Partial differential equations F, 2001,
home, week 1, week 2, week 3, week 4, week 5,


A posteriori error estimates and adaptivity for Poisson's equation.

Time-discretization: heat, wave and convection-diffusion.


Recommended, where Lx:y = exercise y under lecture x, E = exercise (pdef2-blandade övn), P = problem (Övningsexempel i PDE):


comment on the implementation of (almost) Dirichlet and (almost) Neumann b.c. through (extreme) Robin b.c.
L8:3 (cG1 energy conserv.)
L9:1 (energy norm a posteriori), 2 (second part)

Individual work:

L7:1, 2, 3
P: 12
P: 15
P: 11
L8:1 Hint: a 2x2 matrix with operator elements (like for ex. D^2, where D=d/dx).
L8:2, 5 (cG1 for sec. order wave eq)
L8:6 (inhom. Dirichlet), 7 (damped wave eq), 8
L8:9, 10 (discont. a)


Last modified: Mon Oct 1 14:13:33 MET DST 2001