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The Cuntz semigroup

Definition

Let A be a C*-algebra and let a, b ∈ A+. We write a - b if
there is (dn)n∈N in A such that

lim
n→∞
‖dnbd∗n − a‖ = 0.

Write a ∼ b if a - b and b - a.
The Cuntz semigroup of A, denoted by Cu(A), is defined as
the set of Cuntz equivalence classes of positive elements of
A⊗K.

One shows that Cu(A) is a partially ordered abelian semigroup,
and that A 7→ Cu(A) is a functor from the category of
C ∗-algebras to a certain category of such semigroups.
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The Cuntz semigroup

The Cuntz semigroup has been very important in classification
theory of C ∗-algebras, as in some cases it is a much finer
invariant than K -theory.

Definition (Robert’s algebras)

A unital C ∗-algebra is in Robert’s class R if it is a direct limit
of 1-dimensional NCCW-complexes with trivial K1-group.

Theorem (Robert, 2010)

Algebras in R are classified by their Cuntz semigroup.
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The Equivariant Cuntz semigroup

We first present the construction when the algebra is C.

Definition (Representation semiring)

Let G be a compact group. Its representation semiring Cu(G )
is the set of all unitary equivalence classes of unitary
representations of G on separable Hilbert spaces. It is a
semiring under direct sum and tensor product. (Cu(G ) is
really just Cu(C ∗(G )).)

We take N = {0, 1, . . .} and N = N ∪ {∞}.

Example

Suppose that G is abelian. Then Cu(G ) = N[Ĝ ].
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The Equivariant Cuntz semigroup

Recall: Cu(G ) is the set of equivalence classes of unitary
representations of G .

Definition

Let G be a compact group, let A be a C ∗-algebra and let
α : G → Aut(A). The equivariant Cuntz semigroup CuG (A, α)
is defined using G -invariant positive elements in A⊗K(Hπ),
where π ranges over all unitary representations of G , and
A⊗K(Hπ) has the diagonal action of G .

CuG (A, α) has a natural Cu(G )-action (tensor product) which
makes it into a Cu(G )-semimodule.

CuG looks like equivariant K -theory on the surface, but it is
harder to work with.
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The Equivariant Cuntz semigroup

Recall Cu(G ) = N[Ĝ ] when G is compact abelian.

Julg’s Theorem for CuG

There is a natural isomorphism

CuG (A, α) ∼= Cu(Aoα G )

as semigroups.

When G is abelian, the Cu(G )-semimodule structure is easy

to describe: an element χ ∈ Ĝ acts via

χ · s = Cu(α̂χ)(s)

for s ∈ Cu(Aoα G ).

6 / 12



The Equivariant Cuntz semigroup
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CuG as an invariant for group actions

It is easy to see that if α and β are conjugate, then
CuG (A, α) ∼= CuG (B , β).

Definition

Let α : G → Aut(A) be an action. An α-cocycle is a strongly
continuous function ω : G → U(A) such that ωgh = ωgαg (ωh)
for all g , h ∈ G .
In this case, αω : G → Aut(A) given by αωg = Ad(ωg ) ◦ αg is
also a continuous action.

Theorem

There is a natural isomorphism CuG (A, α) ∼= CuG (A, αω) as
Cu(G )-semimodules.

CuG does not distinguish cocycle conjugate actions.
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Classification of Rokhlin actions

Definition

If G is finite, α : G → Aut(A) has the Rokhlin property if for
every ε > 0 and every finite subset F ⊆ A, there exist
projections eg ∈ A for g ∈ G such that

1 αg (eh) = egh for all g , h ∈ G ,
2

∑
g∈G eg = 1,

3 ‖ega − aeg‖ < ε for all g ∈ G and all a ∈ F .

The Rokhlin property is the main hypothesis in most
classification theorems for actions, and we will add one more
to the list using the (equivariant) Cuntz semigroup.

Recall: algebras in R are direct limits of 1-dim
NCCW-complexes with trivial K1-group, and Cu classifies
algebras in R.
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Classification of Rokhlin actions on R

Theorem

Let G be finite, let A,B ∈ R and let α and β be actions on A and
B with the Rokhlin property. For every Cu-morphism

ρ : (Cu(A),Cu(α))→ (Cu(B),Cu(β)) with [1A] 7→ [1B ]

there is φ : (A, α)→ (B, β) equivariant which lifts ρ.

If ρ is
invertible, then φ can be chosen to be invertible.

The theorem above can be stated in terms of equivariant Cuntz
semigroups, at least when G is abelian: Cu(Ĝ )-semimodule
morphisms

CuĜ (Aoα G , α̂)→ CuĜ (B oβ G , β̂)

preserving the unit can be lifted to equivariant homomorphisms.
(The Cu(Ĝ )-semimodule structure is crucial.)
Note: there is no cocycle.
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morphisms
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Classification of locally representable actions on R

We now turn to a different, though related, class of actions.

Definition

Let A ∈ R, and write it A = lim−→An as in the definition. If G is
finite, an action α : G → Aut(A) will be called locally
representable if it is the direct limit of inner actions on An.

These actions can also be classified.

Theorem

Let G be finite abelian, let A,B ∈ R and let α and β be
locally representable actions on A and B . For every
Cu(G )-semimodule morphism

ρ : CuG (A, α)→ CuG (B , β) with [1A] 7→ [1B ]

there are a β-cocycle ω and φ : (A, α)→ (B , βω) lifting ρ.
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Theorem (continuation)

Let G be finite abelian, let A,B ∈ R and let α and β be locally
representable actions on A and B. For every Cu(G )-morphism

ρ : CuG (A, α)→ CuG (B, β) with [1A] 7→ [1B ]

there are a β-cocycle ω and a unital homomorphism
φ : (A, α)→ (B, βω) lifting ρ.

Moreover,

If ρ is invertible, then φ can be chosen to be invertible.

ω is trivial iff ρ([eα]) = [eβ].

Here eα is the projection eα = 1
|G |

∑
g∈G ug in the crossed product

Aoα G , and similarly for eβ.
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Thank you.
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