 ≤ c ‖un − u‖Ξp

with c = p supm>0 ‖|um| − |u|‖p−1
Ξp <∞. We deduce that |un|

p → |u|p in Ξ1

as n→ ∞, hence |u|p ∈ X
1, since |un|

p ∈ A (Proposition 2.1). On the other
hand, according to Proposition 2.6, we have in the L1 (∆ (A))-norm,

G (|un|
p) → G (|u|p) and |G (un)|

p → |G (u)|p as n→ ∞.

Therefore the rest of (ii) follows by Proposition 2.1, once again. Assertion
(iii) being straightforward, let us next verify (iv). For this purpose, fix freely

u ∈ X
1. Suppose u is real valued. Then, by (i) we have G (u) = G (u) and

so G (u) is real valued too. Suppose further that u ≥ 0 a.e. Let ψ ∈ A with
ψ ≥ 0. Then ψu ∈ X

1 with ψu ≥ 0 a.e., hence M (ψu) ≥ 0 (use Proposition
2.5). Consequently ∫

∆(A)
G (ψ)G (u) dβ ≥ 0,

as is straightforward by (iii) and use of Corollary 2.2. Thus,
∫
∆(A) ϕG (u) dβ ≥

0 for all ϕ ∈ C (∆ (A)) with ϕ ≥ 0. This shows that G (u) ≥ 0 a.e. (see,
e.g., [5, p.47, Corol.3]). We will finally establish (v). Let u ∈ X

1 ∩ L∞.
Since |u| ≤ ‖u‖L∞ a.e., we have |ψu| ≤ ‖u‖L∞ |ψ| a.e. for all ψ ∈ A. Thus
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M (|ψu|) ≤ ‖u‖L∞ M (|ψ|) for all ψ ∈ A (see Proposition 2.5). We deduce
by Corollary 2.2 and use of parts (ii) and (iii) that

∣∣∣∣∣

∫

∆(A)
G (ψ)G (u) dβ

∣∣∣∣∣ ≤ ‖u‖L∞

∫

∆(A)
|G (ψ)| dβ

for all ψ ∈ A, or equivalently,
∣∣∣∣∣

∫

∆(A)
ϕG (u) dβ

∣∣∣∣∣ ≤ ‖u‖L∞ ‖ϕ‖L1(∆(A))

for all ϕ ∈ C (∆ (A)). Hence (v) follows.

Remark 2.5. Let A = Cper (Y ) with Y =
(
−1

2 ,
1
2

)N
(see subsection 2.3).

Then X
p
A = Lpper (Y ) (1 ≤ p < ∞), where the right-hand side denotes the

space of Y -periodic functions in Lploc
(
RN

)
. Indeed, this follows immediately

by two facts: 1) the space Ξp
(
RN

)
is continuously embedded in Lploc

(
RN

)
;

2) the space Lpper (Y ) is continuously embedded in Ξp
(
RN

)
, as is straight-

forward by [26, Lemma 1].

2.6. Sobolev spaces Wm,p (∆ (A)). Let A be an H-algebra on RN (for H).
Before we can define so-called Sobolev spaces on ∆ (A), we need to introduce
the notion of a partial derivative on ∆ (A). This will be achieved by carrying
over the usual derivatives on RN . Specifically, for any integer m ≥ 1, let

Am =
{
ψ ∈ Cm

(
RN
y

)
: Dα

y ψ ∈ A for α ∈ NN , |α| ≤ m
}

and

‖ψ‖m = sup
|α|≤m

∥∥Dα
yψ

∥∥
∞

(ψ ∈ Am) ,

where Dα
y = ∂|α|

∂y
α1
1 ...∂y

αN
N

. Provided with the norm ‖·‖m, Am is a Banach

space. Furthermore, put

A∞ = ∩
m≥1

Am.

We provide A∞ with the locally convex topology defined by the family of
norms ‖·‖m (m ≥ 1), which makes it a Fréchet space. Finally, set

Dm (∆ (A)) =
{
ϕ ∈ C (∆ (A)) : G−1 (ϕ) ∈ Am

}
(m ≥ 1)

D (∆ (A)) =
{
ϕ ∈ C (∆ (A)) : G−1 (ϕ) ∈ A∞

}
.

Remark 2.6. Dm (∆ (A)) = G (Am) and D (∆ (A)) = G (A∞).

We are now is a position to define partial derivatives on ∆ (A).

Definition 2.3. By the partial derivative of index i (1 ≤ i ≤ N) on ∆ (A)
we shall understand the unbounded linear operator ∂i from C (∆ (A)) to
C (∆ (A)) defined as D (∂i) = D1 (∆ (A)) (D (∂i) stands for the domain of

∂i), ∂iϕ =
(
G ◦ ∂

∂yi
◦ G−1

)
ϕ for ϕ ∈ D1 (∆ (A)).
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More generally, the partial derivative of index α ∈ NN on ∆ (A) is defined
to be the unbounded linear operator ∂α from C (∆ (A)) to C (∆ (A)) such that

D (∂α) = D|α| (∆ (A)) and ∂αϕ =
(
G◦Dα

y ◦ G−1
)
ϕ for ϕ ∈ D|α| (∆ (A)). We

equip Dm (∆ (A)) with the norm ‖ϕ‖m = sup|α|≤m ‖∂αϕ‖∞ (ϕ ∈ Dm (∆ (A))),

and D (∆ (A)) with the family of norms ‖·‖m (m ≥ 1). It is easily seen that
Dm (∆ (A)) is a Banach space and D (∆ (A)) is a Fréchet space. Further-
more, G maps Am isometrically onto Dm (∆ (A)) and A∞ isomorphically
onto D (∆ (A)).

The topological dual of D (∆ (A)) is denoted by D′ (∆ (A)). We as-
sume that D′ (∆ (A)) is provided with the strong dual topology. Each
T ∈ D′ (∆ (A)) is called a distribution on ∆ (A); the value of T at some ϕ ∈
D (∆ (A)) is denoted by 〈T,ϕ〉. The derivative of index α ∈ NN of T is de-

fined to be the distribution ∂αT on ∆ (A) given by 〈∂αT,ϕ〉 = (−1)|α| 〈T,ϕ〉
for ϕ ∈ D (∆ (A)). It is an easy exercise to verify that the transformation
T → ∂αT maps continuously and linearly D′ (∆ (A)) into itself.

In passing we wish to draw attention to one basic result.

Proposition 2.7. For any ϕ ∈ Dm (∆ (A)) (m ≥ 1) and any multi-index α
with 1 ≤ |α| ≤ m, we have

∫
∆(A) ∂

αϕ (s) dβ (s) = 0.

Proof. Clearly it is enough to assume thatm = 1. Thus, the problem reduces
to verifying that

∫
∆(A) ∂iϕdβ = 0 for ϕ ∈ D1 (∆ (A)) and 1 ≤ i ≤ N . We

will need the equality

M (g ∗ u) = M (u)

∫
g (y) dy

for u ∈ Π∞ and g ∈ L1
(
RN

)
(see [31, Proposition 4.1]), where ∗ denotes

the convolution on RN . So, letting ψ = G−1 (ϕ), where ϕ is as above,

we see that the proposition is proved if we can check that M
(
∂ψ
∂yi

)
= 0,

1 ≤ i ≤ N . But this is straightforward. Indeed, let f ∈ D
(
RN

)
= C∞

0

(
RN

)

with
∫
f (y) dy = 1. By the above equality, we have M

(
∂ψ
∂yi

)
= M

(
f ∗ ∂ψ

∂yi

)
.

Recalling that f ∗ ∂ψ
∂yi

= ψ ∗ ∂f
∂yi

, and appealing to the above equality, once

again, we get on the other hand M
(
f ∗ ∂ψ

∂yi

)
= M (ψ)

∫ ∂f
∂yi
dy = 0. Hence

the proposition follows.

Throughout the rest of the study it is assumed that A∞ is dense in A
(this amounts to saying that D (∆ (A)) is dense in C (∆ (A))). It is worth
noting that this hypothesis is always satisfied in practice. Then, it becomes
possible to identify any given function u ∈ L1 (∆ (A)) with the distribution
Tu ∈ D′ (∆ (A)) defined by

〈Tu, ϕ〉 =

∫

∆(A)
u (s)ϕ (s) dβ (s) (ϕ ∈ D (∆ (A))) .
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Hence Lp (∆ (A)) ⊂ D′ (∆ (A)) (1 ≤ p ≤ ∞) with continuous embedding.
Consequently, given a real p ≥ 1 and an integer m ≥ 1, we may define

Wm,p (∆ (A)) = {u ∈ Lp (∆ (A)) : ∂αu ∈ Lp (∆ (A)) for |α| ≤ m} ,

where the partial derivatives ∂αu are computed in the distribution sense on
∆ (A), of course. Provided with the norm

‖u‖Wm,p(∆(A)) =




∑

|α|≤m

‖∂αu‖pLp(∆(A))




1
p

(u ∈Wm,p (∆ (A))) ,

Wm,p (∆ (A)) is a Banach space (in particular Wm,2 (∆ (A)) is a Hilbert
space).

However, in practice the appropriate space is not the whole Wm,p (∆ (A))
but its closed subspace

Wm,p (∆ (A)) /C =

{
u ∈Wm,p (∆ (A)) :

∫

∆(A)
udβ = 0

}

equipped with the seminorm

‖u‖Wm,p(∆(A))/C =




∑

|α|=m

‖∂αu‖pLp(∆(A))




1
p

(u ∈Wm,p (∆ (A)) /C) .

Unfortunately, Wm,p (∆ (A)) /C so topologized is in general non-separated
and non-complete (see subsection 2.7).

Definition 2.4. We define Wm,p
# (∆ (A)) as separated completion of Wm,p (∆ (A)) /C,

and J to be the canonical mapping of Wm,p (∆ (A)) /C into Wm,p
# (∆ (A)).

We refer to, e.g., [7, chap.II, §3, n◦ 7], [8, chap.I, §1, n◦ 4] and [18, pp.61-
62], for the basic notions involved in the above definition.

Remark 2.7. Wm,p
# (∆ (A)) is a Banach space and further the following

classical assertions hold true.
1) J is linear
2) J (Wm,p (∆ (A)) /C) is dense in Wm,p

# (∆ (A))

3) ‖J (u)‖Wm,p

# (∆(A)) = ‖u‖Wm,p(∆(A))/C (u ∈Wm,p (∆ (A)) /C)

4) If F is a Banach space and if L is a continuous linear mapping of
Wm,p (∆ (A)) /C into F , then there exists a unique continuous linear map-
ping L′ of Wm,p

# (∆ (A)) into F such that L = L′ ◦ J .

The preceding remark leads us immediately to the following proposition.

Proposition 2.8. Let the distribution derivative ∂α (α ∈ NN , |α| ≥ 1) be
viewed as a mapping of Wm,p (∆ (A)) /C into Lp (∆ (A)). Then there exists
a unique continuous linear mapping, still denoted by ∂α, of Wm,p

# (∆ (A))
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into Lp (∆ (A)) such that ∂αJ (v) = ∂αv for v ∈Wm,p (∆ (A)) /C. Further-
more,

‖u‖Wm,p

# (∆(A)) =




∑

|α|=m

‖∂αu‖pLp(∆(A))




1
p

for u ∈Wm,p
# (∆ (A)).

2.7. Sobolev spaces Hm (∆ (A)) with A an almost periodic H-algebra.
We consider here the particular case where A is an almost periodic H-algebra
(see subsection 2.3). So we have here

A = APR

(
RN

)
,

where R is a countable subgroup of RN (viewed as an additive group). In this
setting, we suppose p = 2, so that the Sobolev spaces under consideration
are Hm (∆ (A)) = Wm,2 (∆ (A)) (integers m ≥ 1). In this context we will
be able to point out a few interesting results by means of Fourier analysis.

To begin, we observe that A∞ is dense in A (indeed, ΓR is dense in A,
as is pointed out in subsection 2.3) and so we are justified in introducing
the preceding Sobolev spaces. Now, we recall that ∆ (A) is here a compact
Abelian group and β is nothing but the Haar measure on ∆ (A) (Proposition
2.4). The dual group of ∆ (A) is the discrete group

∆̂ (A) = {γ̂k : k ∈ R} (with γ̂k = G (γk) , γk (y) = exp (2iπk·y)
(
y ∈ RN

)
)

which may be identified with R (the reader is referred to subsection 2.3 and
in particular to Remark 2.1). Thus, the Fourier transform of a function
u ∈ L1 (∆ (A)) may be viewed as a mapping,

k → ak (u) =

∫

∆(A)
u (s) γ̂k (s)dβ (s) ,

of R into C. The complex numbers ak (u) (k ∈ R) are the so-called Fourier
coefficients of u ∈ L1 (∆ (A)). According to a classical result (see, e.g.,

[20, p.56]), ∆̂ (A) is an orthonormal basis of the Hilbert space L2 (∆ (A)).
Therefore we have, for any u ∈ L2 (∆ (A)),

(2.3) u =
∑

k∈R

ak (u) γ̂k (in the L2 (∆ (A)) -norm),

hence
‖u‖2

L2(∆(A)) =
∑

k∈R

|ak (u)|2 .

At the present time, for k = (k1, ..., kN ) ∈ R and α = (α1, ..., αN ) ∈ NN ,
it is not hard to see that

(2.4) ∂αγ̂k = (2iπ)|α| kαγ̂k,

where kα = kα1
1 kα2

2 ...kαN

N . Hence

(2.5) ak (∂αu) = (2iπ)|α| kαak (u)
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for any u ∈ Hm (∆ (A)). Having made these preliminaries, let us turn now
to the proof of the following proposition.

Proposition 2.9. The following assertions are true:
(i) ‖·‖Hm(∆(A))/C is a norm on Hm (∆ (A)) /C.

(ii) D (∆ (A)) is dense in Hm (∆ (A)).

Proof. (i) Let u ∈ Hm (∆ (A)) /C with ‖u‖Hm(∆(A))/C = 0. Then ∂αu = 0

for all α ∈ NN with |α| = m. Fix freely k = (k1, ..., kN ) ∈ R with k 6= ω (ω
the origin in RN). Consider an integer 1 ≤ n ≤ N such that kn 6= 0, and let
α = (αj) ∈ NN with αn = m, αj = 0 if j 6= n. Then kα = kmn 6= 0; hence
ak (u) = 0, according to (2.5); and so u = 0 (use (2.3)), since aω = 0. This
shows (i).

(ii) Consider a sequence of nonempty finite sets Rn ⊂ R (n ranging over
the positive integers) such that

Rn ⊂ Rn+1, R = ∪
n≥1

Rn.

Let u ∈ Hm (∆ (A)). For each integer n ≥ 1, put

un =
∑

k∈Rn

ak (u) γ̂k.

This gives a sequence (un)n≥1 with un ∈ D (∆ (A)) and further, thanks to

(2.4)-(2.5),

∂αun =
∑

k∈Rn

ak (∂αu) γ̂k (|α| ≤ m) .

Hence, by (2.3) it follows that un → u in Hm (∆ (A)) as n → ∞, which
shows (ii).

As an immediate consequence of this, there is the following corollary.

Corollary 2.5. The space D (∆ (A)) /C =
{
ϕ ∈ D (∆ (A)) :

∫
∆(A) ϕdβ = 0

}

is dense in Hm (∆ (A)) /C.

Thus, according to part (i) of Proposition 2.9, Hm (∆ (A)) /C is a sepa-

rated preHilbert space; so that Hm
# (∆ (A)) = Wm,2

# (∆ (A)) in the present

setting coincides with the completion of Hm (∆ (A)) /C. As we will see in
a little while, Hm (∆ (A)) /C is not necessarily complete. For simplicity we
assume in the sequel that m = 1. We will need one preliminary result.

Lemma 2.1. The following two assertions are equivalent.
(i) There exists a constant c > 0 such that

‖u‖L2(∆(A)) ≤ c ‖u‖H1(∆(A))/C

for all u ∈ H1 (∆ (A)) /C.
(ii) R is a discrete subgroup of RN (see [6, TGVII.2]).
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Proof. Let u ∈ H1 (∆ (A)) /C. It is clear that

‖u‖2
L2(∆(A)) =

∑

ω 6=k∈R

|ak (u)|2

and
‖u‖2

H1(∆(A))/C = 4π2
∑

ω 6=k∈R

|k|2 |ak (u)|2 ,

where |k| is the Euclidean norm of k and ω the origin in RN . Thus, assuming
(i) implies at once

(2.6)
∑

ω 6=k∈R

|ak (u)|2 ≤ 4π2c2
∑

ω 6=k∈R

|ak (u)|2 |k|2

and that for any u ∈ H1 (∆ (A)) /C. Hence

(2.7) |k| ≥ r > 0 (ω 6= k ∈ R)

with r = 1
2πc , which means that R is a discrete subgroup of RN , and so

(i) implies (ii). Conversely suppose (ii) holds. This amounts to saying that
(2.7) holds for some suitable constant r > 0. Immediately we see that if u
lies in H1 (∆ (A)) /C, then (2.6) holds with c = 1

2πr . Hence (i) follows. This
completes the proof.

We are now able to justify our allegation about the completeness of
H1 (∆ (A)) /C.

Proposition 2.10. H1 (∆ (A)) /C (with the norm ‖·‖H1(∆(A))/C) is com-

plete if and only if R is a discrete subgroup of RN .

Proof. H1 (∆ (A)) /C being a closed vector subspace of H1 (∆ (A)), by the
open mapping theorem (see, e.g., [10, p.19]) we see that H1 (∆ (A)) /C with
the norm ‖·‖H1(∆(A))/C is complete if and only if the two norms ‖·‖H1(∆(A))/C

and ‖·‖H1(∆(A)) are equivalent. But this happens if and only if condition

(i) of Lemma 2.1 is fulfilled. Therefore the proposition follows by the same
lemma.

Thus, if for example R =QN (Q the rationals), then the norm ‖·‖H1(∆(A))/C

on H1 (∆ (A)) /C is not complete and hence the latter space is not a Hilbert
space. Consequently, in general the passage to the completion is necessary.

3. Σ-CONVERGENCE IN Lp (1 ≤ p <∞)

Throughout the present section, Ω denotes an open set in RN
x (Ω inde-

pendent of ε > 0) and H = (Hε)ε>0 is as above (see (2.1)). The letter E
will denote a family of positive real numbers admitting 0 as an accumu-
lation point. In the particular case where E = (εn)n∈N

with 0 < εn ≤ 1
and εn → 0 as n → ∞, we will refer to E as a fundamental sequence. For
ψ ∈ L1

loc

(
Ω × RN

y

)
, it is customary to put

(3.1) ψε (x) = ψ (x,Hε (x)) (x ∈ Ω)
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whenever the right-hand side makes sence. This will be the case if in par-
ticular ψ lies in K

(
Ω;L∞

(
RN
y

))
(Ω the closure of Ω in RN

x ) or Lp (Ω;A)

(1 ≤ p ≤ ∞), where A is any closed vector subspace of B
(
RN
y

)
equipped

with the supremum norm (see [26], and observe that Lemma 2 and Propo-
sition 3 therein, together with their proofs, remain rigorously valid when Ω
is unbounded provided C is replaced with K).

Finally, in the sequel A denotes a given H-algebra on RN for H with the
assumption that A∞ is dense in A. The basic notation attached to A is as
before (see section 2).

3.1. The weak Σ-convergence in Lp (Ω). Let 1 ≤ p <∞.

Definition 3.1. A sequence (uε)ε∈E, uε ∈ Lp (Ω), is said to be weakly Σ-
convergent in Lp (Ω) to some u0 ∈ Lp (Ω;Lp (∆ (A))) = Lp (Ω × ∆ (A)) if
as E ∋ ε→ 0, we have

(3.2)

∫

Ω
uε (x)ψε (x) dx→

∫ ∫

Ω×∆(A)
u0 (x, s) ψ̂ (x, s) dxdβ (s)

for all ψ ∈ Lp
′
(Ω;A)

(
1
p′ = 1 − 1

p

)
, where ψ̂ = G◦ψ (usual composition).

Remark 3.1. ψ̂ is the function in Lp
′
(Ω; C (∆ (A))) given by ψ̂ (x) = G (ψ (x))

for x ∈ Ω.

We will briefly express the above notion of convergence by writing uε → u0

in Lp (Ω)-weak Σ.
Before we proceed any further, let us prove a result from which we will

next derive one fundamental example of a weakly Σ-convergent sequence in
Lp (Ω).

Proposition 3.1. Let u ∈ Lp (Ω;A). We have uε → ũ in Lp (Ω)-weak as
ε→ 0, where uε is defined as in (3.1) and ũ (x) = M (u (x)) for x ∈ Ω.

Proof. Let K
(
Ω

)
⊗ A denote the space of complex functions ψ on Ω × RN

y

of the form

ψ (x, y) =
∑

ϕi (x)wi (y)
(
x ∈ Ω, y ∈ RN

)

with a summation of finitely many terms, ϕi ∈ Lp (Ω), wi ∈ A. Having
regard to axiom (HA)4 of Definition 2.1, it is clear that the claimed con-
vergence property holds true if u is taken in K

(
Ω

)
⊗A, hence in K

(
Ω;A

)
,

thanks to the fact that K
(
Ω

)
⊗A is dense in K

(
Ω;A

)
(see, e.g., [4, p.46]).

Therefore the proposition follows by the density of K
(
Ω;A

)
in Lp (Ω;A)

(the way of proceeding is a routine exercise left to the reader).

This yields the claimed fundamental example through the next result.

Corollary 3.1. Let u ∈ Lp (Ω;A). Then, the sequence (uε)ε>0 is weakly
Σ-convergent in Lp (Ω) to û = G◦u.
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Proof. For each ψ ∈ Lp
′
(Ω;A), we have uψ ∈ L1 (Ω;A); hence the corollary

follows readily by Proposition 3.1.

The next result is very simple and the proof is therefore omitted.

Proposition 3.2. Suppose a sequence (uε)ε∈E, uε ∈ Lp (Ω), is weakly Σ-
convergent in Lp (Ω) to u0 ∈ Lp (Ω × ∆ (A)). Then:

(i) uε → ũ0 in Lp (Ω)-weak as E ∋ ε→ 0, where

ũ0 (x) =

∫

∆(A)
u0 (x, s) dβ (s) (x ∈ Ω) .

(ii) If E is a fundamental sequence, then (uε)ε∈E is bounded in Lp (Ω).

Now, for each real number r ≥ 1, let X
r,∞
A = X

r
A∩L∞

(
RN
y

)
. Equipped with

the L∞-norm, X
r,∞
A is a Banach space (note that L∞

(
RN

)
is continuously

embedded in Ξr
(
RN

)
). For future purposes we wish to show that if a

sequence (uε)ε∈E is weakly Σ-convergent in Lp (Ω) to u0 ∈ Lp (Ω × ∆ (A)),

then as E ∋ ε → 0, (3.2) holds for ψ ∈ K
(
Ω;Xp

′,∞
A

)
provided 1 < p <

∞. It may be remarked in passing that if ψ ∈ K
(
Ω;Xp

′,∞
A

)
, then ψ ∈

K
(
Ω;L∞

(
RN

))
and therefore ψε is well-defined by (3.1). We will also need

the following obvious remark.

Remark 3.2. Given ζ0 ∈ C and a sequence of complex numbers (ζε)ε∈E,
we have ζε → ζ0 as E ∋ ε→ 0 if and only if, for any sequence (εn)n∈N

with
0 < εn ≤ 1, εn ∈ E, εn → 0 as n→ ∞, we have ζεn

→ ζ0 as n→ ∞.

Having made this point, let us now concentrate on proving the claimed
result.

Proposition 3.3. Assume that 1 < p < ∞. Suppose a sequence (uε)ε∈E,
uε ∈ L

p (Ω), is weakly Σ-convergent in Lp (Ω) to some u0 ∈ Lp (Ω × ∆ (A)).

Then, as E ∋ ε→ 0, we have (3.2) for all ψ ∈ K
(
Ω;Xp

′,∞
A

)
.

Proof. According to Remark 3.2, we may assume without loss of generality
that E is a fundamental sequence. According to part (ii) of Proposition
3.3, it follows that the sequence (uε)ε∈E is bounded in Lp (Ω). With this in

mind, let us begin by showing that (3.2) holds for ψ ∈ K
(
Ω

)
⊗ X

p′,∞
A . But

then it clearly suffices to verify that (3.2) holds true for each ψ of the form

ψ (x, y) = ϕ (x) v (y)
(
x ∈ Ω, y ∈ RN

)
, ϕ ∈ K

(
Ω

)
, v ∈ X

p′,∞
A .

Let ψ be as above. Let η > 0. In view of the density of A in X
p′

A , we may
consider some w ∈ A such that ‖v − w‖Ξp′ ≤ η. Let

f (x, y) = ϕ (x)w (y)
(
x ∈ Ω, y ∈ RN

)
,

which gives a function f ∈ K
(
Ω;A

)
. Now, we can write
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∫
Ω uεψ

εdx−
∫ ∫

Ω×∆(A) u0ψ̂dβdx =
∫
Ω uε (ψε − f ε) dx

+
∫
Ω uεf

εdx−
∫ ∫

Ω×∆(A) u0f̂dβdx

+
∫ ∫

Ω×∆(A) u0

(
f̂ − ψ̂

)
dβdx,

the object being to establish that the left-hand side goes to zero as E ∋ ε→
0. First, by Hölder’s inequality we have

∣∣∣∣
∫

Ω
uε (ψε − f ε) dx

∣∣∣∣ ≤ ‖uε‖Lp(Ω) ‖ψ
ε − f ε‖Lp′(Ω) .

On the other hand,

‖ψε − f ε‖Lp′(Ω) ≤ ‖ϕ‖∞

(∫

K
|vε − wε|p

′

dx

) 1
p′

,

where K is a compact set in Ω containing the support of ϕ. But
(∫

K
|vε − wε|p

′

dx

) 1
p′

≤ c (K) ‖v − w‖Ξp′ (ε ∈ E) ,

where the constant c (K) > 0 depends solely on K. From all that we deduce
∣∣∣∣
∫

Ω
uε (ψε − f ε) dx

∣∣∣∣ ≤ cη (ε ∈ E) ,

where c is a positive real number independent of both η and ε. In another
connection, again by Hölder’s inequality and use of Proposition 2.6, we have

∣∣∣∣∣

∫ ∫

Ω×∆(A)
u0

(
f̂ − ψ̂

)
dβdx

∣∣∣∣∣ ≤ c ‖u0‖Lp(Ω×∆(A)) ‖ϕ‖Lp′ (Ω) ‖v − w‖Ξp′ ,

hence ∣∣∣∣∣

∫ ∫

Ω×∆(A)
u0

(
f̂ − ψ̂

)
dβdx

∣∣∣∣∣ ≤ cη,

where c is a positive real independent of both η and ε. Considering that
∫

Ω
uεf

εdx→

∫ ∫

Ω×∆(A)
u0f̂dβdx

as E ∋ ε→ 0, we have in the end

lim
E∋ε→0

∣∣∣∣∣

∫

Ω
uεψ

εdx→

∫ ∫

Ω×∆(A)
u0ψ̂dβdx

∣∣∣∣∣ ≤ cη,

where c is a positive real independent of η. Therefore the desired result

follows by the arbitrariness of η. Finally, if ψ is considered in K
(
Ω;Xp

′,∞
A

)
,

then, based on the density of K
(
Ω

)
⊗ X

p′,∞
A in K

(
Ω;Xp

′,∞
A

)
, the same line

of argument as followed before shows that we again arrive at (3.2), thereby
completing the proof.

As a consequence of this, there is the following corollary.
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Corollary 3.2. For u ∈ K
(
Ω;Xp,∞A

)
(1 < p <∞), the sequence (uε)ε>0 is

weakly Σ-convergent in Lp (Ω) to û.

Proof. Endeed, this follows immediately by combining Proposition 3.3 with
Corollary 3.1.

The next result is the corner-stone of Σ-convergence theory.

Theorem 3.1. Assume that 1 < p < ∞. Suppose E is a fundamental
sequence and let a sequence (uε)ε∈E be bounded in Lp (Ω). Then, a subse-
quence E′ can be extracted from E such that (uε)ε∈E′ is weakly Σ-convergent
in Lp (Ω).

Proof. For any ε ∈ E, put

Fε (ψ) =

∫

Ω
uε (x)ψ (x,Hε (x)) dx

(
ψ ∈ Lp

′
(Ω;A)

)
,

where 1
p′ = 1 − 1

p . This yields a sequence (Fε)ε∈E in
[
Lp

′
(Ω;A)

]′
(topo-

logical dual of Lp
′
(Ω;A)) which is bounded (in the latter space). Hence,

observing that Lp
′
(Ω;A) is a separable Banach space (thanks to the sepa-

rability of A, as stated in point (AH)1 of Definition 2.1 !), we can extract
a subsequence E′ from E in such a way that, as E′ ∋ ε → 0, Fε → F0 in[
Lp

′
(Ω;A)

]′
-weak ∗, that is, Fε (ψ) → F0 (ψ) for any ψ ∈ Lp

′
(Ω;A). The

next point is to characterize the functional F0. However, as will presently be-
come apparent, it is more appropriate to characterize the closely connected
functional G0 : Lp

′
(Ω; C (∆ (A))) → C given by G0 (ϕ) = F0

(
G−1 ◦ ϕ

)
,

ϕ ∈ Lp
′
(Ω; C (∆ (A))). Prior to this, let ψ ∈ K (Ω;A). Clearly

|Fε (ψ)| ≤ c

(∫

Ω
|ψ (x,Hε (x))|p

′

χK (x) dx

) 1
p′ (

ε ∈ E′
)
,

where c is a positive constant (independent of ε and ψ, as well), K is a
compact set in Ω containing the support of ψ, and χK is the characteristic
function of K in Ω. By letting E′ ∋ ε → 0 and applying Proposition 3.1

(with u (x, y) = |ψ (x, y)|p
′

, x ∈ Ω, y ∈ RN ), we get

|F0 (ψ)| ≤ c
∥∥∥ψ̂

∥∥∥
Lp′ (Ω×∆(A))

and that for any ψ ∈ K (Ω;A), where it is worth recalling that ψ̂ = G ◦ ψ,

and further ψ̂ has support in K. Thus,

|G0 (ϕ)| ≤ c ‖ϕ‖Lp′ (Ω×∆(A))

for all ϕ ∈ K (Ω; C (∆ (A))) = K (Ω × ∆ (A)). Based on the density of

K (Ω; C (∆ (A))) in Lp
′
(
Ω;Lp

′
(∆ (A))

)
= Lp

′
(Ω × ∆ (A)), we can extend
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G0 by continuity to an element of
[
Lp

′
(Ω × ∆ (A))

]′

= Lp (Ω × ∆ (A)).

Hence there exists u0 ∈ Lp (Ω × ∆ (A)) such that

G0 (ϕ) =

∫ ∫

Ω×∆(A)
u0 (x, s)ϕ (x, s) dxdβ (s)

for all ϕ ∈ K (Ω; C (∆ (A))). Thus,

F0 (ψ) =

∫ ∫

Ω×∆(A)
u0 (x, s) ψ̂ (x, s) dxdβ (s)

for all ψ ∈ K (Ω;A) and therefore for all ψ ∈ Lp
′
(Ω;A), thanks to the

density of K (Ω;A) in Lp
′
(Ω;A). The theorem follows.

Remark 3.3. The above compactness theorem is the main reason for re-
quiring a homogenization algebra to be separable.

3.2. The strong Σ-convergence in Lp (Ω). The concept of strong Σ-
convergence in Lp (Ω) leans on the density of Lp (Ω; C (∆ (A))) in Lp (Ω × ∆ (A)).

Let 1 ≤ p <∞.

Definition 3.2. A sequence (uε)ε∈E, uε ∈ Lp (Ω), is said to be strongly Σ-
convergent in Lp (Ω) to some u0 ∈ Lp (Ω × ∆ (A)) if the following condition
is fulfilled:

(SSC)





Given η > 0 and v ∈ Lp (Ω;A)
such that ‖u0 − v̂‖Lp(Ω×∆(A)) ≤

η
2

(with v̂ = G◦v), there is some α > 0 such that
‖uε − vε‖Lp(Ω) ≤ η provided E ∋ ε ≤ α.

We express this by writing uε → u0 in Lp (Ω)-strong Σ.
Let us verify the unicity of u0 in Definition 3.2.

Proposition 3.4. If a sequence (uε)ε∈E, uε ∈ Lp (Ω), is strongly Σ-convergent
in Lp (Ω) to some u0 ∈ Lp (Ω × ∆ (A)), then u0 is unique.

Proof. In the above notation, suppose we have uε → u1
0 and uε → u2

0 in
Lp (Ω)-strong Σ. Let η > 0. The space K (Ω;A) being dense in Lp (Ω;A), we
may choose vi ∈ K (Ω;A) such that

∥∥ui0 − v̂i
∥∥
Lp(Ω×∆(A))

≤ η
6 , i = 1, 2. Ac-

cording to Definition 3.2, this yields some α > 0 such that ‖uε − vεi ‖Lp(Ω) ≤
η
3 (i = 1, 2) for all E ∋ ε ≤ α. It follows ‖vε2 − vε1‖Lp(Ω) ≤

2η
3 for E ∋ ε ≤ α.

Observing that

‖vε2 − vε1‖Lp(Ω) =

(∫

Ω
|v2 (x,Hε (x)) − v1 (x,Hε (x))|p χK (x) dx

) 1
p

,

where K is a compact set in Ω containing the supports of v1 and v2, we see
that we can pass to the limit, as E ∋ ε→ 0, in the preceding inequality (use
Proposition 3.1) and obtain

‖v̂2 − v̂1‖Lp(Ω×∆(A)) ≤
2η

3
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Consequently, by writing u2
0 − u1

0 = u2
0 − v̂2 + v̂2 − v̂1 + v̂1 − u1

0, we get∥∥u2
0 − u1

0

∥∥
Lp(Ω×∆(A))

≤ η. Hence u2
0 = u1

0, since η is arbitrary.

Before we can present one fundamental example of a strongly Σ-convergent
sequence, we require a preliminary lemma.

Lemma 3.1. We have

lim
ε→0

‖Φε‖Lp(Ω) =
∥∥∥Φ̂

∥∥∥
Lp(Ω×∆(A))

(Φ ∈ Lp (Ω;A)) .

Proof. The first step is to recall that the lemma is true with K (Ω;A) in place
of Lp (Ω;A), as is straightforward by Proposition 3.1 and use of a routine
argument (see the proof of Theorem 3.1). Now, fix freely Φ ∈ Lp (Ω;A). Let
η > 0. By a density argument, we may consider some ψ ∈ K (Ω;A) such
that

‖Φ − ψ‖Lp(Ω;A) ≡

(∫

Ω
‖Φ (x) − ψ (x)‖p∞ dx

) 1
p

≤
η

2
.

With this in mind, we have on the other hand
∣∣∣∣‖Φ

ε‖Lp(Ω) −
∥∥∥Φ̂

∥∥∥
Lp(Ω×∆(A))

∣∣∣∣ ≤
∣∣∣‖Φε‖Lp(Ω) − ‖ψε‖Lp(Ω)

∣∣∣

+

∣∣∣∣‖ψ
ε‖Lp(Ω) −

∥∥∥ψ̂
∥∥∥
Lp(Ω×∆(A))

∣∣∣∣

+

∣∣∣∣
∥∥∥ψ̂

∥∥∥
Lp(Ω×∆(A))

−
∥∥∥Φ̂

∥∥∥
Lp(Ω×∆(A))

∣∣∣∣ .

It follows ∣∣∣∣‖Φ
ε‖Lp(Ω) −

∥∥∥Φ̂
∥∥∥
Lp(Ω×∆(A))

∣∣∣∣ ≤ ‖Φε − ψε‖Lp(Ω)

+

∣∣∣∣‖ψ
ε‖Lp(Ω) −

∥∥∥ψ̂
∥∥∥
Lp(Ω×∆(A))

∣∣∣∣

+
∥∥∥Φ̂ − ψ̂

∥∥∥
Lp(Ω×∆(A))

.

But the first and third terms on the right are majorized by ‖Φ − ψ‖Lp(Ω;A).

Hence∣∣∣∣‖Φ
ε‖Lp(Ω) −

∥∥∥Φ̂
∥∥∥
Lp(Ω×∆(A))

∣∣∣∣ ≤ η +

∣∣∣∣‖ψ
ε‖Lp(Ω) −

∥∥∥ψ̂
∥∥∥
Lp(Ω×∆(A))

∣∣∣∣ .

From which the lemma follows in an abvious way.

We are now able to give the claimed example.

Example 3.1. Let u ∈ Lp (Ω;A). Then, the sequence (uε)ε>0 is strongly Σ-
convergent in Lp (Ω) to û. Indeed, for any arbitrary v ∈ Lp (Ω;A), we have
‖uε − vε‖Lp(Ω) → ‖û− v̂‖Lp(Ω×∆(A)) as ε→ 0. We deduce immediately that

the sequence (uε)ε>0 and the function û satisfy condition (SSC) of Definition
3.2.
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The remainder of the present subsection is concerned with a series of
results of practical interest as regards homogenization theory. To begin,
there is the following proposition whose proof is an easy verification left to
the reader.

Proposition 3.5. Suppose a sequence (uε)ε∈E, uε ∈ Lp (Ω), is strongly Σ-
convergent in Lp (Ω) to some u0 ∈ Lp (Ω × ∆ (A)). Assume further that u0 ∈
Lp (Ω; C (∆ (A))). Let v0 ∈ Lp (Ω;A), v0 = G−1◦u0. Then ‖uε − vε0‖Lp(Ω) →

0 as E ∋ ε→ 0.

The next proposition and its corollary are likely to help us have a clear
idea of the somewhat abstract concept of strong Σ-convergence.

Proposition 3.6. Suppose a sequence (uε)ε∈E, uε ∈ Lp (Ω), is strongly
Σ-convergent in Lp (Ω) to some u0 ∈ Lp (Ω × ∆ (A)). Then

(i) uε → u0 in Lp (Ω)-weak Σ;
(ii) ‖uε‖Lp(Ω) → ‖u0‖Lp(Ω×∆(A)) as E ∋ ε→ 0.

Proof. (i): Let ψ ∈ Lp
′
(Ω;A). Fix a real c > 0 with ‖ψ‖Lp′ (Ω;A) ≤ c. Now,

fix freely η > 0 and choose v ∈ Lp (Ω;A) such that ‖u0 − v̂‖Lp(Ω×∆(A)) ≤
η
4c .

By hypothesis there is some α0 such that ‖uε − vε‖Lp(Ω) ≤
η
2c for E ∋ ε ≤ α0.

On the other hand, recalling that vε → v̂ in Lp (Ω)-weak Σ (Corollary 3.1),
we may consider some α1 > 0 such that

∣∣∣∣∣

∫

Ω
vεψεdx−

∫ ∫

Ω×∆(A)
v̂ψ̂dxdβ

∣∣∣∣∣ ≤
η

4

provided 0 < ε ≤ α1. Hence, by writing
∫

Ω
uεψ

εdx−

∫ ∫

Ω×∆(A)
u0ψ̂dxdβ =

∫ ∫

Ω×∆(A)
(v̂ − u0) ψ̂dxdβ

+

∫

Ω
(uε − vε)ψεdx

+

∫

Ω
vεψεdx−

∫ ∫

Ω×∆(A)
v̂ψ̂dxdβ,

one quickly arrives at
∣∣∣∣∣

∫

Ω
uεψ

εdx−

∫ ∫

Ω×∆(A)
u0ψ̂dxdβ

∣∣∣∣∣ ≤ η

for E ∋ ε ≤ α = min (α0, α1), which shows (i).
(ii): Let η > 0. Choose v ∈ Lp (Ω;A) such that ‖u0 − v̂‖Lp(Ω×∆(A)) ≤ η

6 .

This yields a real α0 > 0 such that ‖uε − vε‖Lp(Ω) ≤
η
3 provided E ∋ ε ≤ α0.

Thus, we have
∣∣∣‖u0‖Lp(Ω×∆(A)) − ‖v̂‖Lp(Ω×∆(A))

∣∣∣ ≤
η

6
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and ∣∣∣‖uε‖Lp(Ω) − ‖vε‖Lp(Ω)

∣∣∣ ≤
η

3
(E ∋ ε ≤ α0) .

On the other hand, according to Lemma 3.1, there is some α1 > 0 such

that
∣∣∣‖vε‖Lp(Ω) − ‖v̂‖Lp(Ω×∆(A))

∣∣∣ ≤ η
2 for 0 < ε ≤ α1. Hence, by the obvious

inequality
∣∣∣‖uε‖Lp(Ω) − ‖u0‖Lp(Ω×∆(A))

∣∣∣ ≤
∣∣∣‖uε‖Lp(Ω) − ‖vε‖Lp(Ω)

∣∣∣

+
∣∣∣‖vε‖Lp(Ω) − ‖v̂‖Lp(Ω×∆(A))

∣∣∣

+
∣∣∣‖v̂‖Lp(Ω×∆(A)) − ‖u0‖Lp(Ω×∆(A))

∣∣∣
we obtain readily

∣∣∣‖uε‖Lp(Ω) − ‖u0‖Lp(Ω×∆(A))

∣∣∣ ≤ η

for E ∋ ε ≤ α = min (α0, α1), thereby proving (ii).

Corollary 3.3. Let (uε)ε∈E be a sequence in L2 (Ω). In order that this se-

quence strongly Σ-converge in L2 (Ω) to u0 ∈ L2 (Ω × ∆ (A)), it is necessary
and sufficient that the following two conditions be satisfied:

(i) uε → u0 in L2 (Ω)-weak Σ;
(ii) ‖uε‖L2(Ω) → ‖u0‖L2(Ω×∆(A)) as E ∋ ε→ 0.

Proof. In view of Proposition 3.6, we only have to show the sufficiency. So,
assuming (i)-(ii), consider any arbitrary v ∈ L2 (Ω;A), and use

‖uε − vε‖2
L2(Ω) = ‖uε‖

2
L2(Ω) −

∫

Ω
uεv

εdx−

∫

Ω
uεv

εdx+ ‖vε‖2
L2(Ω)

to see that when E ∋ ε → 0, ‖uε − vε‖L2(Ω) tends to ‖u0 − v̂‖L2(Ω×∆(A)).

Hence, it follows that condition (SSC) of Definition 3.2 is satisfied. This
Proves the corollary.

We turn now to one result of very practical interest.

Proposition 3.7. Suppose a real q ≥ 1 is such that 1
p + 1

q = 1
r ≤ 1.

Suppose a sequence (uε)ε∈E is strongly Σ-convergent in Lp (Ω) to some u0 ∈
Lp (Ω × ∆ (A)), and a sequence (vε)ε∈E is weakly Σ-convergent in Lq (Ω)
to some v0 ∈ Lq (Ω × ∆ (A)). Then uεvε → u0v0 in Lr (Ω)-weak Σ as
E ∋ ε→ 0.

Proof. We may assume without loss of generality that E is a fundamental
sequence. The result is that (vε)ε∈E is bounded in Lq (Ω) (Proposition 3.2).

This being so, fix freely ψ ∈ Lr
′
(Ω;A)

(
1
r′ = 1 − 1

r

)
and let c > 0 with

c ≥ max

{
‖v0‖Lq(Ω×∆(A)) ‖ψ‖Lr′(Ω;A) , ‖ψ‖Lr′(Ω;A) sup

ε∈E
‖vε‖Lq(Ω)

}
.
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On the other hand, let η > 0. Having regard to the strong Σ-convergence

of (uε)ε∈E, introduce f ∈ Lp (Ω;A) such that
∥∥∥u0 − f̂

∥∥∥
Lp(Ω×∆(A))

≤ η
6c ,

and keep in mind that this infers the existence of some α0 > 0 such that
‖uε − f ε‖Lp(Ω) ≤ η

3c for E ∋ ε ≤ α0. Finally, noting that fψ ∈ Lq
′
(Ω;A),

and using the weak Σ-convergence of (vε)ε∈E, we may consider some α1 > 0
such that ∣∣∣∣∣

∫

Ω
vεf

εψεdx−

∫ ∫

Ω×∆(A)
v0f̂ ψ̂dxdβ

∣∣∣∣∣ ≤
η

2

for all E ∋ ε ≤ α1. Hence, by writing
∫

Ω
uεvεψ

εdx−

∫ ∫

Ω×∆(A)
u0v0ψ̂dxdβ =

∫

Ω
(uε − f ε) vεψ

εdx

+

∫ ∫

Ω×∆(A)

(
f̂ − u0

)
v0ψ̂dxdβ

+

∫

Ω
vεf

εψεdx−

∫ ∫

Ω×∆(A)
v0f̂ ψ̂dxdβ,

one easily arrives at
∣∣∣∣∣

∫

Ω
uεvεψ

εdx−

∫ ∫

Ω×∆(A)
u0v0ψ̂dxdβ

∣∣∣∣∣ ≤ η

provided E ∋ ε ≤ α = min (α0, α1). This shows the proposition.

This proposition has one useful corollary.

Corollary 3.4. Let E be a fundamental sequence. Let (uε)ε∈E be a sequence

in Lp (Ω) with 1 < p < ∞, and (vε)ε∈E be a sequence in Lp
′
(Ω) ∩ L∞ (Ω)(

1
p′ = 1 − 1

p

)
such that:

(i) uε → u0 in Lp (Ω)-weak Σ;

(ii) vε → v0 in Lp
′
(Ω)-strong Σ;

(iii) (vε)ε∈E is bounded in L∞ (Ω).
Then uεvε → u0v0 in Lp (Ω)-weak Σ.

Proof. According to Proposition 3.7, we have uεvε → u0v0 in L1 (Ω)-weak
Σ. Thus, as E ∋ ε→ 0,

∫

Ω
uεvεψ

εdx→

∫ ∫

Ω×∆(A)
u0v0ψ̂dxdβ (ψ ∈ K (Ω;A)) .

On the other hand, observe that the sequence (uεvε)ε∈E is bounded in
Lp (Ω). Hence, thanks to Theorem 3.1, we can extract E′ from E such
that the sequence (uεvε)ε∈E′ weakly Σ-converges in Lp (Ω) to some z0 ∈
Lp (Ω × ∆ (A)). Thus, as E′ ∋ ε→ 0,

∫

Ω
uεvεψ

εdx→

∫ ∫

Ω×∆(A)
z0ψ̂dxdβ (ψ ∈ K (Ω;A)) .
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From all that we deduce∫ ∫

Ω×∆(A)
(z0 − u0v0)ϕdxdβ = 0

for all ϕ ∈ K (Ω × ∆ (A)) (see Remark 4.1). Hence z0 = u0v0 almost every-
where in Ω × ∆ (A). The corollary follows thereby.

We conclude the present subsection by showing that strong Σ-convergence
generalizes usual strong convergence. Specifically, we have

Proposition 3.8. Suppose a sequence (uε)ε∈E is strongly convergent in
Lp (Ω) to some u0 ∈ Lp (Ω). Then uε → u0 in Lp (Ω)-strong Σ.

Proof. Let us begin by observing that the function u0 ∈ Lp (Ω) may as well
be viewed as a function in Lp (Ω;A) (resp. Lp (Ω × ∆ (A))) depending on
the sole variable x ∈ Ω. Having made this point, let v ∈ Lp (Ω;A). By
applying Lemma 3.1 with Φ = u0 − v, we see that if η > 0 is freely fixed,
then some α > 0 exists such that ‖u0 − vε‖Lp(Ω) ≤ ‖u0 − v̂‖Lp(Ω×∆(A)) + η

4

and ‖uε − u0‖Lp(Ω) ≤ η
4 for E ∋ ε ≤ α. Hence ‖uε − vε‖Lp(Ω) ≤ η

2 +

‖u0 − v̂‖Lp(Ω×∆(A)). We deduce that condition (SSC) of Definition 3.2 is

satisfied by (uε)ε∈E and u0, thereby proving the proposition.

4. THE VAGUE Σ-CONVERGENCE OF RADON MEASURES

Let the basic notation and hypotheses be as in the preceding section (see
in particular the beginning of Section 3). On the other hand, the space of
all complex Radon measures on a locally compact space Z will be denoted
by M (Z). Thus, M (Z) is nothing else than the topological dual of K (Z)
(provided with the usual inductive limit topology). Also, the notion of a
σ-compact locally compact space is worth recalling. By this is meant any
locally compact space which can be expressed as the union of a countable
family of compact subspaces.

Definition 4.1. A sequence (µε)ε∈E of Radon measures on Ω is said to be
vaguely Σ-convergent to some µ0 ∈ M (Ω × ∆ (A)) if as E ∋ ε→ 0,

∫

Ω
ψ (x,Hε (x)) dµε (x) →

∫ ∫

Ω×∆(A)
ψ̂ (x, s) dµ0 (x, s)

for all ψ ∈ K (Ω;A). We express this by writing µε → µ0 in M (Ω)-vague
Σ.

Remark 4.1. It is an elementary exercise to verify that the transformation

ψ → ψ̂ = G ◦ ψ is a topological isomorphism of K (Ω;A) onto K (Ω × ∆ (A)) ≡
K (Ω; C (∆ (A))), each of the two spaces being endowed with the appropriate
inductive limit topology. Consequently, for fixed ε ∈ E, it is easily seen that
to each µ ∈ M (Ω) there is attached a unique Tε (µ) ∈ M (Ω × ∆ (A)) such
that 〈

Tε (µ) , ψ̂
〉

=

∫

Ω
ψ (x,Hε (x)) dµ (x)
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for all ψ ∈ K (Ω;A), where the brackets denote the duality pairing between
M (Ω × ∆ (A)) and K (Ω × ∆ (A)). This yields a transformation µ→ Tε (µ)
that maps linearly M (Ω) into M (Ω × ∆ (A)). Thus, to say that a sequence
(µε)ε∈E in M (Ω) is vaguely Σ-convergent amounts to saying that as E ∋
ε → 0, the sequence of Radon measures Tε (µε) (ε ∈ E) on Ω × ∆ (A) is
convergent in the weak ∗ topology on M (Ω × ∆ (A)).

The usefulness of the following lemma will come to light in a short while.

Lemma 4.1. Let Z be a locally compact space, and let P ⊂ M (Z). The
following two assertions are equivalent:

(i) P is bounded in the weak ∗ topology on M (Z), i.e., supµ∈P |µ (ϕ)| <
+∞ for each ϕ ∈ K (Z).

(ii) P is locally bounded in norm, i.e., supµ∈P |µ| (K) < +∞ for each
compact set K ⊂ Z.

Proof. According to [4, p.60, Proposition 15], assertion (i) is equivalent to
the following:

(iii) For any compact set H ⊂ Z, there exists a constant cH ≥ 0 such that
supµ∈P |µ (ϕ)| ≤ cH ‖ϕ‖∞ for all ϕ ∈ KH (Z) = {f ∈ K (Z) : Suppf ⊂ H}.
Thus, the problem reduces to proving the equivalence (ii)⇔(iii). The (ii)⇒(iii)
part being evident, we need only to concentrate on the proof of (iii)⇒(ii).
So, assume (iii), and fix freely a compact set K ⊂ Z. Let U be a rela-
tively compact open neighbourhood of K, and put H = U (closure of U).
Then, in vue of (iii), we have |µ| (f) ≤ cH ‖f‖∞ for any µ ∈ P and for all
f ∈ KH (Z) with f ≥ 0, where cH is a nonnegative constant. With this in
mind, let µ ∈ P. Considering that χU (the characteristic function of U) is
lower semicontinuous on Z, we have

|µ| (U) = sup
f∈K+(Z), f≤χU

|µ| (f) ,

where K+ (Z) is the set of all ϕ ∈ K (Z) with ϕ ≥ 0. But each f such
that f ∈ K+ (Z) and f ≤ χU belongs to KH (Z) and satisfies ‖f‖∞ ≤ 1.
Therefore supµ∈P |µ| (U) ≤ cH and hence supµ∈P |µ| (K) ≤ cH , which shows
(ii).

Our goal now is to establish a Σ-compactness result similar to Theorem
3.1. Specifically, assuming that E is a fundamental sequence, we want to
show that from any sequence (µε)ε∈E in M (Ω) which is bounded in the
weak ∗ topology on M (Ω), one can extract a subsequence that is vaguely
Σ-convergent. Actually, this will arise as a consequence of a more general
result, viz.

Theorem 4.1. Let Z be a metrizable σ-compact locally compact space. Let
(µn)n∈N

be an ordinary sequence of Radon measures on Z. Assume that this
sequence is bounded in the weak ∗ topology on M (Z). Then one can extract
a subsequence

(
µkn

)
n∈N

from (µn)n∈N
such that µkn

→ µ in M (Z)-weak ∗
when n→ +∞.
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Proof. We achieve this in two steps.
Step 1. Let U be a relatively compact open set in Z. The aim here is
to verify that any subsequence

(
µtn

)
n∈N

extracted from (µn)n∈N
contains a

subsequence
(
µt′n

)
n∈N

such that

(4.1) µt′n |U → ν ′ in M (U) -weak ∗ as n→ +∞.

To this end, let K = U and put B′ for the closed unit ball in M (K)
(strong dual of C (K)). Provided with the relative weak ∗ topology on
M (K), B′ is a metrizable compact space (see, e.g., [17, p.426]). Having
made this point, let

(
µtn

)
n∈N

be any arbitrary subsequence extracted from

(µn)n∈N
. For each integer n ≥ 0, put νn = µtn |K . Then νn ∈ M (K)

and further supn ‖νn‖ = supn |νn| (K) = supn
∣∣µtn

∣∣ (K) < +∞ (use Lemma
4.1), where n runs through N. Thus, we may assume without loss of gen-
erality that the sequence (νn)n∈N

is contained in B′. Hence we can extract
a subsequence (νrn)n∈N

from (νn)n∈N
such that as n → +∞, νrn → ν in

M (K)-weak ∗, whence νrn |U → ν|U = ν′ in M (U)-weak ∗. Therefore, (4.1)
follows by letting t′n = trn (n ∈ N) and noting that νn|U = µtn |U .

Step 2. Let (Ui)i∈N
be a sequence of open sets in Z such that U i ⊂ Ui+1,

U i compact and ∪i∈NUi = Z. By suitably applying the result of Step 1 we

are readily led to two sequences (νi)i∈N
(νi ∈ M (Ui)) and

(
µ
t
(i)
n

)

(i,n)∈N×N

in M (Z) framed as follows:
(
µ
t
(0)
n

)
n∈N

is a subsequence extracted from

(µn)n∈N
in such a way that µ

t
(0)
n
|U0

→ ν0 in M (U0)-weak ∗ as n → +∞;

for i ≥ 1,
(
µ
t
(i)
n

)
n∈N

is a subsequence extracted from
(
µ
t
(i−1)
n

)
n∈N

in such a

way that µ
t
(i)
n
|Ui

→ νi in M (Ui)-weak ∗ as n → +∞. Hence, by the usual

diagonal process, it is immediate that the sequence
(
µkn

)
n∈N

with kn = t
(n)
n

is a subsequence extracted from (µn)n∈N
so that for each i ∈ N, µkn

|Ui
→ νi

in M (Ui)-weak ∗ as n → +∞. Furthermore, it is clear that νi = νi+1|Ui

(i ∈ N), hence a (unique) Radon measure µ on Z such that µ|Ui
= νi for

any i ∈ N (this is a classical property). Since each ϕ ∈ K (Z) lies in K (Ui)
for some suitable index i, we deduce that µkn

→ µ in M (Z)-weak ∗ as
n→ +∞, thereby proving the theorem.

This leads to the Σ-compactness result for measures, as claimed.

Corollary 4.1. We assume that E is a fundamental sequence. Then, from
any sequence (µε)ε∈E in M (Ω) which is bounded in the weak ∗ topology on
M (Ω), one can extract a subsequence that is vaguely Σ-convergent.

Proof. Let us observe that Ω × ∆ (A) is a metrizable σ-compact locally
compact space. Hence, considering Remark 4.1 and Theorem 4.1, the corol-
lary if proved if we can show that the sequence (Tε (µε))ε∈E is bounded in
the weak ∗ topology on M (Ω × ∆ (A)). This is straightforward. If ψ ∈
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K (Ω;A), and if K is a compact set in Ω containing the support of ψ, then∣∣∣
〈
Tε (µε) , ψ̂

〉∣∣∣ ≤ c supx∈Ω

∥∥∥ψ̂ (x)
∥∥∥
∞

for all ε ∈ E, where c = supr∈E |µr| (K)

is finite, according to Lemma 4.1. The corollary is proved.

We will end with a few remarks.
(1) Suppose a sequence (uε)ε∈E in Lp (Ω) (1 ≤ p <∞) is such that, as E ∋
ε→ 0,

∫

Ω
uε (x)ψ (x,Hε (x)) dx→

∫ ∫

Ω×∆(A)
u0 (x, s) ψ̂ (x, s) dxdβ (s)

for all ψ ∈ K (Ω;A), where u0 ∈ Lp (Ω × ∆ (A)). It is clear that the sequence
(uε)ε∈E is not weakly Σ-convergent in Lp (Ω). However, each function uε
being viewed as a Radon measure on Ω, the above sequence is vaguely Σ-
convergent: More precisely, we have uεdx → u0 (dx⊗ dβ) in M (Ω)-vague
Σ. We deduce that the vague Σ-convergence is a natural generalization of
weak Σ-convergence in Lp (Ω).
(2) Suppose a sequence (µε)ε∈E is vaguely Σ-convergent in M (Ω) to some
µ0 ∈ M (Ω × ∆ (A)). Then, as E ∋ ε→ 0, we have µε → µ̃0 in M (Ω)-weak
∗, where µ̃0 (ϕ) =

∫ ∫
Ω×∆(A) ϕ (x) dµ0 (x, s), ϕ ∈ K (Ω).

5. APPLICATION OF Σ-CONVERGENCE

5.1. Preliminaries. In the present section we are concerned with showing
how Σ-convergence arises in the homogenization of partial differential equa-
tions. To illustrate this, we find it more convenient to focus attention on
the rather simple case of an elliptic linear differential operator of order two,
in divergence form. Specifically, let

(5.1) −

N∑

i,j=1

∂

∂xi

(
aεij
∂uε
∂xj

)
= f in Ω, uε ∈ H1

0 (Ω) = W 1,2
0 (Ω) ,

where ε > 0, Ω is a fixed bounded open set in RN
x , f ∈ H−1 (Ω) = W−1,2 (Ω),

aεij (x) = aij
(
x
ε

)
(x ∈ Ω) with aij ∈ L∞

(
RN
y

)
, aji = aij, and the classical

ellipticity condition: there is a constant α > 0 such that

Re

N∑

i,j=1

aij (y) ξjξi ≥ α |ξ|2
(
ξ ∈ CN

)

for almost all y ∈ RN . For each real number ε > 0, (5.1) uniquely determines
uε, so that we have in hand a generalized sequence (uε)ε>0 in H1

0 (Ω).
The purpose of homogenization in the present case is to investigate the

limit behaviour, as ε → 0, of uε provided the coefficients aij satisfy a suit-
able hypothesis with respect to the so-called local variable y = (y1, ..., yN ).
It is common in homogenization to require the aij’s to satisfy the peri-
odicity hypothesis, which means that the functions aij (1 ≤ i, j ≤ N) are

periodic, say with period 1 in each coordinate, i.e., for every k ∈ ZN , one
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has aij (y + k) = aij (y) (1 ≤ i, j ≤ N) almost everywhere in y ∈ RN . Σ-
convergence, which coincides in the present setting with well-known two-
scale convergence, has proved to be an efficient tool for studying the periodic
homogenization of linear as well as nonlinear boundary value problems and
initial boundary value problems, including (5.1). We refer for example to
[1, 26, 23] (see in particular the references in [23]).

However, the periodicity hypothesis is only one thing among many other
hypotheses under which we can consider the homogenization of say (5.1).
There is no doubt that in a great number of physical situations the peri-
odicity hypothesis is inappropriate and should be therefore substituted by
a realistic hypothesis. We claim that Σ-convergence theory allows to tackle
homogenization problems beyond the classical periodic setting. Before we
can concentrate on the proof of this assertion as regards (5.1), let us exhibit
a few concrete examples of nonperiodicity hypotheses on aij under which it
is possible to successfully study the homogenization of (5.1).

Example 5.1. Let Y ′ =
(
−1

2 ,
1
2

)N−1
with N ≥ 2, and let L2

per (Y ′) be the

usual Hilbert space of Y ′-periodic functions in L2
loc

(
RN−1
y′

)
(see section 1).

We may replace the periodicity hypothesis on aij (1 ≤ i, j ≤ N) by

(5.2) aij ∈ B∞

(
R;L2

per

(
Y ′

))
(1 ≤ i, j ≤ N) ,

where B∞

(
R;L2

per (Y ′)
)

denotes the space of all continuous functions yN →

u (yN ) of R into L2
per (Y ′) such that u (yN ) converges in L2

per (Y ′) as |yN | →
∞.

Example 5.2. More generally, instead of (5.2) we may consider aij ∈
C

(
R;L2

per (Y ′)
)

with aij (., yN ) → z+
ij in L2

per (Y ′) as yN → +∞ and aij (., yN ) →

z−ij in L2
per (Y ′) as yN → −∞, 1 ≤ i, j ≤ N , where aij (., yN ) stands for the

function y′ = (y1, ..., yN−1) → aij (y′, yN ) (for fixed yN ∈ R) of RN−1 into
C, and z+

ij , z
−
ij are two functions in L2

per (Y ′) that are in general different.

Example 5.3. (Almost periodicity hypothesis). Let
(
L2, l∞

) (
RN

)
be the

so-called amalgam of L2 and l∞ on RN [19], i.e.,
(
L2, l∞

) (
RN

)
is the space

of all u ∈ L2
loc

(
RN

)
such that

‖u‖2,∞ = sup
k∈ZN

(∫

k+Y
|u (y)|2 dy

) 1
2

<∞

with Y =
(
−1

2 ,
1
2

)N
. This is a Banach space under the norm ‖·‖2,∞. We

define L2
AP

(
RN

)
to be the space of all functions u ∈

(
L2, l∞

) (
RN

)
such that

the set
{
τhu : h ∈ RN

}
(with τhu (y) = u (y − h) for y ∈ RN) has a compact

closure in
(
L2, l∞

) (
RN

)
. Such functions are termed almost periodic in the

sense of Stepanoff [19]. This being so, we may as well replace the periodicity
hypothesis by

(5.3) aij ∈ L
2
AP

(
RN

)
(1 ≤ i, j ≤ N) .
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Example 5.4. Let L2
∞,per (Y ) denote the closure in

(
L2, l∞

) (
RN

)
of the

space of all finite sums
∑

finite ϕiui (ϕi ∈ B∞

(
RN
y

)
, ui ∈ Cper (Y )), where

Y =
(
−1

2 ,
1
2

)N
, Cper (Y ) defined in section 1 and B∞

(
RN
y

)
defined in Ex-

ample 2.1. We may as well consider the homogenization of (5.1) under the
hypothesis

(5.4) aij ∈ L2
∞,per (Y ) (1 ≤ i, j ≤ N)

in place of the periodicity hypothesis.

Example 5.5. More generally, in place of (5.4) we may consider

(5.5) aij ∈ L2
∞,AP

(
RN

)
(1 ≤ i, j ≤ N),

where L2
∞,AP

(
RN

)
denotes the closure in

(
L2, l∞

) (
RN

)
of all finite sums∑

finite ϕiui (ϕi ∈ B∞

(
RN
y

)
, ui ∈ AP

(
RN

)
) (see section 2 for the definition

of AP
(
RN

)
).

Remark 5.1. Hypothesis (5.5) generalizes (5.3) and (5.4), as well.

Example 5.6. We may as well consider the homogenization of (5.1) under
the following hypothesis, where 1 ≤ i, j ≤ N :
aij is constant on each cell k + Y

(
k ∈ ZN

)
with Y as above,

and further, as |k| → ∞,
∫
k+Y aij (y) dy tends to a finite limit in C.

The study of the homogenization problem for (5.1) under any of the hy-
potheses stated in the preceding examples reduces to an abstract setting
that we will now look into.

5.2. The abstract homogenization problem for (5.1). The main pur-
pose of the present subsection is to investigate the limit behaviour, as ε→ 0,
of uε (the solution of (5.1)) under the abstract hypothesis

(5.6) aij ∈ X
2
A

(
RN
y

)
(1 ≤ i, j ≤ N) ,

where A is an H-algebra on RN with the property that A∞ is dense in A
(see Section 2). We also require A to be W 1,2-proper in the following sense:

(P)1 D (∆ (A)) is dense in H1 (∆ (A)) = W 1,2 (∆ (A)).

(P)2 Given an open set Ω ⊂ RN
x , a fundamental sequence E and a sequence

(vε)ε∈E which is bounded in H1 (Ω), a subsequence E′ can be extracted from

E such that as E′ ∋ ε → 0, vε → v0 in H1 (Ω)-weak and ∂vε

∂xj
→ ∂v0

∂xj
+ ∂jv1

in L2 (Ω)-weak Σ (1 ≤ j ≤ N), where v1 ∈ L2
(
Ω;H1

# (∆ (A))
)
.

The aim now is to show that the homogenization of (5.1) under (5.6) is
possible provided the H-algebra A has the preceding properties. To this
end, let

F1
0 = H1

0 (Ω) × L2
(
Ω;H1

# (∆ (A))
)
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with the norm

‖v‖
F1
0

=
(
‖v0‖

2
H1

0 (Ω) + ‖v1‖
2
L2(Ω;H1

#(∆(A)))

) 1
2
, v = (v0, v1) ∈ F1

0,

which makes it a Hilbert space (‖·‖H1
0 (Ω) stands for the usual gradient norm).

By combining property (P)1 with (parts (2) and (3) of) Remark 2.7, it follows
readily that

(5.7) F∞
0 = D (Ω) × [D (Ω) ⊗ J (D (∆ (A)) /C)] is dense in F1

0,

whereD (∆ (A)) /C denotes the space of ϕ ∈ D (∆ (A)) such that
∫
∆(A) ϕ (s) dβ (s) =

0.
We also need the sesquilinear form âΩ (., .) on F1

0 × F1
0 given by

âΩ (u,v) =
N∑

i,j=1

∫ ∫

Ω×∆(A)
âij

(
∂u0

∂xj
+ ∂ju1

)(
∂v0
∂xi

+ ∂iv1

)
dxdβ

for u = (u0, u1) and v = (v0, v1) in F1
0, where âij = G (aij) ∈ L∞ (∆ (A))

(see part (v) of Corollary 2.4). There is no difficulty in verifying that the
sesquilinear form âΩ (., .) is Hermitian, continuous and coercive (use corol-
lary 2.4, and note also that

∫
∆(A) ∂ivdβ = 0 for v ∈ H1

# (∆ (A)), as is

straightforward by Proposition 2.7 and use of Remark 2.7). Consequently,
if l denotes the continuous antilinear form on F1

0 given by l (v) = 〈f, v0〉 for
v = (v0, v1) ∈ F1

0, then the variational problem

(5.8)

{
u = (u0, u1) ∈ F1

0 :
âΩ (u,v) = l (v) for all v ∈ F1

0

has one and only one solution.
We are now in a position to prove the following homogenization theorem.

Theorem 5.1. Under the preceding hypotheses, let u = (u0, u1) be uniquely
defined by (5.8), and for each real ε > 0, let uε be the unique solution of
(5.1). Then, as ε→ 0,

(5.9) uε → u0 in H1
0 (Ω) -weak,

(5.10)
∂uε
∂xj

→
∂u0

∂xj
+ ∂ju1 in L2 (Ω) -weak Σ (1 ≤ i, j ≤ N) .

Proof. For fixed ε > 0, we have

(5.11)

N∑

i,j=1

∫

Ω
aεij

∂uε
∂xj

∂v

∂xi
dx = 〈f, v〉

for all v ∈ H1
0 (Ω). By taking in particular v = uε and making use of the

properties of the matrix (aij)1≤i,j≤N , we see that the sequence (uε)ε>0 is

bounded in H1
0 (Ω). Consequently, given an arbitrary fundamental sequence

E, appeal to the W 1,2-properness of A (see in particular property (P)2)
yields a subsequence E′ from E and some u = (u0, u1) ∈ F1

0 such that, as
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E′ ∋ ε → 0, we have (5.9)-(5.10). Thus, the theorem is proved if we can
check that u verifies the variational equation in (5.8) (attention is drawn to
Remark 3.2). For this purpose, take in (5.11) the particular function v = Φε

with
Φε (x) = ψ0 (x) + εψ1

(
x,
x

ε

)
(x ∈ Ω) ,

where ψ0 ∈ D (Ω), ψ1 ∈ D (Ω)⊗(A∞/C) withA∞/C = {ψ ∈ A∞ : M (ψ) = 0}.
Clearly Φε ∈ D (Ω). Furthermore, it is an easy exercise to show that,

as ε → 0, we have Φε → ψ0 in H1
0 (Ω)-weak, and ∂Φε

∂xi
→

∂ψ0
∂xi

+ ∂iψ̂1 in

L2 (Ω)-strong Σ (1 ≤ i ≤ N). From the latter convergence result together
with (5.10) (where E′ ∋ ε → 0) we deduce using Corollary 3.4 that, as
E′ ∋ ε→ 0,

∂uε
∂xj

∂Φε

∂xi
→

(
∂u0

∂xj
+ ∂ju1

)(
∂ψ0

∂xi
+ ∂iψ̂1

)
in L2 (Ω) -weak Σ

for 1 ≤ i, j ≤ N . We can now pass to the limit (as E′ ∋ ε → 0) in (5.11)
using Proposition 3.3 (it is clear that aij may be viewed as a function in

C
(
Ω;X2,∞

A

)
= K

(
Ω;X2,∞

A

)
). The result is that

âΩ (u,Φ) = l (Φ) for all Φ ∈ F∞
0 .

Thanks to (5.7), it follows that u is the solution of (5.8). Hence the theorem
follows.

At the present time, for each 1 ≤ j ≤ N , let

(5.12)





χj ∈ H1
# (∆ (A)) :

â
(
χj , v

)
=

∑N
k=1

∫
∆(A) âkj (s) ∂kv (s) dβ (s)

for all v ∈ H1
# (∆ (A)) ,

where â (., .) is the sesquilinear form on H1
# (∆ (A)) ×H1

# (∆ (A)) given by

â (u, v) =

N∑

i,j=1

∫

∆(A)
âij (s) ∂ju (s) ∂iv (s) dβ (s) , u, v ∈ H1

# (∆ (A)) .

For obvious reasons, (5.12) uniquely determines χj. Let then

qij =

∫

∆(A)
âij (s) dβ (s) −

N∑

k=1

∫

∆(A)
âik (s) ∂kχ

j (s) dβ (s) , 1 ≤ i, j ≤ N .

It can be shown that the matrix (qij)1≤i,j≤N has the usual symmetry and

ellipticity properties (proceed as in [26]). Finally, the limit function u0 in
(5.9) is the (unique) weak solution of

−

N∑

i,j=1

qij
∂2u0

∂xi∂xj
= f in Ω, u0 ∈ H1

0 (Ω) ,

as is immediate by a simple adaptation of the analogous result in the periodic
setting (see, e.g., [26]).
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5.3. Concluding remarks. Each structure hypothesis on aij (1 ≤ i, j ≤ N)
exhibited above (see Examples 5.1-5.6) can be reduced to (5.6) for a suitable
W 1,2-proper H-algebra A. By way of illustration, the appropriate H-algebras
for Examples 5.1, 5.3, 5.4 and 5.5 are respectively the H-algebra of Example

2.4 with A1 = Cper (Y ′), Y ′ =
(
−1

2 ,
1
2

)N−1
, the H-algebra A = APR

(
RN

)
for

a suitable R (see subsection 2.3), the H-algebra A = B∞,per (Y ) (Example
2.2), and the H-algebra A = B∞,R

(
RN

)
(Example 2.3) for a suitable R.

For further details see [30, 32].
Thus, Σ-convergence theory seems to be the right tool that is needed to
extend homogenization theory beyond the usual periodic setting and thereby
brigde the gap between classical periodic homogenization and stochastic
homogenization. For the sake of clearness we have chosen a simple PDE to
illustrate the large part Σ-convergence is destined to play in homogenization.
For the homogenization by Σ-convergence of rather sophisticated PDE’s we
refer, e.g., to [33, 34, 24].
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