Aktuella meddelanden:  Solutions to the last examination
Välkommen till kursen
Schemat för kursen hittar du via länken till webTimeEdit på sidans topp.
Lärare
Kursansvarig: Alexei Heintz
Kurslitteratur: selected chapters from the following books:
A.P.)  Arrowsmith D.K. , Place C.M.: Ordinary Differential Equations.
 A Qualitative Approach with Applications. Chapmann and Hall. (1982).
Borr.)  Robert L. Borrelli, Courtney S. Coleman: Differential Equations: A Modeling Perspective, Wiley (2004)
Hab.)  Richard Haberman: Mathematical models: mechanical vibrations, population dynamics, and traffic flow: an introduction to applied mathematics., Society for Industrial Mathematics 1987


Se kurslitteraturlistan.

Program

Föreläsningar(Lectures)
V 11 (1)
Literature
Context
Monday 15:15 A.P.Introduction
Borr. 444-458
Introduction to ODE. Examples with modeling by ordinary differential equations. Phase portraits, equilibrium states (fixed points),  trajectories, bifurcations.  Logistic model
Exercises A.P. chap. 1: 3; 4c),f); 5; 19a),d); 25; 27iv); 29a)
Notes to the first lecture
Tuesday    15.15: Hab. pp. 224-255
Borr. 444-458
Borr. 86-93
Examples with modeling by ordinary differential equations. Predator-Pray, and Competing species models. Topics for projects.
Notes to the second lecture
Thirsday   8:00:  Hab. pp.257-322
Problems with modeling by PDE. Wave phenomena.
Topics for projects. Notes to the third lecture
V 12 (2)

Important to have a plan for the project at the end of the second week.

Monday 15:15 C.C.B.) Chapter 7
Problems with modeling by PDE. Diffusion and wave phenomena.
Topics for projects. Material to the fourth lecture.
Tuesday    15.15:
Notes to the fifth lecture.
Luo's paper
Examples of problems with modeling by mesoscopic models.
Lattice Boltzmann equation.

Topics for projects. Notes to the fifth lecture.
Thirsday   8:00:
Paper by Gillespie
Examples of problems with modeling by stochastic processes. The Gillespie method.
Topics for projects.
V 13 (3)

Monday 15:15 A.P. Chapter 2.1-4. Linear systems of ordinary differential equations. Classification of matrices.
Exercises chapter 2:
4; 6; 9b),c),d); 13b),c),e).
Tuesday    15.15:
Meetings on projects
Thirsday   8:00: A.P.Chapter 2.5,6,7. Linear systems of ordinary differential equations. The evolution operator. Affine systems. 
Exercises chapter 2. 21
a),e); 3b);34c)

Start working on  Home assignment N1 (do the assignmen with your project group and leave after vacations)
V 14 -15

Examination week and Easter vacations week
V 16 (4)

Monday 15:15 A.P.Chapter 3.1-4, 3.5-6. Stability of stationary points and solutions of non-linear differential equations. Global phase portraits.
Exercises chapter 3.1-3.3:1 b); 4 i),iii); 5 a),d),g);
Tuesday    15.15:
Meetings on projects
Thirsday   8:00: A.P. Chapter   5.4
Borrelli

Lyapunovs functions. Lyapunovs method 
Exercises on Lyapunovs method.
Exercises A.P. chapter 5.4: 1 a),b); 3 a), b),c);7 a),b);8; 10.
 17 (5)

Monday 15:15
A.P.Chapter 3.5-7
Borrelli
Lyapunovs functions. Lyapunovs method 
Exercises on Lyapunovs method.
Exercises A.P. chapter 5.4: 1 a),b); 3 a), b),c);7 a),b);8; 10.
Borrelli. Ch. 8:  Ex.  3-10; Ex. 17-19
Tuesday    15.15:
Meetings on projects
Thirsday   8:00:

A.P.Chapter 3.5-7
Borrelli Chapter. 9.1-9.2

Periodic solutions to ODE. Van der Pol equation. 
Poincaré-Bendixsons theorems
Examples of periodic solutions

Exercises chapter 3.5-7:14 a),b); 15;16.;17a),b); 20
Start working on  Home assignment N2.
(Two weeks)
V 18 (6)




Thirsday   8:00:
A.P.Chapter 3.5-7
Borrelli Chapter. 9.1-9.2
Poincaré-Bendixsons theorems
Examples of periodic solutions

A.P., Exercises chapter 3.8,3.9: 23; 24 a),c); 27; 28
Borrelli, Chapter 9.1-2, Exercises 6-16
V 19 (7)

Monday 15:15 Borrelli Chapter. 2.9,
Chapter. 9.3
A.P. Chapter 5.5
Bifurcations, Hopf bifurcation.
Borelli Chapter 2.9; 
Borelli Chapter 9.3, Exercises 1-9, 20, 21
A.P.  Chapter 5.5, Exercises: 12 a),b),e),f); 13 a); 14 a); 15 
Tuesday    15.15:
Meetings on projects
Thirsday   8:00: Notes on non- dimensional variables
Non-dimensional variables in differential equations.
Ready with Home assignment 2
V 20 (8)

Monday 15:15 Notes on travelling waves
Haberman


Travelling waves in reaction diffusion equations
Models with hyperbolic equations. Characteristics. shock waves
Tuesday    15.15:
Repetition before examination
Project presentations. ( 1 or 2)
V 21 (9)

Monday 15:15
Projects presenations
Tuesday    15.15:
Projects presenations
Thirsday   8:00:
Projects presenations
V 22


Wednesday
8:30-12:39

Examination


Inlämnignsuppgifter(home assingments)
Home assignment N1: (do the assignmen with your project group and leave after vacations)
    1) Find an example of linear ODE i plane for each type of fixed points such that symmetry axises
        are not parallel to coordinate axices.
    2) Calculate eigenvalues and
symmetry axises (if they exist) in each case.   
    3) Draw phase protrait using Matlab (or by hand) for each of your examples. 
    4)  Find and example of a nonlinear system in plane with two or three different types of fixed points 

Home assignment N2 :

    1)  Consider an non-linear ODE in the plane: x'=V(x) with
         V(1)=  -(x(1)-100)+ 5*(x(2)-200) + 0.01*(x(1)-100)*(x(2)-200);
         V(2)=  -(x(1)-100)-   (x(2)-200) - 0.02*(x(1)-100)*(x(2)-200);
or another nonlinear ODE with a stable fixed point (100,200).

    2)  Write a code in Matlab that solves the ODE and draw some typical trajectories for initial data with large (2000-3000) coordinates.
    3)  Interpret your ODE system as a "chemical system" with two types of particles.
    4) 
Model the system of particles by Gillespie method.
    5)
  Compare ODE trajectories and random trajectories from Gillespies method.


Topics for modeling projects:

Modeling with ODE
Topic:
References:
Development of an epidemy by Populations Mass Action Law (malaria, AIDS, influensa, etc). Borr.
Modeling ecosystems by Populations Mass Action Law (fishes, plankton, birds, people, parties, etc.). Borr.
Modeling genetics of evolution by ODE
HofbSigm)
FHopp)
Murray v. I
Traffic flow depending on individual reactions of drivers on the road.
Inverted pendelum with oscillating base.

Autocatalization and bifurcations
Borr. 545
Vine fermentation process. Velt.
Oscillating processes in cells. C.C.B.
Dynamics of a satellite in the system Earth-Moon or a planet in in a double star system.


Modeling with ODE and stochastic processes
Topic:
References
Development of an epidemy by Gillespies method  (malaria, AIDS, influensa, etc). Gillespie paper
Modeling ecosystems by Gillespies method  (fishes, plankton, birds, people). Gillespie paper
Stochastic processes in cell membranes. C.C.B.
Transport of neutrons through protection of a nuclear reactor. Sobol, chapter 7


Modeling by PDE
Topic:
References:
Waves and jems traffic flow by hyperbolic equations. Hab. Chapter 3
Neuron pulse propagation. Sch. p. 167, p.181, C.C.B.
Process of freezing and melting a lake. Matt. p.592
Reaction-diffusion process in pellets
Matt. p.555
Modeling spacial effects in genetics of evolution by PDE Murray v. I and v. II
Bifurcation of a viscous flow in a channel by the Lattice Boltzmann model.
Luo's paper 1 and paper 2
Viscous flow in a channel with obstacles by the Lattice Boltzmann model.
Luo's paper 1
Patterns formation by reaction-diffusion equations.

Murray J.D. v. II
Patterns formation in activation - inhibition reactions in diffusive media. Murray J.D. v. II
Modeling stripe patterns of angelfishs Pomakanthus semicirculatus by reaction-diffusion equation
Modeling chemotaxis by reaction-diffusion equations.
Cancer modelling and simulation.
Science 261, (1993) pp.189-192
Nature 376, (1995), pp. 765-768

Murray J.D. v II.
Spreading of waves in a channel by the shallow water equation.

Additional literature for projects:
Velt.)  Kai VeltenMathematical Modelingand Simulation  Introduction for Scientists and Engineers, Wiley, (2009)
Sch)  Paul E. Phillipson, Peter Schuster: Modeling by Nonlinear Differential equations.
Dissipative and Conservative Processes
, World Scientific (2009)
Matt.) R.M.M. Mattheij, S.W. Rienstra, J.H.M. ten Thije Boonkkamp:
Partial Differential equations. Modeling Analysis Computations, SIAM, (2005)
C.C.B.): Christopher P. Fall, Eric S. Marland, John M. Wagner, John J. Tyson:
Computational Cell Biology, Springer, (2000) (available online at Chalmers libraries homepage)
Sobol) I.M. Sobol: A primer for the Monte Carlo method. Boca Raton : CRC Press, (1994)


HofbSigm) Josef Hofbauer , Karl Sigmund  The theory of Evolution and Dynamical sSystems. Mathematical Aspects od Selection. Cambrige University Press (1995)
FHopp) Frank_Hoppensteadt Mathematical Theories of Populations Demographics, Genetics, and Epidemics (1997)

Murray J.D. Mathematical Biology I. An Introduction. Third Edition. Springer (2007) (available at Chalmers)
Murray J.D. Mathematical Biology II. Spatial Models and Biomedical Applications.Third Edition. Springer (2003) (available online at Chalmers library)
Prez) Cancer modelling and simulation. edited by Luigi Preziosi.: Chapman & Hall/CRC, (2003).(available at Chalmers)
Sobol) I.M. Sobol: The Monte Carlo Method, The University of Chicago Press (1974) (available at Chalmers)

Referenslitteratur i Matlab:
  1. Material (utvecklat av MV) som ger en kortfattad introduktion till Matlab
  2. Holly More, MATLAB for Engineers
    (Ger en introduktion till Matlab och kräver inledningsvis ingen matrisalgebra.
    Är utmärkt för självstudier.)
  3. Per Jönsson, MATLAB-beräkningar inom teknik och naturvetenskap
    (Kräver kunnskaper i Matrisalgebra. Innehåller lite mer avancerade övningar och modelleringsuppgifter
    Är utmärkt som referemslitteratur/uppslagsbok)
Kurskrav
Kursens mål finns angivna i kursplanen.

Examination Topics for examination updated the 7-th of may

Teaching will include lectures, exercises, 2 assignments to be done at home and giving two bonus points each, and a large project done in working groups. A working group can consist of maximum 3 people.

A project includes studying a particular problem, formulating a mathematical model, implementing a numerical algorithm, numerical investigation, analysis of the results, and writhing a report as a scientific paper around 15 pages describing all aspects of the work on the project. The weeks 21 will be devoted to the presentation of projects 30 minutes for each group.

A written examination over the theoretical part of the course will take place at the end.

Well done home assignments will give two bonus points each for the written examination.

Total points for the course will be an average of points for the project (60%) and for the written examination (40%).

Rutiner kring tentamina
I tentamensscheman anges alla tentor för respektive period.
Vid tentamen ska du kunna uppvisa giltig legitimation.
Du kan läsa i Chalmers studentportal om vilka regler som gäller kring att tentera på Chalmers, men observera att du som går på GU ska anmäla dig till tentan via GU:s studentportal.
Meddelande om resultat fås enbart med epost via Ladok. (Ej muntligt på studieexpeditionen.) Detta sker automatiskt när resultaten är registrerade. Kontrollera att Du har fått rätt betyg och att poängsumman stämmer.

Vid ordinarie tentamen:
Då det är praktiskt möjligt ordnas ett separat granskningstillfälle av tentamen. Tidpunkt för detta meddelas på kurshemsidan. Den som inte kan delta vid granskningen kan efter detta hämta och granska sin tenta på Matematiska vetenskapers studieexpedition, måndag till fredag, kl 9.00-13.00. Eventuella klagomål på rättningen ska lämnas skriftligt på expeditionen, där det finns en blankett till hjälp.

Vid omtentamen:
Tentorna granskas och hämtas ut på Matematiska vetenskapers studieexpedition, måndag till fredag, kl 9.00-13.00. Eventuella klagomål på rättningen ska lämnas skriftligt på expeditionen, där det finns en blankett till hjälp.
Kursutvärdering
I början av kursen bör minst två studentrepresentanter utses för att tillsammans med lärarna genomföra kursutvärderingen. På kursens aktivitet i GUL ( inloggning via Studentportalen) finns en enkät som används vid utvärderingen. Utvärderingen sker genom samtal mellan lärare och studentrepresentanter under kursens gång samt vid ett möte efter kursens slut då enkätresultatet diskuteras och rapport skrivs på speciell blankett.  
Gamla tentor
Tenta 2011_1 ; Tenta_2011_2; Tenta_2011_aug.